
DEGREE MATRIX COMPARISON FOR GRAPH ALIGNMENT

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Bachelor of Arts

in

Mathematics

by Ashley Wang

Advised by Peter Chin and Peter Mucha

Dartmouth College

Hanover, New Hampshire

June 2025

Abstract

The graph alignment problem, which considers the optimal node correspondence

across networks, recently gained significant attention due to its wide applications.

There are graph alignment methods suited for various network types, but we focus on

the unsupervised geometric alignment algorithms. First and foremost, we propose De-

gree Matrix Comparison (DMC), a very simple degree-based method that has shown

to be effective for heterogeneous networks. Additionally, we propose some variations

of this method, including Greedy DMC with lower time complexity, Weighted DMC

suitable for aligning weighted graphs, and Ricci Matrix Comparison (RMC) for sce-

narios where the Forman-Ricci curvature is suitable as a signature of nodes.

We performed detailed theoretical analysis and conducted extensive experiments

to demonstrate the potential of this sequence of graph alignment methods. Remark-

ably, DMC achieves up to 99% correct node alignment for 90%-overlap networks and

100% accuracy for isomorphic graphs. Positive results from applying the variational

methods furthermore speak to the validity and potential of the initially proposed

DMC. The sequence of methods could significantly impact graph alignment, offering

reliable and simple solutions for the task.

ii

Acknowledgements

This undergraduate thesis is a collection of my series of projects since junior year on

graph alignment. The two resulting papers are publicly available on arXiv [37, 38].

I would also like to thank a few people who have either academically or emotionally

(or both) supported me throughout my undergraduate journey.

I would first like to express my gratitude to Prof. Peter Chin, whom I have worked

with for more than a year. He has warmly supported my research journey in my

junior and senior years, continuously encouraging me along my way, especially during

application season to graduate school when I often doubted my own capabilities. We

have bonded well outside of research too.

I would like to thank Prof. Peter Mucha who has given me many pieces of advice

throughout my journey to graduate school. We have interacted through a course and

my random door knocks which led to conversations prior to working on the thesis.

He has also provided me with guidance throughout the thesis with valuable advice.

I would like to thank my family for their unconditional love and support, as

always. I am particularly grateful to Dartmouth for giving me the lifelong memory

of spending a year in college with my younger brother, Adam Wang ’28.

I would also like to thank Guanming Liang ’25, an avid supporter of my journey

toward becoming a mathematician.

Last but not least, I would like thank my best friend, Ziying Yin, who has known

me for ten years and is also a mathematics major at Peking University. I am honored

iii

to have a friend like her who shares similar interests and passions. Her optimism and

independence have surely inspired me. It is simply amazing that we are still in close

touch, thanks to the invention of video calls, even though we were actually classmates

for only three years in middle school.

I sincerely thank all other friends who have heard me out, encouraged me, and

inspired me.

iv

Contents

Abstract . ii

Acknowledgements . iii

1 Introduction 1

2 Problem Set Up: Graph Alignment 4

2.1 Random Walk Graph Sampling . 5

2.2 Edge Deletion Graph Sampling . 6

3 Proposed Alignment Methods 8

3.1 Degree Matrix Comparison . 8

3.1.1 Overview of Method (DMC) 8

3.1.2 Examples for Degree Matrix Comparison 9

3.1.3 Hungarian Algorithm . 11

3.2 Greedy DMC . 13

3.2.1 Overview of Method (Greedy) 13

3.2.2 Hungarian Algorithm Prepared by Greedy Heuristic 14

3.3 Weighted DMC . 15

3.3.1 Example for Weighted Degree Matrix 16

3.4 Ricci Matrix Comparison . 17

v

4 Theoretical Examination 19

4.1 Motivations for Constructing DMC 19

4.2 Spectrum of Graphs . 22

4.2.1 Erdős-Rényi Graphs . 22

4.2.2 Barabási-Albert Graphs . 23

4.2.3 Poisson Distribution: Bridging Erdős-Rényi and Barabási-Albert 26

4.3 DMC Experiments on Synthetic Graphs 27

4.3.1 The Extreme Cases . 27

4.3.2 The Intermediate Cases . 28

4.4 Performance Analysis for DMC . 31

4.5 Motivation for Constructing RMC . 32

4.5.1 Forman-Ricci Curvature . 33

4.5.2 Graph Laplacian . 34

4.5.3 Variation of Signature Row Vector from a Degree Matrix . . . 37

4.5.4 The “Curvature-Laplacian” Equation 37

4.5.5 Possible Implications of the Equation 39

4.6 More Theory for Applying RMC . 40

4.7 RMC on Standard Tori . 42

4.7.1 Tiling Methods to Construct a Torus 42

4.7.2 Thought Experiment: Applying RMC to Tori 45

5 Experimental Results on Real World Networks 47

5.1 Unweighted . 48

5.2 Weighted . 51

5.3 RMC . 53

5.3.1 Experiments on Line Graphs of Complex Networks 53

vi

6 Conclusion and Future Work 55

vii

Chapter 1

Introduction

Graph alignment is a critical task with applications across various domains, like social

networks, biology, and cybersecurity. In social networks, graph alignment can identify

the same user across multiple platforms, providing insights into user behavior and

preferences. In biology, it helps in comparing molecular structures and understanding

functional similarities between biological networks. In cybersecurity, aligning graphs

can detect coordinated attacks and identify malicious entities by correlating data from

different sources. Graph alignment is also highly related to the subgraph isomorphism

problem in mathematics and computer science, which is an NP-complete problem.

Improving the efficiency and simplifying implementation steps of graph alignment

algorithms are important in artificial intelligence because they help us learn patterns

on networks.

There are supervised graph alignment methods that work well already [23]. This

is not surprising as supervised and semi-supervised methods exploit node attributes,

such as semantic features of users [34, 42]. However, they break down when users

disguise their identities and node attributes are no longer reflective of local properties

[13]. Moreover, they require some knowledge of the node labeling on a network prior

to the alignment. There are also unsupervised methods that rely on the power of node

1

Introduction Introduction

attributes, like WAlign [11]. We, however, focus on the unsupervised graph alignment

problem for unattributed plain graphs, mainly leveraging geometric properties.

Degree Matrix Comparison (DMC), which is introduced in Section 3.1, is a method

that fits the task. We list some previous unsupervised methods that exploit graph

geometries: REGAL, which is a representation learning-based method [14] ; FINAL,

which mainly utilizes graph topology but enhances it with node attributes [43] ; Klau,

which utilizes a Lagrangian relaxation approach in an optimization problem [16] ; and

IsoRank, which constructs an eigenvalue problem for every pair of input graphs and

then uses k-partite matching techniques [31]. For a more comprehensive view of past

unsupervised alignment methods, see [32].

DMC was constructed with the following two core ideas in mind. First of all,

degree is the most accurate and direct description of local structure. Moreover, in

representing geometric structure, it makes sense to include both local and global infor-

mation, like in [18, 25], especially in compact matrix form (like in adjacency matrices

and graph Laplacian matrices). This is not just because “the more the better”, rather

it is a consequence of the Friendship Paradox; this will be more thoroughly discussed

in Chapter 4. More specifically, we propose foregoing the need to know exact con-

nections between nodes, like in an adjacency matrix, and record accurately two-layer

exact information—degree of a node and its neighbors’ degrees in a matrix—in a

clever way, for later use of the Hungarian algorithm, which will be explained in Sec-

tion 3.1.3. Since we are aligning unattributed graphs, a method based on information

about links between labeled nodes is not rigorous, because the assignment of node

IDs could be random on the pair of graphs to be aligned. Although the Hungarian

algorithm is widely known and has been integrated into other graph alignment meth-

ods [5], our approach merits further attention and research due to its exceptional

applicability to real heterogeneous networks—rather than restricted ideal graphs like

2

Introduction Introduction

k-partite graphs or complete graphs—with very simple implementation steps.

This method is somewhat intuitive, since we are attempting to describe a local

neighborhood using degrees of neighbors. On top of intuition, we also attempted

to provide theoretical explanations that could support and provide insight into this

method (and its variations). The few things we try to highlight in the theoretical sec-

tions are: a simplified model of analyzing alignment behavior that shows high-degree

nodes are more likely aligned with high-degree nodes in heterogeneous networks; sig-

nature vectors for nodes in our proposed degree matrix can somewhat approximate

a description of local graph Ricci curvature; a derived Curvature-Laplacian equation

kindles another type of graph alignment method based on curvatures, namely Ricci

Matrix Comparison.

3

Chapter 2

Problem Set Up: Graph Alignment

In this section, we introduce the Graph Alignment problem, addressing possible vague-

ness in the understanding of the problem as meticulously as possible.

Definition 2.1 (Graph). A graph is a pair G = (V,E), where elements v ∈ V are

called vertices (or nodes), and E is a set consisting of unordered (for our purposes

only) pairs {v1, v2} for some but not necessarily all of v1, v2 ∈ V .

Geometrically, G could represent an object with vertices and edges that connect

some of the vertices. The presence of {v1, v2} ∈ E indicates there is an edge between

the vertices v1, v2. We talk about graphs in a manner that assumes a geometric

interpretation. But there are other ways to interpret what we call a “graph”; a most

direct example is the adjacency matrix, which is a binary matrix representation of

graphs.

Definition 2.2 (Graph Alignment). If we have G1 = (V1, E1) and G2 = (V2, E2)

for graph alignment, we try to find the optimal one-to-one mapping f : V1 → V2 to

maximize the number of v1 ∈ C ⊆ V1 such that v1 = v2 = f(v1) ∈ V2. This process

is called Graph Alignment.

To perform graph alignment, we need to generate a pair of graphs with common

4

2.1 Random Walk Graph Sampling Problem Set Up: Graph Alignment

structure for comparison. We introduce two graph sampling methods that help us

first sample size-wise manageable smaller graphs from larger complex graphs, then

further sample subgraphs from a smaller graph that retain common structure (but

not isomorphic most of the times).

Section 2.1

Random Walk Graph Sampling

One of our methods utilizes random walk on graphs to extract subgraphs [13, 21].

Definition 2.3 (Random Walk (on graphs)). Suppose we start random walk at v ∈

V . We first find the set of neighbors of v, which are vertices connected to v by at

least one edge, that we denote as Snei. Then we randomly pick vn ∈ Snei, and move

from v to vn. Then we do the same thing for vn, and all following nodes iteratively,

until called to stop. This process is called random walk.

We take subgraph Gs = (Vs, Es), with n = |Vs| distinct nodes, of a real world

network Gr = (Vr, Er) through random walk. This is achieved through the following

procedures: we pick random v0 ∈ Vr, and initiate random walk on Gr until we either

get one connected component (a graph that cannot be represented as the disjoint

union of two graphs) with n distinct nodes, or exhaust a connected component in

Gr with insufficient nodes, whichever comes first. If the latter is true, we randomly

pick a new (different from all previous nodes that we walked on) node vn ∈ Vr and

continue random walk until we obtain a sampled graph with the desired n distinct

nodes and as few connected components as possible. Vs is the set that contains the n

distinct nodes from the random walk process just described. Es ⊆ Er inherits edges

between sampled nodes in Vs from Gr.

To construct G1 = (V1, E1) ⊆ Gs and G2 = (V2, E2) ⊆ Gs for graph alignment, we

perform random walk on Gs to first obtain a set of nodes that serves as the common

5

2.2 Edge Deletion Graph SamplingProblem Set Up: Graph Alignment

Figure 2.1: Graph Sampling with Random Walk

set of nodes C = V1

⋂
V2 ⊂ Gs. The number of vertices we want to stop at, for the

random walk, is |C| = np, where n is like before the number of distinct nodes in Gs

and p is what we call the “overlap percentage” (with respect to Gs). We then take

arbitrary H1, H2 ⊆ (Vs \ C) such that |H1| = |H2| and Vs \ C = H1 ⊔ H2 (disjoint

union). Let V1 = C ⊔H1 and V2 = C ⊔H2, then |V1| = |V2|. E1 ⊆ Es is the inherited

set of edges between nodes in V1 from Es, likewise for E2.

Figure 2.1 is a demonstration for what we are trying to take off the entire graph.

There are three green circles containing different regions of the graph; the two larger

ones contain the same number of nodes, and the smallest circle contains the common

region between the two possible sampled graphs through random walk. This is not

the only sampling possible.

Section 2.2

Edge Deletion Graph Sampling

The second graph sampling method is from [14]. Suppose Gs is the same graph as in

Section 2.1, then let G1 = Gs = (V1, E1), and we delete edges of G1 with probability pd

to obtain another graph, which is G2. If G2 = (V2, E2), then V2 = V1, and E2 ⊆ E1.

6

2.2 Edge Deletion Graph SamplingProblem Set Up: Graph Alignment

Figure 2.2 is a simple demonstration of the edge deletion graph sampling method,

Figure 2.2: Graph Sampling with Edge Deletion

where two edges from the left graph were randomly deleted to obtain the right graph.

7

Chapter 3

Proposed Alignment Methods

In this chapter, we introduce several graph alignment methods, each suited for a

specific purpose. Section 3.1 introduces the core method, Degree Matrix Comparison,

which is the basis of deriving other variations in other sections of Chapter 3.

Section 3.1

Degree Matrix Comparison

3.1.1. Overview of Method (DMC)

Our main proposed method requires creating two degree matrices and comparing

them. We denote deg(v) as the degree of a node v, where degree is simply the

number of edges connected to a vertex, or more formally, the number of unordered

pairs in the edge set E that contains the vertex.

Definition 3.1 (Degree Matrices). Consider a pair of graphs G1 = (V1, E1) and

G2 = (V2, E2). By our problem set up in Chapter 2, N = |V1| = |V2|. Let V1 = {vi}Ni=1

and V2 = {wj}Nj=1. Let m1 = max({deg(vi)}Ni=1) and m2 = max({deg(wj)}Nj=1), and

m = max(m1,m2). Then the degree matrix M1 for G1 is a matrix of dimension

(N,m), where each row left-aligns, for a unique v1 ∈ V1, its neighbors’ degrees in

8

3.1 Degree Matrix Comparison Proposed Alignment Methods

ascending order, with zero-padding to the right. We define M2 similarly.

The order of rows in M1 and M2 is arbitrary. After obtaining M1 and M2, we

use the Hungarian algorithm (see Section 3.1.3) to minimize cost between rows of the

matrices, producing a map between rows of M1 and M2. We migrate this assignment

directly to the assignment f : V1 → V2 between nodes. We call this entire process the

Degree Matrix Comparison (DMC).

3.1.2. Examples for Degree Matrix Comparison

We provide examples here to demonstrate the concept of a degree matrix and the

DMC process. For the degree matrix formulation, let us examine the graph (assumed

to be a local picture taken from a much larger graph) in Figure 3.1 with circled node as

the origin. Then the boxed nodes are the first neighbors of the origin. Starting from

the first neighbor in the upper left corner and going counter clock-wise, the degrees of

the five first neighbors are 3, 4, 3, 5, 3. Suppose (arbitrarily) m in this case is 10, then

the row vector representation for the circled node would be [3, 3, 3, 4, 5, 0, 0, 0, 0, 0] in

the degree matrix for the larger graph. We do this for every node in the larger graph

which this smaller piece is taken from to build a degree matrix.

Figure 3.1: Example Graph to Demonstrate Degree Matrix Formulation

Now we demonstrate the DMC process. Consider the two graphs in Figures 3.2

and 3.3 as a pair that we are to align.

9

3.1 Degree Matrix Comparison Proposed Alignment Methods

Figure 3.2: F1 to demonstrate DMC

Figure 3.3: F2 to demonstrate DMC

Let the graph in Figure 3.2 be F1 = (VF1 , EF1) and the graph in Figure 3.3 be

F2 = (VF2 , EF2). The node set Vl of the largest overlapping subgraph consists of all five

nodes, or: Vl = VF1 = VF2 . However, the graphs are not isomorphic, so the edge set

El of the overlapping subgraph is a strict subset of EF1 , EF2 , which in mathematical

notation is: El ⊊ EF1 , EF2 . Let the edge between node 3 and node 4 in F2 be w.

Then the overlapping subgraph takes the shape of F2\{w}. The degree matrices for

F1 and F2 are



4 0 0 0

1 3 3 3

3 3 4 0

3 3 4 0

3 3 4 0


and



2 3 4 0

3 4 0 0

2 3 4 0

3 4 0 0

2 2 3 3


,

Then we use the Hungarian algorithm (see Section 3.1.3) to minimize the cost of row

alignment between the two matrices above. The algorithm aligns nodes 1, 2, 3, 4, 5

10

3.1 Degree Matrix Comparison Proposed Alignment Methods

of F1 to nodes 2, 5, 1, 3, 4 of F2 (one could check understanding of the concepts with

this result). This is not an optimal result, but it is expected since the graphs are not

heterogeneous (the relationship between performance of DMC and heterogeneity of

graph will be discussed in depth in Chapters 4 and 5). This example is purely for

demonstrating DMC.

In practice (implementing in code), the Hungarian algorithm (see Section 3.1.3)

can be replaced by a computationally more efficient linear sum assignment function

from scipy.optimize in Python which yields the same assignment [7]. However,

in terms of comprehension, the Hungarian algorithm is more straightforward. The

complexity of DMC is at most O(N3) for a pair of graphs that each has N nodes

[9, 36]. When m << N , which is typical for large sparse graphs, the complexity is

O(N2 ·m) << O(N3).

3.1.3. Hungarian Algorithm

In this section, we introduce the Hungarian algorithm, which was named after two

Hungarian mathematicians Dénes König and Jenö Egerváry. It is essentially an op-

timization algorithm that minimizes the cost of an assignment between two sets of

objects. In our case, we minimize the cost of assigning rows between two degree

matrices. One would first calculate a cost matrix between two degree matrices. Since

the graph sampling methods in Chapter 2 produce graph pairs with exactly the same

number of nodes, say n, we would have a cost matrix C of dimension n×n with each

entry cij being the cost (Euclidean distance) between the ith row in the first degree

matrix and the jth row in the second degree matrix. With the cost matrix in hand,

we perform steps following Algorithm 1.

11

3.1 Degree Matrix Comparison Proposed Alignment Methods

Algorithm 1 Hungarian Algorithm

Input: A cost matrix C of size n× n.
Step 1: Subtract the row minimum.
for each row i in C do

Subtract the minimum value of row i from all elements in row i.
end for
Step 2: Subtract the column minimum.
for each column j in C do

Subtract the minimum value of column j from all elements in column j.
end for
Step 3: Cover all zeros with a minimum number of lines.
while not all zeros are covered do

Identify rows and columns containing uncovered zeros.
Cover all zeros using the minimum number of horizontal and vertical lines.

end while
Step 4: Check the number of lines.
if the number of lines is equal to n then

An optimal assignment is possible.
Go to Step 6.

else
Go to Step 5.

end if
Step 5: Adjust the matrix.
Find the smallest uncovered value.
Subtract this value from all uncovered elements.
Add this value to elements at intersections of covering lines.
Return to Step 3.
Step 6: Make the assignments.
Select zeros such that no two are in the same row or column.
Return the assignment and compute the total cost.
Output: An optimal assignment and the total cost.

Example. We provide a simple example to demonstrate the Hungarian algorithm.

Suppose we have a cost matrix 1 2

3 5



12

3.2 Greedy DMC Proposed Alignment Methods

which is of size 2× 2. Performing Step 1 in Algorithm 1, we get

0 1

0 2


which leads us to Step 2, through which we obtain

0 0

0 1


which leads us to Step 3. A good way to cover zeros is through drawing a horizontal

line in row 1 and a vertical line in column 1. In Step 4, we find that the number

of lines is 2, equal here to n since the cost matrix is 2 × 2. Therefore, an optimal

assignment is possible, and we move on to Step 6. In row 2, the only zero is the entry

c21, which leaves us to choose c12 as the other zero for our assignment. This indicates

that our eventual total cost is minimized to 2 + 3 = 5, which is indeed the lowest cost

possible since the other assignment leads to a total cost of 1 + 5 = 6 > 5.

Section 3.2

Greedy DMC

3.2.1. Overview of Method (Greedy)

The complexity of DMC can be reduced through replacing the Hungarian algorithm

with a combination of a greedy heuristic and the Hungarian algorithm (see Algo-

rithm 2), but accuracy is compromised. The greedy heuristic, with O(N2) ∼ O(N3)

complexity and assignment threshold ϵ, serves as a preparation step to reduce reliance

on the Hungarian algorithm. We call this reduced version the Greedy DMC.

We bring to attention the case where ϵ = 0. While this is a special case of the

13

3.2 Greedy DMC Proposed Alignment Methods

Greedy DMC algorithms with different ϵ thresholds, it is not “Greedy” in any sense.

In fact, this is an algorithm that first finds exact matches between rows in M1 and

M2, then performs the Hungarian algorithm on remaining rows. As can be seen in

Chapter 5, Greedy DMC’s ϵ = 0, 10 cases are very effective algorithms like DMC, and

are worth studying in the future.

3.2.2. Hungarian Algorithm Prepared by Greedy Heuristic

The greedy heuristic is another optimization algorithm. Different from the Hungarian

algorithm which is a global optimization algorithm, it considers only local cost min-

imization. Again, since we are aligning two graphs with the same number of nodes,

our cost matrix C resulting from them is a square matrix of dimension n× n.

Algorithm 2 Hungarian Algorithm Prepared by Greedy Heuristic

Input: Cost matrix C of size n× n, threshold ϵ > 0.
Initialize nodes[i]← unassigned, ∀i ∈ {1, . . . , n}.
Initialize unused[j], ∀j ∈ {1, . . . , n}.
while any node i is unassigned do
for each unassigned node i do

Identify the first entry j such that unused[j] still exists and cij < ϵ.
if an entry j was found then

Assign node j on second graph to node i on first graph.
Remove unused[j].

else
Leave node[i] unassigned.

end if
end for

end while
if any tasks remain unassigned then

Assign remaining tasks using the Hungarian algorithm (see Algorithm 1).
end if
Return: Final assignment of agents to tasks.

14

3.3 Weighted DMC Proposed Alignment Methods

Example. Let us use the following cost matrix:

1
2

1
3

3 5

 ,

and let the tolerance be ϵ = 1. We first examine row 1, and notice that when j = 1,

we have c11 = 1
2
< 1 = ϵ, therefore we directly align the 1st row of the first degree

matrix to the 1st row of the second degree matrix. Then we are left with aligning

another row vector to row i = 2. Notice that j = 1 is taken, so we can only pick the

alignment i = 2 to j = 2. If there were more rows, we would continue finding the

first-possible-alignment for all rows before performing the Hungarian algorithm on

“leftovers” (when there are no entries in a row in the cost matrix that is within the

tolerance level, we leave row i unassigned as a “leftover”). In this case, the alignment

cost is not minimized as 1
2

+ 5 > 1
3

+ 3, but computational cost is lower than iterating

through all possible cases.

Section 3.3

Weighted DMC

While the previous methods are meant for unweighted plain graphs, the Weighted

DMC is designed for weighted graphs (with weights on edges instead of nodes). These

graphs can no longer be fully represented by just an adjacency matrix, which counts

number of edges but makes no note of varying weights. Therefore, we propose a

variation of the DMC that incorporates this extra piece of information, keeping in

mind that we do not want the degree matrix size to change substantially (to save

computational power). But first we introduce the idea of a Weighted Degree Matrix.

Definition 3.2 (Weighted Degree Matrix). Let M be a degree matrix for a graph G

15

3.3 Weighted DMC Proposed Alignment Methods

(as defined in Definition 3.1). Then the Weighted Degree Matrix for the same graph

G is formed by multiplying each entry mij ∈ M by the weight of the edge between

the node corresponding to row i and the node corresponding to row j on a second

graph, and then rearranging the resulting entries within each row.

The Weighted DMC is the process of performing the degree matrix comparison,

except we replace previous degree matrices with weighted degree matrices. Weighted

DMC performed well on multiple datasets (see Chapter 5), suggesting it deserves

further research—much like Greedy DMC. In particular, its high performance on

protein-protein interaction (PPI) networks (often used to test graph alignment) indi-

cates that DMC’s success is not coincidental.

3.3.1. Example for Weighted Degree Matrix

We provide a quick example for constructing a weighted degree matrix. We examine

the weighted graph provided in Figure 3.4. We write out an initial matrix containing

Figure 3.4: Graph for Example Weighted Degree Matrix

degrees of neighbors without rearrangement. Let row i correspond to node i as labeled

in red, and we record degrees of neighbors by ascending order of node labels (initial

16

3.4 Ricci Matrix Comparison Proposed Alignment Methods

node labeling is arbitrary). Then we obtain (assuming largest possible degree is 4)



2 1 3 0

3 3 0 0

3 0 0 0

3 0 0 0

3 2 1 0


.

As usual, we record non-zero entries first, and then fill in missing entries with zeros.

For example, row 1 is for node 1, and since the nodes connecting to node 1 are nodes

2, 3, and 5, we record the degrees of these three nodes by their label order: 2, 1, 3.

There is one empty position left in the first row, so we fill it in with 0. The other

rows are constructed with the same logic.

Section 3.4

Ricci Matrix Comparison

Recall that in Section 3.1, we introduced the Degree Matrix Comparison (DMC)

method for graph alignment. The corresponding degree matrices record for each

node in a row in the matrices the neighbors’ degrees. As will be motivated in Sec-

tions 4.5 and 4.6, another possible alternative or variation to the DMC is using the

discrete graph Ricci curvature at each node as signature values. Instead of having

degrees of a node’s neighbors in each row, we replace these values with the Forman-

Ricci curvatures of these same neighbors. We reorder curvatures within each row

to ascending order and pad zeros to the right again. Then we apply the Hungarian

algorithm. Directly, we call this variation Ricci Matrix Comparison (RMC). A formal

definition of the Forman-Ricci Curvature is provided in Definition 4.4.

We provide an explicit example for constructing a row vector in a Ricci matrix.

17

3.4 Ricci Matrix Comparison Proposed Alignment Methods

Figure 3.5: Example graph for demonstrating Ricci row vector construction.

Suppose we try to look for the row vector in a Ricci matrix (analogue of degree

matrix) for the circled node in Figure 3.5. We first observe that the neighbors of this

origin O have degrees of 1, 4, and 5. Let us call these nodes A, B, and C. We try to

calculate the Forman-Ricci curvature at each of these neighbors (the formula is simple

for unweighted graphs). For node A, the curvature is 2− deg(A)− deg(O) = −2 and

the summation sign is dropped since it only has degree one. For nodes B and C, we

calculate their curvatures in the same way, summing up the curvatures on all adjacent

edges. For node B, its adjacent edges have curvatures -5, -4, -4, and -7. Therefore,

the Forman-Ricci curvature of node B is their sum, -20. Following a same procedure,

we get that the node curvature for C is -27. So in a row vector, we have [-27, -20, -2,

0, 0, ..., 0]. The number of zeros we pad is dependent on the magnitude of m, the

maximum degree on both graphs. The dimensions of the matrices remain the same

as degree matrices since the number of nonzero entries of a row is still reflective of

the degrees of the nodes. Note here that we will not encounter a complex connected

graph with a node with curvature 0, since each node has at least a degree of 1.

18

Chapter 4

Theoretical Examination

Section 4.1

Motivations for Constructing DMC

One theoretical motivation for the method is that degree matrices remain invariant

in response to arbitrary node labeling. By invariant, we mean that degree matrices

are in the same equivalence class defined by the following equivalence relation.

Theorem 4.1 (Equivalence Relation on Degree Matrices.). We define a binary re-

lation between two degree matrices: degree matrices A,B are said to be related (i.e.

A ∼ B) if we can transform A to become B only through row swap operations. More-

over, we claim that this is an equivalence relation.

Proof. A binary relation is an equivalence relation if and only if the relation is reflex-

ive, symmetric, and transitive. For any matrix A, A ∼ A is true since we can obtain

A from performing no row swap operations on A, hence the relation is reflexive.

A ∼ B implies there is a series of row swaps that can transform A to B. Therefore,

we can also obtain A from B through reversing the row swap process and so B ∼ A.

Hence, the relation is symmetric.

19

4.1 Motivations for Constructing DMC Theoretical Examination

A ∼ B and B ∼ C imply we can transform A into B through row swaps, and

also transform B into C through row swaps. This implies we can obtain C from A

through first performing row swaps that transform A into B and then applying more

row swaps that transform B into C. Hence we can obtain C from A through row

swaps and A ∼ C, making the binary relation transitive.

The invariant property is crucial for graph alignment for unattributed graphs

(or on attributed graphs but not using attributes) because this means we are only

leveraging geometric properties that are inherent of graphs and not relying on other

information affiliated to them.

Apart from the invariant property, we also point out that degree matrices are

efficient in storing information. A degree matrix (N ×m) encodes information more

compactly than an adjacency matrix (N × N), since it not only contains degrees of

neighbors for each node, but also implicitly records degrees of each node through

the number of non-zero entries in each row, unlike the adjacency matrix which only

records the degree distribution (one would need to incorporate node labeling to get

an exact picture of the graph).

Additionally, combining local (degrees) and global (assignment) perspectives is

important because the of the Friendship Paradox. In general terms, it is the observa-

tion that, on average, friends of a person typically have more friends than that person.

The Friendship Paradox shows how local observations can be completely shifted when

we examine the same neighborhood globally [2, 20].

To show that this phenomena is real, we provide an explicit example in Figure 4.1,

which was taken from “The Network Pages” [27]. We observe that this graph is one

edge away from being a complete graph (an undirected graph where all pairs of nodes

have an edge in between), so it is complex. In other words, all “are friends” with each

other except between two of all nodes. If we examine any one of the “smiley faces”

20

4.1 Motivations for Constructing DMC Theoretical Examination

which is connected to all other nodes except for itself locally, we would come up with

the conclusion that it has more friends than its friends’ average. Moreover, this is

true for most of the nodes (“smiley faces”) on the graph. Therefore, if we examine

all nodes locally, we would conclude that “most of the nodes are more popular than

its friends.”

While this is true, we could come up with a different conclusion if we take a global

perspective. The article in [27] introduced the concept of “Friendship Bias” as the

value of subtracting the degree of a node from the average degree of its neighbors.

When there is positive bias, it somewhat indicates a node is “less popular” (less

connected to other nodes compared to its neighbors), and vice versa for negative

bias. For the graph in Figure 4.1, we have that the bias for any of the “smiley faces”

is 10×8+9×2
10

− 10 = −0.2, since there are 8 nodes of degree 10 among neighbors of a

“smiley face”, and 2 nodes of degree 9 among the same set of neighbors. Similarly,

we can calculate for any of the “sad faces” that the bias is 10×9
9
− 9 = 1. If we pursue

a global perspective, it makes sense to take the mean of the biases of all nodes,

which leads us to an average bias of 1×2−0.2×9
11

= 0.2
11

> 0. Globally, we arrive at the

conclusion that, on average, the average degree of neighbors is larger than degrees of

nodes (i.e. your friends have more friends than you do on average).

Figure 4.1: Example Graph to Demonstrate Friendship Paradox

21

4.2 Spectrum of Graphs Theoretical Examination

Heterogeneous graphs tend to be more easily distinguishable, since they have more

variations across the entire graph. By heterogeneous, we do not necessarily mean

complex: a complete graph with many edges is complex, but not heterogeneous, since

the degrees follow a uniform distribution. Since our method is simple, it intuitively

makes sense that it suits well for heterogeneous graphs that are inherently rich in

information.

Suppose there is a graph that has nodes with degrees that are almost all unique.

Note here that the phrase “almost all unique” is used to carefully address the possible

scenario as follows: if we allow at most one edge between every pair of vertices on

a graph Gexample with nexample vertices and require at least degree one for all nodes,

then the maximum degree is at most nexample − 1 for every node, and in this case it

is impossible to create a bijection between possible degrees and the nodes. With a

heterogeneous graph with most degrees different, most nodes have row vectors that

are relatively unique and distinguishable.

Section 4.2

Spectrum of Graph Models

In this section, we introduce a range of graph models, on which we apply DMC for

comparison in Section 4.3.

4.2.1. Erdős-Rényi Graphs

We will start from the most basic Erdős-Rényi random graph generation model. One

common way to define this is to fix the total number of vertices, say ner, then attach

edges between pairs of vertices with some probability per. The resulting graph is

typically denoted as G(ner, per) [8]. One interesting property of these graphs is that

their degree distributions are binomial, as formulated in Equation 4.1. Each edge

22

4.2 Spectrum of Graphs Theoretical Examination

is present IID (independent and identically distributed) with probability p, so the

number of edges connected to a selected node is a binomial distribution of (n − 1)

trials of probability p:

P(deg(v) = k) =

(
n− 1

k

)
pk(1− p)n−1−k. (4.1)

The probability P considers the possibility of having degree of k (being connected to

k edges) when the largest possible degree is n− 1, given the total number of nodes is

n. p in (4.1) is the same per for generating the random graph.

4.2.2. Barabási-Albert Graphs

In our range of models, Erdős-Rényi is one of the two extremes (completely random

attachment of edges). The other “extreme” graph generation model that we use is the

Barabási-Albert model. It considers the preferential attachment phenomenon which

is prevalent in real world networks [3]. Instead of attaching new edges with uniform

probability, it is possible to attach new edges with weighted probabilities. Suppose

we have m0 nodes with some connections initially, then for the (m0 + 1)th node, the

probability that it will be attached to a previous node vi is

P(vi) =
deg(vi)

Σm0
i=1deg(vi)

(4.2)

We can easily check that the probabilities of attaching the new node to any previous

node sums up to one; moreover, higher degree nodes attract more new nodes. This

usually leads to what we call hubs, which are local centers that are attached to

many low degree nodes. It is common for hubs to exist in biological and social

networks, and hubs add to the heterogeneity of graphs. However, having hubs with

too much concentration could lead to confusion when differentiating low-degree nodes.

23

4.2 Spectrum of Graphs Theoretical Examination

Therefore, it is always good to strike a balance between concentrating and diffusing

nodes, but how this is achieved in the real world is yet unknown.

Another consequence of the preferential attachment is a near power law degree

distribution. We follow a proof in [1]. Suppose we observe the discrete process of

adding edges from a continuous perspective for any node vi starting from when the

node first appears in the graph. Moreover, assume we connect m edges between

every fresh node and previous nodes (therefore from a continuous perspective edges

are added at constant rate) and suppose the sum of degrees of all nodes at time t

is Nt. Then, using (4.2), we have the following differential equation to represent the

change of edges attached to a randomly picked node if ki(t) is a function that records

the degree of node vi with respect to time:

dki(t)

dt
= m

ki(t)

Nt

. (4.3)

Since we start with a small number of nodes and edges but grow a large graph, Nt

can be approximated as 2mt (initial part will be negligible in size). Then we arrive

at the equation

dki(t)

dt
=

ki(t)

2t
. (4.4)

We endow this differential equation with an initial condition ki(ti) = m if ti is the

time when vi was just added to the graph. Our time frame for observing (4.4) is

[ti,+∞). Then we solve this equation as usual. Through

∫
1

ki
dki =

1

2

∫
1

t
dt, (4.5)

we obtain

ln(ki) =
1

2
ln(t) + C, (4.6)

24

4.2 Spectrum of Graphs Theoretical Examination

and plugging in the initial condition we get

C = ln(m)− 1

2
ln(ti) (4.7)

and hence

ln(ki) =
1

2
(ln(t)− ln(ti)) + ln(m). (4.8)

Then

ki(t) = (
t

ti
)
1
2 ·m. (4.9)

We now find an expression for the probability

P(ki(t) < k)

where k is an arbitrary positive degree. Then it follows that

P(ki(t) < k) = P((
t

ti
)
1
2 ·m < k) = P(ti >

m2t

k2
), (4.10)

which we can rewrite as

P(ki(t) < k) = 1− P(ti ≤
m2t

k2
). (4.11)

Since the rate of growth of total number of edges is constant, we can assume that

the growth rate is 1. Moreover, we start with m0 nodes before adding nodes with

preference. Time follows a uniform distribution, hence

P(ti ≤
m2t

k2
) =

1

m0 + t
· m

2t

k2
. (4.12)

If we take the partial derivative of (4.11) with respect to k after plugging in (4.12),

25

4.2 Spectrum of Graphs Theoretical Examination

we get that the probability density function (pdf) f(k) satisfies

f(k) ∝ k−3, (4.13)

which shows that the degrees follow a power law distribution.

4.2.3. Poisson Distribution: Bridging Erdős-Rényi and Barabási-Albert

We then move along the spectrum of Poisson distributions (see Figure 4.2) with

different parameter values, which can approximate distributions from binomial (black)

to power law (yellow). A formal representation of the Poisson distribution for each

node v is as follows:

P(deg(v) = k) =
λke−λ

k!
(4.14)

where λ is a constant parameter.

Figure 4.2: Evolution of Poisson distribution with decreasing λ. Taken from Scribbr.

26

4.3 DMC Experiments on Synthetic Graphs Theoretical Examination

Figure 4.3: Performance of DMC applied to Erdős-Rényi generated graphs with re-
spect to different partite numbers.

Section 4.3

DMC Experiments on Synthetic Graphs

4.3.1. The Extreme Cases

Definition 4.2 (k-partite Graph). A k-partite Graph is a graph with nodes that can

be split into k independent sets, where nodes within each set are never connected.

We applied DMC to graphs generated through the Erdős-Rényi, Barabási-Albert,

and Chung-Lu (to generate graph distributions that are Poisson) models. We examine

the performance of DMC on the graphs with respect to different partite numbers k.

For our Erdős-Rényi experiments, we fix total number of nodes to be ner = 100,

then split the nodes into k partite groups; the partition of nodes is arbitrary. After

that, we connect edges between different partite groups with probability of per = 0.5.

Then we use the random walk graph sampling method to obtain two graphs with

90% overlap, and perform DMC. We run each experiment for 20 times, then take the

mean performance. In Figure 4.3, we note that there seems to be a negative linear

relationship between the performance of DMC with respect to partite numbers, which

is interesting despite the overall low performance. This decay as the graph becomes

complete (n-partite when there are n nodes) is expected as the degree distribution

27

4.3 DMC Experiments on Synthetic Graphs Theoretical Examination

Figure 4.4: Performance of DMC applied to Barabási-Albert generated graphs with
respect to different partite numbers.

becomes uniform.

For our Barabási-Albert experiments, we do a similar thing. To create “k-partite

Barabási-Albert graphs”, we start each experiment by partitioning nodes into k

groups. Every time we add a new node, we connect it to five different previous

nodes (add 5 edges) that are not in the same partition group. If there are less than

five nodes available, we simply attach the maximum number of edges possible. We

also run each experiment for 20 times in this case. Examining Figure 4.4, we see that

applying DMC to Barabási-Albert modeled graphs yields relatively uniform and bet-

ter performance compared to Erdős-Rényi. It is worth pointing out performance peak

in the “middle interval” of partite numbers. As will be seen in following discussions,

this is a recurrent feature that points to a significant component of heterogeneity:

moderate balance between expanding hubs and disconnecting nodes.

4.3.2. The Intermediate Cases

For our Chung-Lu experiments, we use Poisson distributions with different λ param-

eter values as our initial degree distributions (see Figures 4.5, 4.6, 4.7, and 4.8), and

we set a maximum degree limit of 20. In this case, we also start with a k-partition

before proceeding to the Chung-Lu steps using a prior Poisson distribution. We also

run each experiment for 20 times in this case.

28

4.3 DMC Experiments on Synthetic Graphs Theoretical Examination

Figure 4.5: Performance of DMC applied to Chung-Lu generated graphs with respect
to different partite numbers when parameter λ = 20.

Figure 4.6: Performance of DMC applied to Chung-Lu generated graphs with respect
to different partite numbers when parameter λ = 10.

We present a spectrum of examples with λ = 20, 10, 5, 1. Since a large λ value

causes a Poisson distribution to become close to binomial (assuming a large enough

number of nodes), we observe a somewhat similar negative linear relationship to that

in Figure 4.3 in the latter half of the plot in Figure 4.5. Moreover, the performance

peaks near the median of partite numbers, as hinted in the previous section.

Through comparing Figures 4.5, 4.6, 4.7, and 4.8, we see that as λ decreases,

the plot looks more and more uniform and closer to Figure 4.4. Additionally, as we

move from the “Barabási-Albert end” (i.e. λ = 1) to the “Erdős-Rényi end” (i.e.

λ = 20), the mean performance over all partite numbers decreases (see Figure 4.9) as

one would expect since the distribution is moving from power law to binomial, losing

hubs and along with it heterogeneity.

29

4.3 DMC Experiments on Synthetic Graphs Theoretical Examination

Figure 4.7: Performance of DMC applied to Chung-Lu generated graphs with respect
to different partite numbers when parameter λ = 5.

Figure 4.8: Performance of DMC applied to Chung-Lu generated graphs with respect
to different partite numbers when parameter λ = 1.

Figure 4.9: Mean performance of DMC applied to Chung-Lu generated graphs with
respect to different parameter values.

30

4.4 Performance Analysis for DMC Theoretical Examination

Section 4.4

Performance Analysis for DMC

We provide a simplified analysis of performance of the DMC here, aiming to show

that the DMC is at least effective in differentiating high- and low-degree nodes. In a

Barabási-Albert graph, due to the formation of hubs, a significant amount of nodes

are either a concentrated hub center or close to a leaf. Therefore, we can assume the

row vector in a degree matrix for a high degree node (maybe a hub) looks something

like

[1, 1, 1, 1, 1, 1, 1, 2, 3, 0, 0], (4.15)

just as an example. The main properties of this row vector are that entries are small

numbers (low degree nodes) and there are many non-zero entries, due to its own large

degree. For a leaf, the row vector will look like

[100, 0, 0, 0, 0, 0, 0], (4.16)

for instance. In these low-degree types of row vectors, we observe that most entries

are zero, and the few non-zero entries tend to be large. To perform a cleaner analysis,

let us directly examine the following row vectors:

v1 = [k, 0, 0, ..., 0] (4.17)

for a leaf connected to a hub with deg(v) = k, and

v2 = [1, 1, 1, ..., 1] (4.18)

31

4.5 Motivation for Constructing RMC Theoretical Examination

for the hub, assumed to be connecting to k leaves for simplicity. Both of these row

vectors have a length of k, since extra 0’s hanging at the end does not affect cost of

alignment. Moreover, suppose there is another high-degree node row vector with the

same length which takes the form

v3 = [1 + ϵ, 1 + ϵ, ..., 1 + ϵ]. (4.19)

One might wonder whether the accumulation of small differences between each entry

in the row vectors lead to a large enough difference that confuse the alignment of a

high-degree node with another high-degree node versus with a low-degree node.

Lemma 4.3. In a cost-minimizing Hungarian algorithm, the high-degree node vectors

v2 and v3 will be aligned out of the three vectors in Equations 4.17, 4.18, and 4.19.

Proof. We assume k → ∞, and ϵ → 0. Then the cost of aligning v1 and v2 is

(k− 1)2 + (k− 1) · (0− 1)2 = k(k− 1) ≈ k2. This is the cost of aligning a low-degree

row vector with a high-degree row vector. We also compute the cost of aligning v2

with v3, which is k · (1 + ϵ − 1)2 = kϵ2 ≈ 0. Even if we relax our assumption so

that ϵ → 0 < C <
√
k rather than having ϵ → 0, the squared effect will make the

alignment of high to high more reasonable.

Section 4.5

Motivation for Constructing RMC

We introduce graph curvatures as discrete analogues of curvatures for smooth sur-

faces. The most common types of graph curvatures are the Forman-Ricci curvature

and Ollivier-Ricci curvature. The Ollivier-Ricci curvature has been used in [30] for

community detection in complex networks, which shows that curvature can be utilized

as a tool for alignment. However, we choose to use the Forman-Ricci curvature for a

32

4.5 Motivation for Constructing RMC Theoretical Examination

first attempt to construct a graph alignment algorithm that is both curvature-based

and matrix-based because it is computationally cheap, even though it sacrifices some

accuracy.

In this section, we record an equation that we discovered for unweighted graphs

that relates the Forman-Ricci curvature [15, 19, 33, 39], graph Laplacian, and a slight

variation of signature vectors in the degree matrix. We introduce these concepts

one by one before deriving what we name the “Curvature-Laplacian” equation in

Section 4.5.4.

4.5.1. Forman-Ricci Curvature

Definition 4.4 (Forman-Ricci curvature for graphs). Forman-Ricci curvature is de-

fined on edges. In other words, we assign a value to each of the edges on a graph which

we call curvature (discretized Ricci curvature). For a weighted graph, the formula is

Ric(e) = we

(
wv1

we

+
wv2

we

−
∑
el∼v1

wv1√
wewel

−
∑
el∼v2

wv2√
wewel

)
(4.20)

where e is an edge between nodes v1 and v2, and we, wv1 , wv2 , wel are weights on edges

and strengths on nodes [39]. The notation el ∼ vi means the edge el is attached to

the node vi. It follows that for unweighted graphs, the curvature for each edge is

Ric(e) = 2− deg(v1)− deg(v2) (4.21)

if we take all weights to be uniformly 1.

According to [39], we can define a node-based version of curvature using Defini-

tion 4.4 simply by taking the sum of all edge curvatures of edges connected to the

node, or:

Ric(v) =
∑
el∼v

Ric(el). (4.22)

33

4.5 Motivation for Constructing RMC Theoretical Examination

Whether the curvature function is for a node or an edge is evident from the variable.

4.5.2. Graph Laplacian

Now we move on to introducing the graph Laplacian by deriving it as a discrete analog

of the continuous Laplacian. We will first derive the discrete Laplace operator from

the continuous Laplacian, then obtain the graph Laplacian from the discrete Laplace

operator [6]. The idea that the graph Laplacian serves as a numerical approximation

of the continuous Laplacian is well established [4, 24]. That being said, we offer

a (hopefully) friendly derivation to highlight the deep and well-founded connection

between the graph Laplacian and the continuous Laplacian. A continuous Laplacian

on function f : Rn → R, can be written as

∆f =
n∑

i=1

∂2f

∂x2
i

(4.23)

if xi’s are Cartesian coordinates. In order to move from the continuous end to a dis-

crete graph version, we incorporate numerical approximations. Using the Finite Dif-

ference Method, we can define the first derivative of f with respect to x = (x1, ..., xn)

as

f ′(x) = lim
ϵ→0

f(x + ϵ)− f(x)

ϵ
(4.24)

where ϵ is a small n-dimensional perturbation vector. With Equation 4.24, we can

derive a Laplacian with the central approximation in a one-dimensional setting:

∆f = f ′′(x) = lim
ϵ→0

f(x+ϵ)−f(x)
ϵ

− f(x)−f(x−ϵ)
ϵ

ϵ
= lim

ϵ→0

f(x + ϵ) + f(x− ϵ)− 2f(x)

ϵ2
.

(4.25)

In the discrete case for graphs, we take ϵ = 1 (assuming edge lengths are uniformly

1) and let x be a node. Since this is a one-dimensional setting, x + ϵ = x + 1 is the

node to the right of x and similar definition holds for x − 1. This is illustrated in

34

4.5 Motivation for Constructing RMC Theoretical Examination

Figure 4.10. Therefore, Equation 4.25 can be reformed as

Figure 4.10: Illustration of one-dimensional graph.

−∆f = [f(x)− f(x + ϵ)] + [f(x)− f(x− ϵ)]. (4.26)

Suppose we extend this to a two-dimensional setting. Then

∆f(x, y) =
∂2f

∂x2
+

∂2f

∂y2
, (4.27)

which is, by slight variation of the one-dimensional case in Equation 4.25,

∆f(x, y) = lim
ϵ→0

f(x + ϵ, y) + f(x− ϵ, y)− 2f(x, y)

ϵ2
+
f(x, y + ϵ) + f(x, y − ϵ)− 2f(x, y)

ϵ2
,

(4.28)

which can be reduced to

∆f(x, y) = lim
ϵ→0

f(x + ϵ, y) + f(x− ϵ, y) + f(x, y + ϵ) + f(x, y − ϵ)− 4f(x, y)

ϵ2
.

(4.29)

Using again the idea that ϵ = 1 and (x, y) coordinates are nodes, we get that

−∆f(x, y) =
∑

(xl,yl)∈V

f(x, y)− f(xl, yl) (4.30)

where V = {(a, b)|(a, b) = (x, y)±(1, 0) or (x, y)±(0, 1)}. The two-dimensional graph

is illustrated in Figure 4.11.

Following the idea above for the one-dimensional and two-dimensional cases, we

35

4.5 Motivation for Constructing RMC Theoretical Examination

Figure 4.11: Illustration of two-dimensional graph.

can write

−∆f(v) =
∑
vi∼v

f(v)− f(vi) (4.31)

in general where vi ∼ v denotes the nodes incident to v (connected by an edge). By

deriving a discrete version of the continuous Laplace operator, we have a basis to

move on to obtain the graph Laplacian.

Since f : Rn → R produces a real number, the vector f = [f(v1), f(v2), ..., f(vn)]T

is an n-dimensional column vector with respect to a graph G = (V,E) with the node

set V = {vi}ni=1. Then

∆f = [∆f(v1),∆f(v2), ...,∆f(vn)]T (4.32)

and examining a single row (one entry) we have that

−∆f(vi) =
∑
vl∼vi

f(vi)− f(vl) = deg(vi)f(vi)−
∑
vl∼vi

f(vl). (4.33)

Let us define an n× n matrix (which we will later call the graph Laplacian)

L = D − A (4.34)

where D is a diagonal matrix with deg(vi) as the only non-zero entry in the i-th row,

36

4.5 Motivation for Constructing RMC Theoretical Examination

and A is the adjacency matrix (an n× n matrix where aij = 1 if edge {i, j} ∈ E and

aij = 0 otherwise). Then it is no coincidence that

Lf = −∆f (4.35)

by Equation 4.33. As hinted above, L in Equation 4.34 is the graph Laplacian (let

us assume we are examining finite graphs). This definition of the graph Laplacian

aligns with previous work [17]. Note that we are referring to what is also called

the combinatorial graph Laplacian. Other forms of graph Laplacians include the

normalized and symmetrized graph Laplacian [28, 41].

4.5.3. Variation of Signature Row Vector from a Degree Matrix

In Definition 3.1, we recorded degrees of neighbors of a node in ascending order in

each row. Each of these row vectors can be viewed as a signature vector for a node.

In this section, we propose a possible variation of this signature vector, allowing node

labeling. In particular, we propose that the signature vector for a node vi can be

modified to an 1× n row vector s such that

sl(vi) =


deg(vl) if{vl, vi} ∈ E

deg(vi) otherwise.

(4.36)

Let us call s the labeled signature vector of vi.

4.5.4. The “Curvature-Laplacian” Equation

Finally, we have come to the section where we can introduce an interesting equation.

The fact that the Ricci curvature at a node can be represented with the graph Lapla-

cian (which is fixed for the same graph), the signature vector, and the degree of the

node itself, motivates us to derive a curvature-directed graph alignment algorithm

37

4.5 Motivation for Constructing RMC Theoretical Examination

similar to the DMC.

Theorem 4.5 (Curvature-Laplacian Equation). Let Ric(v) be defined as in Equa-

tion 4.22. Let L be the graph Laplacian. Let s be the labeled signature vector of a

node vi, as introduced in the previous section. Then

Ric(vi)− (LsT)i = 2deg(vi)(1− deg(vi)) (4.37)

is true for an unweighted graph. (LsT)i is the i-th entry of the resulting vector.

Proof. By Equations 4.21 and 4.22, we know

Ric(vi) =
∑
vl∼vi

2− deg(vi)− deg(vl). (4.38)

Since Lf = −∆f , we have that

LsT = −∆sT , (4.39)

and hence

(LsT)i = −(∆sT)i =
∑
vl∼vi

si − sl =
∑
vl∼vi

deg(vi)− deg(vl). (4.40)

It follows naturally that

Ric(vi)− (LsT)i = 2deg(vi)−deg(vi)
2−

∑
vl∼vi

deg(vl)−deg(vi)
2 +

∑
vl∼vi

deg(vl), (4.41)

which reduces to

Ric(vi)− (LsT)i = 2deg(vi)(1− deg(vi)). (4.42)

This completes the proof.

38

4.5 Motivation for Constructing RMC Theoretical Examination

We then present to the reader another interesting result, where the mean of the

difference Ric(vi)− (LsT)i holds constant over the probability distribution of degrees

of a graph with the preferential attachment phenomenon, as discussed in Section 4.2.2.

Corollary 4.6 (Curvature-Laplacian Constant). Suppose we have a model graph de-

veloped with preferential attachment. Then the mean of the difference Ric(vi)−(LsT)i

with respect to degrees is a constant determined by the graph degree distribution.

Proof. According to Equation 4.13, we can write

P(deg(v) = x) = Cx−3. (4.43)

Then the mean (expected value) of the specified difference for a graph with all nodes

attached to some edge is ∫ ∞

1

Cx−3 · 2x(1− x)dx (4.44)

by substituting Ric(vi)− (LsT)i through Equation 4.37. We calculate the integral

C

∫ ∞

1

2(1− x)

x2
dx = C

∫ ∞

1

2

x2
dx− C

∫ ∞

1

2

x
dx = 2C (4.45)

which is constant. We discard an infinity remainder term since, in reality, we would

be examining finite graphs.

4.5.5. Possible Implications of the Equation

Our first observation is not necessarily based on the equation, but inspired by it. That

is, the graph curvature at each node has a positive upper bound, but not necessarily

on the negative end.

39

4.6 More Theory for Applying RMC Theoretical Examination

To show this, note that the Ricci curvature at some node vi is represented by

Ric(vi) = 2deg(vi)− deg(vi)
2 −

∑
vl∼vi

deg(vl) (4.46)

and it has an upper bound

Ric(vi) ≤ 1 (4.47)

since f(x) = 2x−x2 (x is deg(vi)) has 1 as upper bound and the term −
∑

vl∼vi
deg(vl)

must be nonpositive. Moreover, we show that there will not be a lower bound on a

connected graph with n nodes. Still examining Equation 4.46, we observe that f(x) =

2x−x2, x ∈ Z+ has smallest value when x is maximized. In the connected graph’s case

(not allowing multiple edges between two nodes), a node can at most be connected to

n−1 other nodes, so xmax = n−1. Therefore, f(x)min = f(xmax) = 2(n−1)−(n−1)2.

By quadratic functions’ properties, we know f(x)min → −∞ as n→∞. Since, again,

the remainder term is nonpositive, we arrive at the conclusion that Ric(vi)min → −∞

as n→∞.

Section 4.6

More Theory for Applying RMC

If we scrutinize Equation 4.37 more closely, we will notice that when node degree

is low, the left hand side is small. This implies that (LsT)i can be used to approx-

imate the Forman-Ricci curvature. More generally, we can think of sT as a kind

of representation of local curvature, since the graph Laplacian is fixed for the same

graph.

One could apply the RMC directly to graphs as we did before. But this does

not work as well as the DMC as one would expect. Degree directly and accurately

describes a node, but the discrete graph curvature is a derived analogue of the con-

40

4.6 More Theory for Applying RMC Theoretical Examination

tinuous curvature. However, we thought it would be interesting to explore RMC on

graphs that are supposed to “look more like” continuous objects. When approxi-

mating a smooth surface with a discrete grid, it is always better to use more nodes.

This is just like how we desire smaller (and hence more) time steps when applying

numerical methods to plotting functions.

Definition 4.7 (Line Graph). A line graph L(G) of an undirected graph G = (V,E)

is a graph that takes the edge set E of G to be the new node set so that L(G) =

(E,E ′), where E ′ is the set of all connections between new vertices that were originally

adjacent edges in G.

We introduce the line graph in Definition 4.7 since it is one of the types of graphs

that is more like an approximation of a continuous surface. Every local node, along

with the edges connected to it, in G becomes a locally complete component in the

new line graph L(G). This clustering helps form compact local structures that will

help with approximating a smooth surface with filled volume.

We can use the line graphs of graphs to help with graph alignment mainly due to

the following result, proved in [40]. It essentially states that, in most cases, we can

correspond each connected graph with a unique line graph.

Theorem 4.8 (Whitney Isomorphism Theorem). If the line graphs of two connected

graphs are isomorphic, then the underlying graphs are isomorphic, except in the case

of the triangle graph K3 and the claw K1,3, which have isomorphic line graphs but are

not themselves isomorphic.

For those who are unfamiliar with specific graph notations, Kn is a complete graph

with n nodes. So K3 is just a triangle. Km,n is the notation for a complete bipartite

graph that connects all possible pairs of nodes across two different groups, with m

and n nodes in them, while connecting no edges at all between nodes in the same

41

4.7 RMC on Standard Tori Theoretical Examination

group. Therefore, K1,3 is just a star with 3 edges. This graph has one center and it

connects to three other nodes, with no other connections.

Section 4.7

RMC on Standard Tori

4.7.1. Tiling Methods to Construct a Torus

We will highlight several attempts to tile both a two-dimensional ring and a three-

dimensional torus uniformly with regular shapes. Our goal is to have the ability to

approximate the standard one-hole torus with regular tiling methods, and this can be

generalized to higher-genus objects through simply connecting one-hole components.

A regular tiling of a smooth torus with polygons is not possible, and approximations

with polygons are important because this will be helpful in extracting graphs from the

tiling. Our focus is not on finding new tiling methods, but rather to make clear the

type of tiling we need to make the extracted graph to be useful. One could look into

[12, 26] and Penrose tiling, for example, to appreciate the many types of geometric

tiling, which is a fascinating topic that has been studied for a long time.

Two-Dimensional Tiling. To examine two-dimensional tiling for an approxi-

mated ring, we point out that there are only three edge-to-edge regular tiling in

a plane (tile with only the same type of standard polygons), and the shapes that can

do this are: equilateral triangles, squares, and regular hexagons. This type of tiling is

also called regular tessellation. We discuss the monohedral tilings using equilateral

triangles and squares, and also mention dihedral tiling with the two shapes. While

hexagons embody very interesting mathematical properties, we will not dive deep

into it since it is not as basic a unit as a triangle or a square. An equilateral triangle

tiling is given in Figure 4.12. Possible two-dimensional rings are formed by triangles

42

4.7 RMC on Standard Tori Theoretical Examination

Figure 4.12: Equilateral triangular tiling. Blue hexagons indicate triangles that form
a hexagonal ring.

Figure 4.13: Square tiling for an approximate ring.

traced by the blue hexagons. This case is simple to implement and is a good basic

model to start with. As we explore a curvature-based graph alignment method, this

type of tiling gives us different curvatures for edges and nodes at different locations

of the torus. Another simple approach is to use squares to build a square frame (see

Figure 4.13), which is topologically a one-hole object. However, the triangle approach

fits our needs better, because for squares, being a node near the hole or farther away

does not necessarily change the curvature.

As mentioned above, we can also create a mixed tiling of squares and triangles

(see Figure 4.14). This can be achieved through tiling six squares that each share one

edge with a hexagon, then fill the gaps in the ring with equilateral triangles. Again,

this tiling is valuable because we have variations in degrees of nodes (and hence the

curvatures).

43

4.7 RMC on Standard Tori Theoretical Examination

Figure 4.14: Equilateral triangular tiling. Blue hexagons indicate triangles that form
a hexagonal ring.

Figure 4.15: Triangulating a prism within three-dimensional torus.

Three-Dimensional Tiling. We first create a two-dimensional ring, then lift a

parallel layer and connect all corresponding nodes in the two copies. This already

produces a torus-like shape. If one were looking for further triangulation, one could

do so easily in the triangular case, where we obtain prisms that replace the original

flat triangles in the plane. Within these prisms, we can add three edges to divide

them into tetrahedrons (see Figure 4.15).

Essentially, we are looking for the simplest tiling method that produces a non-

uniform degree (curvature) distribution over different locations of the torus. For

example, we would want the curvature of a node near the hole to be different from

that of a node on the outer brink.

44

4.7 RMC on Standard Tori Theoretical Examination

Figure 4.16: 3D triangular tiling of torus.

4.7.2. Thought Experiment: Applying RMC to Tori

We examine the effects of applying RMC to a pair of identically tiled tori created

by first creating a two-dimensional triangular tiling as described in Section 4.7.1 and

then lifting it (see Figure 4.16). If we examine the node curvatures of this graph, we

find the following spectrum of distribution (see Figure 4.17). There are three types of

nodes in the torus, and we find that each of their Ricci matrix row vector will be dif-

ferent, which will help us differentiate the three types of nodes at different locations

of the graph. Let us call the nodes with smallest curvature A, medium curvature

nodes B, and the rest C. A is closest to the center (bordering the hole of the torus),

B and C are on the outer brink of the “doughnut” shape. Because of the discretized

implementation, B and C types become different, even though in the continuous case

they should be the same. But we see that |Ric(B)−Ric(C)| < |Ric(A)−Ric(B)|, so

at least the nodes on the outer brink are more similar to each other. The Ricci matrix

row vectors for nodes A,B,C are [Ric(A),Ric(A),Ric(A),Ric(B),Ric(B),Ric(C)],

[Ric(A),Ric(A),Ric(B),Ric(C),Ric(C), 0], and [Ric(A),Ric(B),Ric(B),Ric(C), 0, 0],

respectively. If we apply RMC to two tori of this type, we will be able to completely

45

4.7 RMC on Standard Tori Theoretical Examination

Figure 4.17: Distribution of curvature in triangle-tiled torus.

align the hole of the torus to the hole on another torus with the same shape, since

the A nodes are located at and only located at the “boundaries” of the hole (see for

example, nodes labeled 1 to 6 in Figure 4.16). We do not elaborate on the square

tiling and mixed tiling cases as the methodology to approach them is the same. We

will get distinct row vectors for nodes at different locations (by “different” we mean

geometrically non-isomorphic).

46

Chapter 5

Experimental Results on Real

World Networks

We first list here the sources of downloaded datasets. From COSNET [44], we down-

loaded the Flickr, Last.fm, and Myspace networks; from SNAP [22], we downloaded

the Facebook and YouTube networks, along with the CA and PA roadmaps, and

a multi-layer tissue PPI network (unweighted); from STRING [35], we downloaded

five weighted PPI networks for different species that are typical subjects in biological

studies; all other networks are taken from Network Repository [29]. We created a

combined PPI network incorporating all tissues; this file is included in the Github

repository affiliated with [37]. Before we dive into results for specific graphs, we

note here that all isomorphic graph alignment yielded 100% correct results for DMC,

Greedy DMC, and Weighted DMC.

47

5.1 Unweighted Experimental Results on Real World Networks

Method Score (%) Complexity
DMC 96.09 ∼ O(n2)−O(n3)
Greedy DMC 50.46 ∼ O(n2)−O(n3)
REGAL 80 < p < 90 ∼ O(n)−O(n2)
FINAL 35 < p < 45 ∼ O(n2)
Klau 20 < p < 30 ∼ O(n5)
IsoRank 5 < p < 15 ∼ O(n4)
Two-Step 4.42 ∼ O(n2)−O(n3)
Euc Dist. 0.15 (near zero) ∼ O(n2)−O(n3)

Table 5.1: Comparison with baselines on PPI network.

Section 5.1

Unweighted (DMC and Greedy DMC)

In Table 5.1, we display statistics that compare DMC and Greedy DMC with baselines

after applying all methods to the unweighted multi-layer PPI network [11, 14, 31, 43].

Using the edge deletion sampling method, we set deletion probability pd = 0.01.

Regarding the different graph alignment methods, we note that the Greedy DMC uses

a threshold of ϵ = 100. “Two-Step” is, as its name suggests, a two-step correction

method that uses degrees for alignment, and refines that first-step alignment through

average degrees of neighbors. “Euc Dist.” aligns two graphs by minimizing Euclidean

distances between embeddings. We can observe through direct comparison that DMC

has highest accuracy, but larger complexity compared to REGAL and FINAL [14, 43].

The Greedy DMC strikes a similar balance compared to FINAL: while it is more

accurate, it could also be higher in time complexity.

After showing the potential of DMC and Greedy DMC by comparing to baselines

on a classic network (PPI), we turn to demonstrating that DMC works better when

networks are more heterogeneous. We first draw an observed correlation between

variance in degree distribution and performance of the DMC; the correlation is not

strict, but implies from an empirical perspective that the DMC works well for hetero-

48

5.1 Unweighted Experimental Results on Real World Networks

Networks Mean Variance Total Nodes (N)
Flickr 52.36 5330.29 5000
Last.fm 26.03 2164.02 5000
Myspace 7.59 113.32 5000
Facebook 85.06 4040.27 700
YouTube 14.52 960.27 5000
CA Roadmap 2.55 0.96 1000
PA Roadmap 2.88 0.78 1000

Table 5.2: Means and variances of degree distributions of Gs.

(a) Social Networks (b) Roadmaps

Figure 5.1: We use the random walk graph sampling method for these experiments.

geneous networks. Table 5.2 provides a summary of statistics for social networks and

roadmaps, and Figure 5.1 provides results applying DMC to the networks. The best

performing Facebook and YouTube have large variances in their degree distributions.

Comparing Flickr, Last.fm, and Myspace, Flickr and Last.fm are more suitable for

DMC, which is most likely due to their much larger variance in degree distribution.

However, the correlation between variance and performance can be false at times,

as can be seen from the California and Pennsylvania roadmaps. The two roadmaps

have close degree distribution means and variances, with the Pennsylvania one having

lower degree variance, but it outperforms the California roadmap significantly.

Moreover, we show that DMC works better on graphs with high densities and

clusterings in Table 5.3. We provide results of applying DMC to more biological

networks randomly chosen from the Brain Network and Biological Network sections

49

5.1 Unweighted Experimental Results on Real World Networks

Networks Score Density Clustering
grid-fission-yeast .9932 .0123 .1874
mouse-retina-1 .9900 .9983 1.5539
ce-gn .9894 .0218 .1839
fly-drosophila-medulla-1 .9378 .0211 3.8729
grid-human .8440 .0014 .0800
mouse-kasthuri .6156 .0032 0
yeast .5822 .0018 .0708

Table 5.3: Table of experiments on biological networks, ordered by DMC’s perfor-
mance on p = 90% overlap subgraphs.

in the Network Repository database. In Table 5.3, “grid-fission-yeast”, “ce-gn”,“grid-

human”, and “yeast” are from the Biological category, and “mouse-retina-1”, “fly-

drosophila-medulla-1”, and “mouse-kasthuri” are from the Brain category. We note

that the highlighted densities are those above the 0.01 threshold, and for the average

clustering coefficient the threshold is 0.1 (density and clustering taken from Network

Repository). The graphs with both a high density and a high clustering coefficient

outperformed the other graphs significantly.

In this paragraph, we examine the behavior of DMC and Greedy DMC applied

to the unweighted multi-layer PPI network under different conditions. For DMC, we

see in Figure 5.2 that DMC’s performance decays as deletion probability (noise level)

increases from 0.01 to 0.1. This is expected and no surprise for a heuristic algorithm,

but it is worth pointing out that the performance does not rapidly drop to near zero

values even with ten times the experimental noise level, implying that the method

has potential to withstand noise. In Table 5.4, we see that when ϵ = 0, 10, the Greedy

DMC algorithm maintains high performance. We will study these special cases in the

future.

50

5.2 Weighted Experimental Results on Real World Networks

Figure 5.2: Performance Decay Plot

ϵ Score (%)
0 96.58%
10 96.32%
100 50.46%
1000 0.18%

Table 5.4: Greedy DMC Performance

Section 5.2

Weighted DMC

As previously mentioned, we also dedicate a brief section to the Weighted DMC

to demonstrate its potential, which in turn will also support that DMC, albeit its

simplicity, is a valid approach. Table 5.5 provides the results of applying the Weighted

DMC to five weighted PPI networks for different species that are typical subjects of

biological studies, all taken from the STRING dataset [35]. Among the five species,

E. Coli is the only prokaryotic organism, meaning that it has simpler cell structure

lacking a sophisticated nucleus. We can reasonably speculate that the PPI for E. Coli

is less heterogeneous, leading to a less accurate Weighted DMC result. We have also

discussed in Section 5.1 that heterogeneous networks tend to be more suitable for the

simple DMC. The other four PPI networks all yielded performance above 95%, which

51

5.2 Weighted Experimental Results on Real World Networks

Species Score (%)
Human 99.19
Yeast 98.06
Mouse 97.27
Fruit Fly 96.26
E. Coli 91.46

Table 5.5: Weighted PPI Networks

is high.

We run the entire process, from random walk to graph alignment, for ten times

and take their mean performance. All experiments sampled 5000-node graphs except

for E. Coli, where we sampled 3000-node graphs, due to its limited size. We used

pd = 0.01 deletion probability for all experiments.

We have also run experiments on social networks, where the results are reported

in Table 5.6. “soc-sign-bitcoin-otc” and “soc-sign-bitcoin-alpha” are taken from

the SNAP database [22], and “music-cotagging”, “ai-cotagging”, “apple-cotagging”,

“travel-cotagging”, and “economics-cotagging” are taken from the Computer Science

Department webpage of Cornell University [10]. The “cotagging” networks are net-

works by keywords on Stack Exchange. We used the edge deletion sampling method,

setting deletion probability pd = 0.01, and run all experiments ten times to take the

mean performance. We can speculate here that including weight information of edges

has helped us gain more insight into local graph structure, since the overall perfor-

mance of the Weighted DMC on the social networks is higher than that of DMC

applied to unweighted social networks.

52

5.3 RMC Experimental Results on Real World Networks

Network Score (%) Sampled Nodes
soc-sign-bitcoin-otc 77.44 5000
soc-sign-bitcoin-alpha 82.08 3000
music-cotagging 98.91 467
ai-cotagging 96.95 285
apple-cotagging 98.65 1063
travel-cotagging 97.35 1779
economics-cotagging 98.27 369

Table 5.6: Other Weighted Networks

Section 5.3

Applying RMC to Line Graph of PPI

5.3.1. Experiments on Line Graphs of Complex Networks

As mentioned earlier, the protein-protein interaction (PPI) network is a common

type of network used to test alignment methods. We used the same combined PPI

network as before in [37]. We transform this PPI network to its line graph form

using the line graph function from networkx. Since the line graph transformation

is expensive, we first take a 1000-node graph from the original PPI network through

random walk, then transform that sampled graph into a line graph. Afterwards, we

sample two 500-node subgraphs for alignment using RMC. This is done by doing

random walk on the 1000-node graph just obtained, and then we create a second

graph for alignment through random deletion of edges of the first 500-node graph at

a probability of p = 0.01. We use the same random walk method and alignment set up

as before. We run the same experiment for ten times (see Table 5.7). Furthermore, we

note that the CPU model used was Apple M1 with 16GB of memory. In particular,

we implemented the experiments using Python 3.9.6 on Pycharm. Running the entire

process, from random walk, to creating the line graph, and the graph alignment took

around twenty hours. Graph alignment for ten times takes less than an hour. If we

53

5.3 RMC Experimental Results on Real World Networks

Round Absolute Node Count Score (%)
1 416 83.2%
2 445 89.0%
3 464 92.8%
4 448 89.6%
5 452 90.4%
6 476 95.2%
7 438 87.6%
8 462 92.4%
9 432 86.4%
10 460 92.0%

Table 5.7: RMC on Line Graph of PPI Network

refer to Table 5.1 for baseline results, we see that RMC is more accurate than most

methods except for DMC and is at a similar level as REGAL. While the line graph

generation is lengthy, the time complexity of RMC itself is on the same level as DMC,

at around O(n2)−O(n3).

54

Chapter 6

Conclusion and Future Work

We proposed several graph alignment methods. For unweighted networks, we pro-

posed DMC and Greedy DMC (a computationally cheap variation). We also pro-

posed the Weighted DMC for weighted graphs. Moreover, we explored the use of the

Forman-Ricci curvature as a main feature of nodes in matrix comparison.

We showed that the methods are theoretically motivated, mainly through perfor-

mance analysis and deriving the Curvature-Laplacian equation, and analyzed exper-

imental results. DMC’s accuracy on classic PPI networks proves to be higher than

carefully chosen baselines, and it works best for heterogeneous graphs, which has

been demonstrated from multiple perspectives. This process included providing an

overview of synthetic graph generation models and a short discussion of the difficulty

of modeling complex networks. Along with the proposal of RMC, we discussed possi-

ble smooth surface discretization methods that utilize regular shapes as units. In the

search for graphs that are suitably described by curvatures, we not only examined

the discretization of a torus, but also proposed using line graphs of complex networks

for RMC alignment.

Future works could examine special cases of Greedy DMC (tolerance ϵ = 0, 10).

One could also test this sequence of methods with more datasets to clearly define

55

Conclusion and Future Work Conclusion and Future Work

the optimal set of networks for these algorithms which can be easily replicated. One

could also attempt to derive more theoretical guarantees for performance, which is

possible since there are initial theoretical guarantees for DMC. Last but not least, we

suspect the Curvature-Laplacian equation to be related to the Euler characteristic.

56

Bibliography

[1] Réka Albert and Albert-Laśzló Barabási, Statistical mechanics of complex net-

works, Reviews of Modern Physics 74 (2002), 47–97.

[2] Nazanin Alipourfard, Buddhika Nettasinghe, Andrés Abeliuk, Vikram Krishna-

murthy, and Kristina Lerman, Friendship paradox biases perceptions in directed

networks, Nature Communications 11 (2020), no. 707.

[3] Albert-László Barabási, Network science, Cambridge University Press, 2016.

[4] Mikhail Belkin and Partha Niyogi, Towards a theoretical foundation for

laplacian-based manifold methods, Journal of Computer and System Sciences

(2008).

[5] Sébastien Bougleux, Benoit Gaüzère, and Luc Brun, A hungarian algorithm for

error-correcting graph matching, International Workshop on Graph-Based Rep-

resentations in Pattern Recognition (Cham), Springer, 2017, pp. 118–127.

[6] Fan Chung, Spectral graph theory, CBMS Regional Conference Series in Mathe-

matics (1997).

[7] David F. Crouse, On implementing 2d rectangular assignment algorithms, IEEE

52 (2016), no. 4, 1679–1696.

57

BIBLIOGRAPHY

[8] Rick Durrett, Random graph dynamics, Cambridge University Press, New York,

NY, USA, 2009.

[9] Jack Edmonds and Richard M. Karp, Theoretical improvements in algorithmic

efficiency for network flow problems, Journal of the ACM 19 (1972), no. 2, 248–

264.

[10] Xiang Fu, Shangdi Yu, and Austin R. Benson, Modelling and analysis of tagging

networks in stack exchange communities, Journal of Complex Networks 8 (2020),

no. 5.

[11] Ji Gao, Xiao Huang, and Jundong Li, Unsupervised graph alignment with wasser-

stein distance discriminator, Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery & Data Mining (KDD ’21) (New York, NY, USA),

Association for Computing Machinery, 2021, pp. 426–435.

[12] Branko Grünbaum and Geoffrey C. Shephard, Tilings by regular polygons, Math-

ematics Magazine 50 (1977), no. 5, 227–247.

[13] Allison Gunby-Mann, Machine learning for graph algorithms and representations,

Ph.D. dissertation, Thayer School of Engineering, Dartmouth College (2024).

[14] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra, Regal: Repre-

sentation learning-based graph alignment, 27th ACM International Conference

on Information and Knowledge Management (CIKM ’18) (Torino, Italy), Asso-

ciation for Computing Machinery, 2018, pp. 117–126.

[15] Jürgen Jost, Curvature of graphs, 2013.

[16] Gunnar W. Klau, A new graph-based method for pairwise global network align-

ment, BMC Bioinformatics 10 (2009), no. S59.

58

BIBLIOGRAPHY

[17] Aleksey Kostenko and Noema Nicolussi, Laplacians on infinite graphs: Discrete

vs continuous, arXiv Preprint arXiv:2105.09931 (2021).

[18] Oleksii Kuchaiev, Tijana Milenković, Vesna Memǐsević, Wayne Hayes, and

Nataša Pržulj, Topological network alignment uncovers biological function and

phylogeny, Journal of the Royal Society Interface 7 (2010), no. 50, 1341–1354.

[19] Wilmer Leal, Guillermo Restrepo, Peter F. Stadler, and Jürgen Jost, Forman-

ricci curvature for hypergraphs, Advances in Complex Systems 24 (2021), no. 1.

[20] Kristina Lerman, Xiaoran Yan, and Xin-Zeng Wu, The ”majority illusion” in

social networks, PLoS One 11 (2016), no. 2.

[21] Jure Leskovec and Christos Faloutsos, Sampling from large graphs, Proceedings

of the 12th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD ’06) (New York, NY, USA), Association for Computing

Machinery, 2006, pp. 631–636.

[22] Jure Leskovec and Andrej Krevl, SNAP Datasets: Stanford large network dataset

collection, http://snap.stanford.edu/data, 2014.

[23] Chengjiang Li, Yixin Cao, Lei Hou, Jiaxin Shi, Juanzi Li, and Tat-Seng Chua,

Semi-supervised entity alignment via joint knowledge embedding model and cross-

graph model, Proceedings of the 2019 Conference on Empirical Methods in Nat-

ural Language Processing and the 9th International Joint Conference on Natural

Language Processing (Hong Kong, China), Association for Computational Lin-

guistics, 2019, pp. 2723–2732.

[24] Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet, Consistency of spec-

tral clustering, The Annals of Statistics (2008).

59

http://snap.stanford.edu/data

BIBLIOGRAPHY

[25] Marianna Milano, Mario Cannataro, and Pietro H. Guzzi, Glalign: Using global

graph alignment to improve local graph alignment, IEEE International Conference

on Bioinformatics and Biomedicine (BIBM ’16) (Shenzhen, China), IEEE, 2016,

pp. 1695–1702.

[26] Kinga Nagy and Viktor Vı́gh, Monohedral tilings of a convex disc with a smooth

boundary, Discrete Mathematics 346 (2023), no. 1, 1–14.

[27] Azadeh Parvaneh, The friendship paradox–and how it might produce a biased

world, 2002.

[28] J. Wilson Peoples and John Harlim, Spectral convergence of symmetrized graph

laplacian on manifolds with boundary, arXiv Preprint arXiv:2110.06988 (2025).

[29] Ryan A. Rossi and Nesreen K. Ahmed, The network data repository with in-

teractive graph analytics and visualization, https://networkrepository.com,

2015.

[30] Jayson Sia, Edmond Jonckheere, and Paul Bogdan, Ollivier-ricci curvature-based

method to community detection in complex networks, Nature: Scienctific Reports

9 (2019), no. 9800.

[31] Rohit Singh, Jinbo Xu, and Bonnie Berger, Global alignment of multiple protein

interaction networks with application to functional orthology detection, PNAS

105 (2008), no. 35, 12763–12768.

[32] Konstantinos Skitsas, Karol Or lowski, Judith Hermanns, Davide Mottin, and

Panagiotis Karras, Comprehensive evaluation of algorithms for unrestricted graph

alignment, Proceedings of the 26th International Conference on Extending

Database Technology (EDBT ’23), OpenProceedings, 2023, pp. 260–272.

60

https://networkrepository.com

BIBLIOGRAPHY

[33] Remanan P. Sreejith, Karthikeyan Mohanraj, Ju rgen Jost, Emil Saucan,

and Areejit Samal, Forman curvature for complex networks, arXiv Preprint

arXiv:1603.00386 (2016).

[34] Steffen Staab and Rudi Studer, Handbook on ontologies, Springer, Berlin, Hei-

delberg, 2009.

[35] Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Far-

rokh Mehryary, Radja Hachilif, Annika L. Gable, Tao Fang, Nadezhda T.

Doncheva, Sampo Pyysalo, Peer Bork, Lars J. Jensen, and Christian von Mering,

The string database in 2023: protein-protein association networks and functional

enrichment analyses for any sequenced genome of interest, PubMed 51 (2023),

no. D1, D638–D646.

[36] Nobuaki Tomizawa, On some techniques useful for solution of transportation

network problems, Networks 1 (1971), no. 2, 173–194.

[37] Ashley Wang and Peter Chin, Degree matrix comparison for graph alignment,

arXiv Preprint arXiv:2411.07475 (2025).

[38] , Ricci matrix comparison for graph alignment: A dmc variation, arXiv

Preprint arXiv:2505.15831 (2025).

[39] Melanie Weber, Emil Saucan, and Jürgen Jost, Characterizing complex networks

with forman-ricci curvature and associated geometric flows, Journal of Complex

Networks 5 (2017), no. 4, 527–550.

[40] Hassler Whitney, Congruent graphs and the connectivity of graphs, American

Journal of Mathematics 54 (1932), no. 1, 150–168.

[41] David P. Williamson, Spectral graph theory (lecture notes), 2016.

61

BIBLIOGRAPHY

[42] Xu Yang, Cheng Deng, Zhiyuan Dang, Kun Wei, and Junchi Yan, Self-

sagcn: Self-supervised semantic alignment for graph convolution network, 2021

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

(Nashville, TN, USA), IEEE, 2021, pp. 16770–16779.

[43] Si Zhang and Hanghang Tong, Final: Fast attributed network alignment, Pro-

ceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD ’16) (San Francisco, CA, USA), Association

for Computing Machinery, 2016, pp. 1345–1354.

[44] Yutao Zhang, Jie Tang, Zhilin Yang, Jian Pei, and Philip S. Yu, Cosnet: Connect-

ing heterogeneous social networks with local and global consistency, Proceedings

of the 21th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD ’15) (New York, NY, USA), Association for Computing

Machinery, 2015, pp. 1485–1494.

62

	Abstract
	Acknowledgements
	Introduction
	Problem Set Up: Graph Alignment
	Random Walk Graph Sampling
	Edge Deletion Graph Sampling

	Proposed Alignment Methods
	Degree Matrix Comparison
	Overview of Method (DMC)
	Examples for Degree Matrix Comparison
	Hungarian Algorithm

	Greedy DMC
	Overview of Method (Greedy)
	Hungarian Algorithm Prepared by Greedy Heuristic

	Weighted DMC
	Example for Weighted Degree Matrix

	Ricci Matrix Comparison

	Theoretical Examination
	Motivations for Constructing DMC
	Spectrum of Graphs
	Erdős-Rényi Graphs
	Barabási-Albert Graphs
	Poisson Distribution: Bridging Erdős-Rényi and Barabási-Albert

	DMC Experiments on Synthetic Graphs
	The Extreme Cases
	The Intermediate Cases

	Performance Analysis for DMC
	Motivation for Constructing RMC
	Forman-Ricci Curvature
	Graph Laplacian
	Variation of Signature Row Vector from a Degree Matrix
	The ``Curvature-Laplacian'' Equation
	Possible Implications of the Equation

	More Theory for Applying RMC
	RMC on Standard Tori
	Tiling Methods to Construct a Torus
	Thought Experiment: Applying RMC to Tori

	Experimental Results on Real World Networks
	Unweighted
	Weighted
	RMC
	Experiments on Line Graphs of Complex Networks

	Conclusion and Future Work

