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Abstract 
As omics data derived from high-throughput technologies becomes more ubiquitous in biological and 

medical research, the development of predictive models that efficiently and accurately analyse and classify this 
data is paramount. The compositional nature of such data imposes constraints that must be considered in such 
models, and while existing transformations address such limitations, they result in high-dimensional feature 
spaces, limited accuracy, and/or sizable computational demands. 

The log-contrast LASSO (LCL) model leverages the log-contrast constraint to implicitly represent 
log-ratios without expanding the feature space, significantly lowering computational complexity. Using rigorous 
nested cross-validation and a robust convex optimization solver, LCL produces sparse, interpretable logistic 
regression models. Experiments using synthetic data, publicly available 16S and WGS sequencing datasets, and 
two case studies reveal that the LCL model produces results competitive with those of the much more 
computationally expensive DiCoVar framework. Though DiCoVar often archives slightly better accuracy due 
to the ensemble learning methods it employs, LCL represents a valid, less-computationally intensive alternative 
that has the potential to meet or exceed DiCoVar performance with future integration of ensemble learning 
techniques.  
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Introduction 
Metagenomic sequencing and metabolomic data give insight into how alterations of microbiomes in 

and on the human body are associated with human disease. Metagenomics analyzes the DNA content of 
microbial communities, providing insight into the type and quantity of microbes present. In contrast, 
metabolomics identifies and quantifies metabolites – the compounds produced by microbes. 

Both technologies represent promising new methods of early detection and diagnosis of both chronic 
and infectious disease. However, the provision of such insights relies on the identification of microbial 
biomarkers indicative of the absence, presence, or advancement of a given disease. Current metagenomic 
sequencing techniques – namely, whole genome shotgun (WGS) and 16S ribosomal-RNA methods – produce 
count data with limits on the total number of reads, meaning that analysis of data is limited to relative rather 
than absolute comparisons (compositional data). That is, data form parts of a whole and their relative rather 
than absolute values are of interest. Metabolomic data is similarly structured in a compositional manner. 

The constraints that arise in compositional data cannot be ignored in its analysis, but many standard 
approaches to classification of metagenomic or metabolomic data involve machine learning algorithms trained 
on untransformed relative abundance data (i.e., percentages). Such models that fail to account for compositional 
constraints lack both interpretability and generalizability.  For example, models that do not consider 
compositional constraints cannot be generalized to other datasets in which there are differences in the features 
sampled – if a model is constructed using the relative abundances of features A, B, C but another dataset 
contains features A, B, C and D, the relative abundances of this new feature (D) will change those of the features 
used in the model, so this model cannot accurately generalize to the new setting with the additional feature. 
Further, the fixed total sum of 1 or 100% in untransformed compositional data can lead to spurious correlations 
between otherwise unrelated features. That is, because the sum is kept constant, changes in abundance of one 
component inherently lead to changes in abundance of others even if there is no direct causal relationship. 

However, various transformations including the pairwise log ratio, additive log ratio, and centered log 
ratio transformations have been proposed to overcome these difficulties. Various studies combine these 
transformations with existing methods for predictive modeling, including machine learning and generalized 
linear regression models. However, machine learning models such as DiCoVarML (Hinton & Mucha, 2021) are 
extremely computationally expensive, while many GLM methods lack accuracy and some also interpretability 
and generalization. 

Therefore, we seek to develop a framework for a less computationally expensive and potentially more 
accurate model that adheres to the constraints of compositional data analysis while providing effective feature 
selection for biomarker discovery and disease classification in metagenomic and metabolomic research. 
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Background 
Aitchison (1982) proposes the use of log transformation as an effective method for compositional data 

analysis. This method is based upon coherence, the idea that ratios of parts do not vary with respect to the 
normalization of data. Relationships between parts remain constant.  

Aitchison’s 1982 paper represents the first exhaustive treatment of compositions using log ratios with 
the additive log ratio (ALR) transformation, described in detail below. This compositional data analysis, 
however, was performed on small datasets with ten or fewer components. Today, compositional data analysis 
with log ratios is typically employed for much higher dimensional data – such as omics data – in which feature 
selection is paramount and computational cost a key consideration. As a result, additional log ratio 
transformations subject to various forms of feature selection have been proposed to develop parsimonious 
models for predicting outcomes from omics data. 

Key Log Ratio Transformations 
In their 2023 paper, Greenacre et al. discuss the three key log ratio transformations commonly used in 

compositional data analysis – the pairwise log ratio transformation (PLR), additive log ratio transformation, and 
centered log ratio transformation (CLR).  

A general pairwise logratio (LR) can be defined as follows, with j, k ∈ {1,...,F} and j ≠ k: 
 

 
 

For a given dataset with F features,  unique log ratios can be constructed. For small 1
2 (𝐹)(𝐹 − 1)

datasets with few features, this represents a comprehensive and effective method of exploring all possible LRs 
and selecting features according to the chosen algorithm. However, when working with high-dimensional 
metabolomic or metagenomic datasets, the PLR transformation increases the feature space from F dimensions 
to  dimensions, drastically increasing the computational cost of feature selection. Notably, all of these unique 𝐹

2( )
LRs are not linearly independent. Thus, though there are  LRs that result from this transformation, their 𝐹

2( )
dimensionality is only F – 1 (the same as with the ALR transformation described below) (Greenacre et al., 
2023).  

As an alternative to this exhaustive search, the ALR transformation can be employed. Among all 
pairwise LRs, there is a subset of F–1 LRs that share a denominator. In the ALR transformation, F–1 log ratios 
are calculated with this same denominator (also known as the reference part). There are F–1 total LRs because 
each feature with the exception of the reference part has an associated ratio calculated for it (thus in Equation 
(2), j ≠ reference). 
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Because there are F features, there are therefore F potential reference parts and thus F possible ALR 
transformations. Though ALRs are useful in simplifying compositional data analysis results, the use of this 
transformation requires the selection of a given reference feature without knowing which feature is best for this 
purpose (Greenacre et al., 2023).  

Finally, the CLR transformation takes the log ratio of each part with respect to their geometric mean 
g(x), thus representing a symmetric transformation of all parts. In the CLR transformation shown in Equation 
(4),  j ∈ {1,...,F}. 

 

 
 

 
 

​ Because the denominator is the same for all possible CLRs, there are F CLRs that can be constructed 
for a given dataset (Greenacre et al. 2023). However, the calculation of this denominator as the geometric mean 
of all parts means that in the CLR transformation all features are retained, eliminating the possibility of any true 
feature selection.  
​ Both PLR and ALR meet Aitchison’s requirement of subcompositional coherence (Aitchison, 1982) 
while providing a simple interpretation of the constructed log ratios (Greenacre et al., 2023). Nonetheless, all 
three methods (among other transformations) have been employed in the analysis of omics data and 
construction of both supervised and unsupervised learning methods.   

Methods of Feature Selection for Log Ratio-Transformed Data 
Regardless of which one of the above transformations (if any) is employed, it is necessary to select a 

subset of log ratios for high dimensional datasets like those arising from mass spectrometry.  We first provide a 
brief overview of unsupervised classification and discriminative balance methods. We then further examine two 
additional techniques most relevant to the approach proposed in this paper – the usage of generalized linear 
models and Hinton & Mucha’s differential compositional variation machine learning framework (DiCoVarML) 
(2021). 

Hron et al. (2013) introduce an unsupervised stepwise procedure using a variation of the CLR 
transformation (the isometric log ratio or ILR transformation) to reduce a D-dimensional composition to a 
sparse subcomposition. The ILR transformation enables compositional data to be represented in a real 
Euclidean space, allowing for the use of standard statistical methods. Additionally, Greenacre (2019) proposes 
an additional unsupervised technique, also using a stepwise method, to select the pairwise log ratios (PLRs) that 
explain (through linear regression) the largest proportion of logratio variance in the composition. However, we 
are more interested in supervised learning techniques that predict classes based upon the selected log ratios.  

Much of the research on supervised compositional data analysis and classification has focused on 
generalized linear models. The selbal approach, developed by Rivera-Pinto et al. (2018), is a greedy stepwise 
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supervised algorithm that picks two microbial subcompositions – one positively correlated with the binary 
dependent variable and the other negatively correlated with it – and finds the log ratio of the geometric mean of 
the first over the second sub composition. In selbal, feature selection is applied at the parts level (rather than at 
the log ratio level) – the algorithm looks for two groups of taxa whose relative abundances are most associated 
with the outcome of interest according to a generalized linear model. However, selbal is computationally 
expensive and performance is limited in certain scenarios. 

Various approaches using penalized regression have also been proposed as a means to develop sparse 
models. Lin et al. (2014) discuss the use of an LASSO-regularized linear log-contrast model, building upon the 
work of Aitchison & Bacon-Shone (1984) and their proposed log-contrast model.  

Because of the unit-sum constraint intrinsic to compositional data, traditional methods of analysis 
necessitate the omission of specific components and therefore challenges with interpretation of results. 
However, the application of the log-ratio transformation results in the linear log-contrast model: 

 

  

where  is the  log-ratio matrix whose pth component is the 𝑍𝐹 = {𝑙𝑜𝑔(𝑥
𝑖𝑗

/𝑥
𝑖𝐹

)} 𝑛 × (𝐹 − 1)

reference component,  is the corresponding vector of regression coefficients, and  β
\𝐹
* = (β

1
* ,..., β

𝐹−1
* )𝑇 ε

is a vector of independent noise (Aitchison & Bacon-Shone, 1984).  
 
​ Lin et al. (2014) then add a LASSO regularization parameter, creating a convex optimization problem 
subject to the constraint that all regression coefficients sum to zero (see Equation 6). The addition of this 
log-contrast constraint allows for ease of interpretation above and beyond traditional LASSO-regularized 
estimators while creating a sparse model. Reinforcing and expanding upon their findings, Shi et al. (2016) 
propose an improved coordinate descent algorithm to implement LASSO penalization under the log-contrast 
constraint as well as a method of obtaining debiased coefficients. Lu et al. (2018) then extend Lin et al.’s 
approach to generalized linear models.  

Bates & Tibshirani (2019) similarly develop a linear model initially containing all possible pairwise log 
ratios and use LASSO penalization to create a sparse model. However, they also introduce a subsequent pruning 
step to increase model sparsity and minimize overfitting. Because this model expands the feature space to  𝐹

2( )
dimensions, much of their paper is devoted to addressing the computational cost of developing such a model. 

The development of generalized linear models constructed from CLR-transformed data has also been 
proposed. In the CLR-LASSO method, compositional data is projected to the Euclidean space according to the 
CLR transformation described in Equation (4). Then, various penalized regression methods (including LASSO, 
L2, and elastic net regularization) are applied to develop a sparse linear model. However, the application of this 
penalized regression onto CLR-transformed data limits the interpretability of the results and reduces the 
model’s ability to detect real association, especially when the geometric mean g(x) has a high variance (Susin et 
al., 2020).  
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In addition to being used with generalized linear models, the CLR transformation has also been applied 
in machine learning models such as random forest models and support vector machines. However, the usage of 
CLR-transformed data in these frameworks leads to inaccurate AUCs and associated limitations in 
generalizability.  

Motivated by this shortcoming of existing machine learning techniques in compositional data analysis 
as well as the limited accuracy of existing generalized linear models trained on PLR-transformed data, Hinton & 
Mucha (2021) propose the differential compositional variation machine learning framework (DiCoVar). 
DiCoVar combines the PLR and ALR transformations used in the aforementioned GLMs with ML 
techniques, attempting to obtain an optimal set of log ratios between parts for use as features in machine 
learning classification methods. These ALR- or PLR- transformed features are scored according to their 
variation between classes, and the algorithm then selects a small subset of these log ratios to predict classes 
(Hinton & Mucha, 2021).  

DiCoVar uses nested k-fold cross-validation to minimize overfitting and accurately evaluate 
classification performance. While the package permits the use of various machine learning model paradigms, 
Hinton & Mucha concentrate on ridge regression and ensemble learning models. They find that the ALR 
transformation yields results with possibly lower insight at a lower computational cost while the PLR 
transformation often provides heightened insight but requires significantly more computational resources. As 
expected, the ensemble learning models tend to outperform single estimators (Hinton & Mucha, 2021). 

Though DiCoVar applied to PLR-transformed metagenomic datasets shows good accuracy in the case 
studies performed by Hinton & Mucha (2021), it is extremely computationally expensive. As shown in Equation 

(1), PLR transformation expands the feature space to include  dimensions and the given 𝐹
2( ) = (𝐹)(𝐹−1)

2  

machine learning framework is then presented with all possible pairwise log ratios. Considerable resources are 
needed to perform effective feature selection in this sizable and highly correlated feature space. While examining 
the predictive power of all possible pairwise log ratios ensures that no predictive ratios are ‘missed’,  in some cases 
the DiCoVar framework is more computationally expensive than is perhaps necessary.  

Therefore, we seek to develop a model performs at a level equivalent to DiCoVar without expanding 
the feature space to  dimensions. To accomplish this, we propose the use of a LASSO-regularized logistic 𝐹

2( )
regression model subject to a log-contrast constraint. Such a framework requires significantly less computational 
resources than DiCoVar but may exhibit performance and interpretability above and beyond existing 
generalized linear regression models that use PLR, ALR, and CLR-transformed data.  

While some literature exists detailing the development of a similar method (named Coda-LASSO; 
constructs both linear and logistic log-constrained regression models), this model is minimally documented, 
does not exist as a formal or maintained package, and uses an underpowered optimization approach (Susin et al., 
2020). First, Coda-LASSO does not exist as a CRAN-installable R package or Conda-installable Python 
package. This is also a problem that arises in the aforementioned studies by Lin et al. (2014), Shi et al. (2016), 
and Lu et al. (2018), which contain extensive theoretical analyses but no package development. These studies, as 
well as Coda-LASSO, also perform minimal benchmarking – they examine model performance on only one or 
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two case studies or real datasets, which makes for much less robust conclusions concerning their ability to 
predict disease.  

Second, there is no formal documentation of parameter selection – that is, it is unclear to us how 
parameters such as λ (the LASSO regularization parameter) are selected for use in the model. Rigorous 
cross-validation for parameter selection is vital to creating an effective model, so the model developed here 
provides a far more reproducible method for finding the optimal regularization parameter.  

Finally, the optimizer used is a simple line search algorithm implemented in the model itself, leading to 
concerns about whether the algorithm truly finds the optimal solution. In preliminary analyses of metagenomic 
datasets, we find that the ECOS solver – an open source solver specializing in solving second-order cone 
problems and good for small- to medium-sized problems – often fails. This suggests that a line search algorithm 
may also fail in high-dimensional feature settings characteristic of metagenomic data.  

Therefore, we seek to determine whether a LASSO-regularized logistic regression model with rigorous 
regularization parameter selection and commercial-grade optimizer may represent a less computationally 
expensive alternative to DiCoVar that similarly outperforms other existing GLMs computed on 
log-transformed data. To accomplish this, we conduct an in-depth analysis of model performance on 
synthetically generated data as well as ten real datasets, far exceeding the benchmarking rigor of many existing 
studies.  
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Methods 

Understanding the Log Contrast Constraint 
​ Given the the inaccuracies associated with using non-transformed relative abundance data, limited 
performance of existing methods of feature selection for log-transformed data such as selbal, and the 
computational requirements of DiCoVar, we propose the usage of a so-called log-contrast constraint paired 
with LASSO-penalized logistic regression to identify predictive metabolomic or metagenomic features and 
classify cases. The log-contrast constraint applied in a regression context is represented by the following equation 
(6), where β is the coefficient vector and F is the number of features: 
 

 
 

The usage of a log-contrast constraint rather than calculating all PLRs or ALRs can be explained as 
follows. Because metabolomic and metagenomic data are compositional rather than absolute in nature, we 
remain interested in the ratios between features. Consider the case in which the ratio between two features, A 
and B, predicts incidence of a given disease. If we take the log of each feature as in a logistic regression model, the 
features of this model are log(A) and log(B). Then, the log of the ratio between features A and B can be 
expressed as   – the log of the ratio is equivalent to the difference of the logs. 𝑙𝑜𝑔(𝐴/𝐵) = 𝑙𝑜𝑔(𝐴) − 𝑙𝑜𝑔(𝐵)
Then, log(A) and log(B) can be used as features in a regression model – with their requirement that their 
coefficients be equal and opposite (that is, βA and βB must sum to zero) in order to accurately represent this 
relationship. 

 

 
 
Generalizing the above to a high-dimensional dataset, we can use this “log-contrast constraint” to 

ensure that the linear combination of all coefficients sums to 1 (Aitchison & Bacon-Shone, 1984). Then, per 
equation (6), it is clear that any model that could have been made using ALR- or PLR-transformed data can also 
be written as a log contrast. With this zero-sum requirement imposed, a LASSO-penalized logistic regression 
model can then be constructed to determine features relevant in predicting disease and classify individuals. This 
method of prediction is henceforth referred to as the “LCL framework.”   

Because this model does not involve the ALR or PLR transformations used in DiCoVar, there are 
inherently fewer possible models that can arise from it. As we have discussed, the PLR transformation results in 
a feature space of  dimensions. Though individual ALR transformations do not increase the number of 𝐹

2( )
dimensions (each results in a feature space of size F–1), there exist F possible ALR transformations for a given 
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dataset. In sum, there are many more possible DiCoVar models than LCL models that could be constructed 
from a given dataset.  

 Specifically, while every PLR or ALR DiCoVar model is associated with exactly one log-contrast 
model, a given log-contrast model developed using the LCL framework associates with multiple ALR or PLR 
models. One log-contrast model associates with several ALR models (one for each possible reference part used), 
and with an entire continuous multidimensional family of potential PLR models. In short, the networks 
revealed using the DiCoVar framework (Hinton & Mucha, 2021) are each just one potential way of describing 
the ratios associated with the equivalent log contrast model.  

Data Preprocessing 
​ The LCL framework takes in mass spectrometry data (metabolomic data) or taxonomic tables from 
WGS or 16S sequencing (metagenomic data) as input. Since this data has a long tail, we first apply the base 10 
log transformation to better approximate a normal distribution.  
​ Since some input data includes zeros, which become –∞ when log-transformed, we must impute these 
undefined values. While there are numerous methods available for imputation, in the present work this is done 
by replacing zeros with the smallest nonzero value in the training set (Hinton & Mucha, 2021). Zero imputation 
occurs in the outer loop of the cross validation process (described in detail below) in order to avoid data leakage, 
because such leakage of information between the train and test set can lead to artificial inflation of classification 
performance metrics. Zero values in the outer loop test set are also replaced by the smallest nonzero value in the 
training set.  

Model 
The LCL model takes in this processed data and first rescales it to mimic the functionality of glmnet’s 

logistic regression model (Hastie et al., 2023). Then, the following objective function is used to implement a 
LASSO-regularized logistic regression. Please note that in Equation (8) and from this point forward, x represents 
the already-log-transformed features.  

 

 
 

 
 
​ The first term of this objective function represents the fitting of the logistic regression model and the 
second term is the LASSO penalization intended to reduce overfitting by penalizing the sum of the absolute 
values of the coefficients. The objective function and log-contrast constraint are then passed into CVXR, an R 
package that provides an object-oriented modeling language for convex optimization and allows the user to 
formulate convex optimization problems in a natural mathematical syntax (Fu et al., 2020).  
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Preliminary analysis revealed that the ECOS optimizer used by default in CVXR does not perform well 
and often fails when solving problems with high-dimensional data. To overcome this, the commercial-grade 
optimizer Mosek is used in the LCL framework for all analyses. Mosek is an optimization solver that works with 
CVXR to solve optimization problems with the high-dimensional characteristics of metagenomic or 
metabolomic data (MOSEK ApS, 2025). 
​ Prior to implementation of this model, we verified consistency of results from CVXR and glmnet. As 
the state-of-the-art package used for logistic regression in R, we wanted LCL to mimic the functionality of 
glmnet (with the addition of the log-contrast constraint). Therefore, we ensured that the objective function 
used matched that of glmnet and that preliminary results of our function without the log-contrast constraint 
matched those of glmnet (Hastie et al., 2023).  
​ After model generation, coefficients with absolute values below a certain threshold – set at 1e-6 for all 
models generated in this paper – are removed as a further means to reduce overfitting. While this means that the 
log-contrast constraint is not precisely met, the values removed are negligibly small.  

Cross Validation & Measuring Performance 
​ In order to select relevant features, minimize overfitting, and accurately estimate model performance on 
novel datasets, we employ a nested cross validation framework. 
​ The purpose of the inner loop cross validation is to select the optimal λ (LASSO regularization 
parameter) based upon a performance metric of choice. Throughout this paper, we consistently use AUC as our 
performance metric of choice, because it is preferable to mean squared error (MSE) for data with unbalanced 
classes (which is the case with much of the real 16S and WGS data used). 

 The list of λ through which to iterate is generated as described by Friedman et al. (2010). First, we find 

the smallest value λupper for which the entire vector . Then,  λlower is calculated by finding the value 1.5 β = 0
orders of magnitude smaller than λupper. Finally, we generate 102 values of λ, evenly spaced on the log scale, 
between λlower and λupper. 

For each λ, we then generate 20 random 80/20 train/test splits using the createDataPartition 
function in caret, which conducts within-class random sampling in an effort to balance class distributions 
between the splits (Kuhn, 2008). We used 20 splits because if there are not enough folds, the standard error for 
each λ is not sufficiently small to produce pertinent performance data or calculate a meaningful λ1SE given the 
value of λmax. After generating models and evaluating test set performance for each value of λ on each train/test 
split, the inner cross validation loop returns the λ (henceforth referred to as λmax) that produces the highest mean 
AUC. It also returns the largest value of λ within 1 standard error of λmax (henceforth referred to as λ1SE). This 
value is of interest because its performance is not statistically significantly different from that of λmax, but a larger 
value of λ (higher penalty term) produces a more sparse model less prone to overfitting. However, it is also 
possible that in some cases, λmax could outperform λ1SE if the model generated using λ1SE is too sparse – therefore, 
we test both values of lambda in the LCL model. Figure 1 demonstrates how λmax and λ1SE are selected in this 
inner cross-validation loop. 
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Figure 1 Selection of λmax and λ1SE using the inner cross-validation procedure on the full CDI dataset (Schubert et al., 2014). 
The blue dotted line marks  λ1SE and the red dotted line represents  λmax. The black points mark the mean AUC calculated using 
left-out test data for each of the 20 train/test splits, and the gray error bars represent one standard error above and below the mean 
AUC calculated for each λ. Note the sharp decrease in model performance at λ ≈ 0.66 (or log(λ) ≈ –0.18), which reveals that when 
the model becomes too sparse (as a large λ results in higher penalization of additional features), performance drops rapidly. 

 
Importantly, preliminary trials revealed that the CVXR solver failed seemingly at random for certain 

splits in combination with certain test values of λ. While this matter certainly warrants further investigation, it 
happened infrequently (at most once in a full run through the outer loop) and was addressed by implementing 
R’s tryCatch function to simply skip a run through the inner loop and calculate the mean and standard error 
AUC for the given λ without data from this iteration.    

This inner loop is then nested within an outer loop whose purpose is to determine how we expect the 
model to perform in real life. We use 25 random 80/20 train/test splits, again generated using 
caret::createDataPartition. 25 outer splits are used because we need sufficient folds to generate a 
meaningful mean and standard deviation of model performance.  

The full dataset is fed into this outer loop. Then, in each iteration of the outer loop, the full inner loop 
cross validation process is performed. Each inner loop returns the chosen λmax and λ1SE, which are then each used 
to fit a model to the training data in the outer loop. After each of the two models is fit, their performance on the 
test data (which never touches the inner cross-validation loop and therefore represents a novel dataset) is 
evaluated using the AUC. After all 25 inner loops are performed, the mean and standard of the 25 AUCs 
generated for each of λmax and λ1SE are calculated to reveal the expected performance of the LCL model on a 
completely novel dataset.  
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Synthetic Data Generation 
​ In order to verify the performance of the LCL framework before testing it on real metagenomic and 
metabolomic data and determine how the model might perform under different conditions (including data with 
a small number of observations, high-dimensional data with many noisy features, high signal to noise ratio, and 
unequal class distribution), we generated synthetic data representing already-log-transformed 
metabolomic/metagenomic data.  

All synthetic datasets contained two features of interest, X1 and X2, with the decision boundary based 
upon the ratio of these two features. For the case group (A), X1 observations were randomly generated from a 
Gaussian distribution with a mean (μ) of J and variance (σ2) of 1 and X2 observations were from a Gaussian 
distribution with μ = –J and σ2 = 1. For the control group (B), X1 observations were randomly generated from a 
Gaussian distribution with a μ = –J and σ2 = 1 and X2 observations were from a Gaussian distribution with μ = J 
and σ2 = 1. All noisy features for both A and B were generated from a Gaussian distribution with μ = 0 and σ2 = 
1. Increasing the value of J used for the mean in X1 and X2 increases the signal to noise ratio (SNR), while 
decreasing the value decreases the SNR. Rather than manipulating the variance to achieve this, only the means 
are modified to examine the effect of SNR on model performance. 

We started with the simplest case – a three part composition with one noisy feature and a decision 
boundary based upon the ratio of the other two features. Per the data generation described above, we used J = 1. 
That is, for the case group (A), X1 observations were randomly generated from a Gaussian distribution with a 
mean (μ) of 1 and variance (σ2) of 1 and X2 observations were from a Gaussian distribution with μ = –1 and σ2 
= 1. For the control group (B), X1 observations were randomly generated from a Gaussian distribution with a μ 
= –1 and σ2 = 1 and X2 observations were from a Gaussian distribution with μ = 1 and σ2 = 1. This data 
contained an equal number of observations of control and case observations. 

The relative values of X1 and X2 and the noisy feature were chosen to ensure that the log contrast of X1 
and X2 would be a better predictor (i.e. greater signal to noise ratio) than the log contrast between either of X1 
and X2 and the noisy feature. This ensured that the LCL model would learn the relationship between X1 and 
X2 in order to predict classes rather than learning to predict classes based upon the relationship between X1 or 
X2 and the noisy feature. Such a phenomenon would prevent meaningful comparison between the optimal 
decision boundary AUC defined by the relationship between X1 and X2 and mean model AUC (since the 
model would be learning a different decision boundary).  

After examining LCL performance with this initial case, we then generated data with different numbers 
of observations, additional noisy features, different signal-to-noise ratios (achieved by increasing the absolute 
value of the mean of observations in X1 and X2), and different proportions of control vs. case observations.  

Publicly Available & Case Study Data 
​ Given the promising results yielded through analysis on the above synthetic data, we then conducted 
additional analysis on numerous publicly available WGS and 16S gut microbiome datasets used to benchmark 
DiCoVar performance in Hinton & Mucha (2021).  
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​ Three datasets were extracted from version 3.3.3 of the curatedMetagenomicData R packages 
(Pasolli et al., 2017). This package, which enables access to standardized metagenomic datasets, was used by 
Hinton & Mucha (2021) to extract the following studies by study ID: ZhuF_2020, RubelMA_2020, 
ZellerG_2014. The ZhuF_2020 dataset (“Schizophrenia”) examines the association between gut microbiome 
features and schizophrenia, and consists of 171 observations (n = 171) and 480 features (F = 480) (Zhu et al., 
2020), the RubelMA_2020 dataset (“STH”) explores metabolomic correlates of soil-transmitted helminth in 
Cameroonians (n = 175 and F = 366) (Rubel et al., 2020), and the ZellerG_2014 dataset (Zeller 2014, CRC) 
examines fecal microbiota for early detection of colorectal cancer (n = 156 and F = 652) (Zeller et al., 2014). 
Please note that an additional dataset was extracted and examined by Hinton & Mucha (2021), and we 
attempted to apply the LCL framework to this data (on alterations of the human gut microbiome in liver 
cirrhosis) as we did with all other publicly available datasets. Despite our efforts to manipulate the dataset and 
the construction of the associated LCL models, however, we were unable to develop a viable LCL model 
without generating an error in R.  

Further, Hinton & Mucha (2021) acquired metagenomic data concerning the association between gut 
microbiota and nonalcoholic fatty liver disease (“NAFLD”; n = 185 and F = 341) (Sharpton et al., 2018) from 
Qitta, an open-source online multi-omics platform (Qitta Study ID 11635). They also used MicrobiomeHD, an 
online database of uniformly-processed case-control studies, to source microbiome data distinguishing patients 
with Clostridium difficile infections (“CDI”; n = 336 and F = 259) (Schubert et al., 2014). Finally, they used the 
selbal R package to extract two more datasets – one examining the association between gut microbiome features 
and Crohn’s disease (“Crohn”; n = 975 and F = 48) and the other HIV (“HIV”; n = 155 and F = 60) 
(Rivera-Pinto et al., 2018). 
​ After examining these publicly available datasets, we also performed the two case studies conducted by 
Hinton & Mucha on fecal metagenomic data predicting necrotizing enterocolitis in infants (“NEC”) and 
colorectal cancer (“CRC”). The NEC dataset comes from a longitudinal study containing 1100 
microbiome-profiled fecal samples from 150 NICU infants (Olm et al., 2019). CRC case study data consists of 
11 individual datasets sourced from the aforementioned curatedMetagenomicData R package for a total of 
1305 samples.  

For additional information on the extraction and processing of publicly available and case study 
datasets, please see Hinton & Mucha (2021).  
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Results 

Classification Performance Evaluated Using Synthetic Data 
We analyzed this synthetic data with 80/20 train/test splits for both the inner and outer loops, 25 passes 

through the outer loop, and 20 passes through the inner loop. For cases (group A), feature 1 (X1) and feature 2 
(X2) were distributed normally with a mean (μ) of –J and variance (σ2) of 1 and a μ = J and σ2 = 1 respectively 
(where J represents a positive nonzero value). For controls (group B), X1 and X2 were distributed normally with 
a μ = –J and σ2 = 1 and a μ = J and σ2 = 1 respectively. The noisy feature was normally distributed with μ = 0 and 
σ2 = 1. 
​ Because X1 and X2 represent logged observations S1 and S2 such that 

, the known decision boundary V can be computed as 𝑙𝑜𝑔(𝑆1/𝑆2) = 𝑙𝑜𝑔(𝑆1) − 𝑙𝑜𝑔(𝑆2) = 𝑋1 − 𝑋2
follows. Note that A1 is the mean value of X1 for cases, A2 is the mean value of X2 for cases, B1 is the mean 
value of X1 for controls, and B2 is the mean value of X2 for controls. 
 

 

Three Part Composition​  

First, we use the simple three-part composition described above to determine the viability of the LCL 
framework. This synthetic dataset was constructed using  J =1 and contained 200 observations (n = 200) equally 
distributed between the control and case classes (p = 0.5). 

Using this known decision boundary, we found the optimal AUC to be 0.9788. Using the LCL 
framework, we achieved a mean AUC of 0.914 for models generated using λmax and a mean AUC of 0.975 for 
models generated using λ1SE – almost equivalent to the performance using V as defined above. This demonstrates 
that the LCL framework effectively learns the predictive features – at least for simple synthetic data with small 
variance in features that represent both signal and noise. 
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Figure 2 Performance of LCL framework on three-part composition synthetic data using λmax and λ1SE (optimal regularization 
parameter derived through inner-cross validation as described in Methods). The red line marks the mean calculated AUC, and the 
dotted lines designate the values one standard deviation above and below the mean AUC. This three-part composition is 
generated with J = 1 (and therefore SNR = 4 per Equation 11), n = 200, and p = 0.5 (equal number of control and case 
observations). As a three-part composition, there are two relevant features X1 and X2 and one noisy feature. 

Manipulating Dataset Size 

After discovering the excellent performance of the LCL framework on this toy three-part dataset, we 
then went on to test how model performance varies with number of observations. We generated additional 
simulated datasets with n = 50, 100, and 500. For these datasets, the following parameters were used: F = 5 (that 
is, there are five noisy features in addition to X1 and  X2),  J = 1,  σ2 = 1 (for both X1 and X2 as well as the noisy 
features), and p = 0.5 (observations equally distributed between the control and case conditions). As shown in 
Figure 3A, this analysis revealed that there is no notable within-λ difference in LCL performance (measured by 
AUC) based upon number of observations. The LCL framework regularized with λ1SE performs almost 
optimally (that is, approximately equivalently to the AUC based on the known decision boundary) for all n. 
While the LCL framework regularized with λmax results in a mean AUC that is consistently lower than that with 
λ1SE (and therefore lower than the optimal performance), the λmax results do not vary markedly with n. The mean 
AUC for each n ranges from 0.892 (when n = 100) to 0.918 (when n = 500). Notably, the standard deviations in 
AUC decrease with increasing number of observations for both the λmax and λ1SE models such that they no 
longer overlap at n = 500 – both lines are relatively flat but the deviations become smaller as n increases. 
However, the AUC standard deviation for λmax remains consistently greater than that of λ1SE even as they both 
decrease. 
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Manipulating Dimensionality 

Next, we simulated data with progressively larger numbers of features (F) to emulate the high 
dimensionality of metabolomic and metagenomic data. We created datasets with F = 5, 10, 50, 100, and 250 
noisy features, in addition to X1 and X2  (for a total of 7, 12, 52, 102, and 252 features in each dataset). For 
these datasets, the parameters used were as follows:  J = 1,  σ2 = 1 (for both X1 and X2 as well as the noisy 
features), and p = 0.5 (observations equally distributed between the control and case conditions). As in our 
experiment manipulating the number of observations in the dataset, changing the number of noisy features did 
not yield notable differences in LCL framework performance within lambdas (see Figure 3B).  

The performance of the LCL model constructed with λ1SE did not vary at all depending upon the 
number of noisy features. It remained consistent at 0.975, just below the optimal performance based upon the 
known decision boundary (AUC = 0.979). For each n, σ1SE (the standard deviation of the AUC of the model 
constructed with λ1SE) remained constant at 0.0210, demonstrating little variation in model performance within 
each noise level. Note that the optimal decision boundary remained constant at each n because the data 
generated for X1 and X2 was identical across noise levels. 

While there was more variability in performance within each noise level F with the LCL model 
constructed with  λmax (the standard deviation σmax at each F ranged from 0.0474 to 0.0557), there was also no 
major difference in performance between λmax models trained on models with varying numbers of noisy features. 
Notably, there were minor differences in performance between different noise levels using LCL with λmax, unlike 
in the models using λ1SE which exhibited identical performance regardless of noise. 

However, like in the preceding experiment manipulating n, we again saw that the mean AUC for the 
LCL model constructed with  λ1SE was consistently above that of the LCL model constructed with  λmax for each 
noise level. That is, models constructed with λ1SE consistently outperformed those constructed with λmax 
regardless of F. 

Manipulating Signal to Noise Ratio 

Then, we constructed simulated datasets varying the magnitude of J and therefore the signal-to-noise 
ratio (SNR) of features X1 and X2. Since we hold σ2 = 1 for all constructed datasets, we have that  

 

 
 
These simulations used  J = 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2.5, 5, or SNR = 0.4, 1, 2, 3, 4, 6, 10. As 

anticipated, the results (Figure 3C) demonstrated that as SNR increases, so does model performance. When 
SNR = 0.4 (very small), the optimal AUC based upon the known decision boundary is just above chance at 
0.556. The mean AUC of the LCL model regularized with λmax is 0.479 and with λ1SE it is 0.486. There is no 
notable difference in performance between the LCL model with λ1SE versus λmax.  

As the signal to noise ratio increases – that is, the signal becomes stronger – so does the AUC according 
to the known decision boundary and the performance of the LCL model using both λmax and λ1SE. However, the 
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improvement in performance of LCL with λ1SE occurs at a faster rate than that of the LCL model constructed 
using λmax. While the performance of LCL with λ1SE is comparable to that of LCL with λmax at SNR = 0.4, the 
performance of LCL with λ1SE increases to approximately the AUC using the known decision boundary at the 
next tested SNR of 1 (the model mean AUC is 0.655 and that of the known decision boundary is 0.667). The 
mean AUC of the LCL model with λmax remains well below these values at 0.596.  

Overall, as SNR increases, the performance of λ1SE continues to be consistently better than that of λmax. 
The mean AUC of the LCL model with λ1SE remains within 0.007 of the known decision boundary AUC for 
SNR > 0.4. In contrast, the mean AUC of the LCL model with λmax is 0.0705 less than that of the known 
decision boundary when SNR = 1, 0.0969 less when SNR = 2, and 0.1002 when SNR = 3. While this difference 
then gradually decreases as the SNR continues to increase, it is important to note that the performance of the 
LCL model constructed using λmax lags behind that of the model constructed with λ1SE as the signal to noise ratio 
increases. 

Manipulating Class Distribution 

Finally, we explored how the distribution of observations between the control and case groups may 
impact performance of the LCL framework. We generated datasets varying the value of p, the parameter 
dictating the proportion of cases belonging to the control from, to include values of 0.15, 0.3, 0.5, 0.7, and 0.85.  
For these datasets, the parameters used were as follows:  J = 1,  σ2 = 1 (for both X1 and X2 as well as the noisy 
features), and F = 5 (five noisy features in addition to the two signal features X1 and X2).  

Upon generating models using the LCL framework with λmax and λ1SE, we found that while there was 
no difference between the performance of the LCL model with λ1SE across the different control proportions (p), 
the performance of the LCL model with λmax did vary based upon the value of p. there were values of p (see 
Figure 3D).  

For all p, we see that the performance of the LCL model with λ1SE shows little variation within trials for 
the same p (the standard deviation is approximately 0.025 for all of them). Further, the mean AUC of the λ1SE 
model is consistently approximately equal to AUC calculated from the known decision boundary. The mean 
AUC of the λ1SE model ranges between 0.972 and 0.985, never dropping below the known decision boundary 
AUC by more than 0.013 and sometimes equivalent to it. There is no visible trend in LCL λ1SE performance. 
The AUC from the known decision boundary also varies slightly between datasets with different p due to 
randomness in simulated data generation, so it is reasonable to assume that the slight variation in performance 
seen in the LCL λ1SE results reflects this stochasticity rather than any true difference in performance as a function 
of class distribution. 

 However, the mean performance of LCL models constructed using λmax is consistently lower for every 
value of p, with greater differences between λmax and λ1SE performance generally occurring at more extreme class 
distributions (that is, those that are majority case or majority control observations). The mean AUC of LCL 
models constructed with λmax is relatively similar to that of the λ1SE models at p = 0.5 – their values are 0.915 and 
0.975 respectively. The standard deviation of the AUC for λmax models is 0.0515, which is larger than that of the 
λ1SE LCL model but not drastically so (however, this does reveal more variation within trials for the same p for 
the λmax LCL model).  
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Even more interestingly, mean performance for LCL λmax decreases on either side of p = 0.5, and the 
variance increases. For all datasets except that simulated with p = 0.5, the mean AUC of the LCL models 
constructed using λmax does not fall within two standard deviations of the mean AUC of that constructed using 
λ1SE. This effect is especially notable at p = 0.7, where the mean AUC of LCL λmax is 0.638 with a standard 
deviation of 0.207 while the mean AUC of LCL λ1SE is 0.985 with a standard deviation of 0.0174.  In summary, 
the difference in performance between LCL models constructed using λmax and λ1SE tends to become more 
pronounced at more extreme values of p. 

Importantly, this experiment examining the effect of class distribution LCL model performance was 
rerun with a different seed to determine whether these somewhat unexpected results were due to the random 
seed or splits. However, rerunning this with a different seed leads to similar results and a qualitatively analogous 
takeaway.  

This analysis of synthetic data reveals three key insights. First, as anticipated, performance of the LCL 
framework with both λmax and λ1SE depends significantly upon the signal to noise ratio of the data used, as 
expected. Second, LCL model performance is sensitive to unequal class distribution – but only when using λmax, 
not λ1SE. This suggests that models constructed using λmax are prone to overfitting. Third, and perhaps most 
importantly, the LCL model regularized using λ1SE consistently outperforms (as measured using mean AUC on 
held-out test data) the LCL models regularized using λmax across all datasets generated using different parameters. 
In addition to λmax sensitivity to unequal class distribution discussed previously, the elevated performance of λ1SE 
relative to λmax presents further evidence that the LCL model overfits for λmax. Such a tendency toward overfitting 
was considered in the ensuing evaluations of model performance on real metabolomic and metagenomic data, 
which are higher dimensional than simulated data and therefore even more at risk for overfitting. For all ensuing 
model creation, λ1SE is used on the basis of these results. 

Notably, the consistently high model performance shown in experiments manipulating dataset size, 
number of noisy features, and proportion of observations in the control group (Figure 3A, 3B, and 3D) may be 
at least partially due to the relatively high signal-to-noise ratio of the data when J = 1 (this is the parameter used 
for all synthetic data analyzed in these three parts). Further exploration with additional synthetic datasets is 
needed to more thoroughly examine the effects of n, F, and p on LCL model performance.  
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Figure 3 Results of synthetic data experiments with dataset parameter manipulation, showing the performance (measured using 
AUC) of the LCL model using λ1SE and λmax as well as the AUC calculated using the optimal decision boundary (representing the 
best possible performance). Error bars show the values one standard deviation above and below the calculated mean AUC. (A) 
examines the effect of the number of observations (n) on performance with λmax and λ1SE. All other parameters are held constant, 
with J = 1, F = 5, p = 0.5, and σ = 1 for both noisy and relevant features. This experiment reveals that while λmax consistently 
underperforms λ1SE, there is no major difference in model performance as a function of number of observations. (B) examines the 
effect of the number of noisy features (F) on performance with λmax and λ1SE. All other parameters are held constant, with J = 1, n = 
200, p = 0.5, and σ = 1 for both noisy and relevant features. This experiment reveals that while λ1SE consistently outperforms λmax, 
there is no notable difference in within-λ model performance as a function of number of noisy features. (C) explores the effect of 
the signal to noise ratio (manipulated by changing the value of J) on performance with λmax and λ1SE (see Equation 11 for 
calculation of SNR). All other parameters are held constant, with F = 5, n = 200, p = 0.5, and σ = 1 for both noisy and relevant 
features. As expected, this experiment shows that performance improves as SNR increases – however, this improvement in 
performance occurs more rapidly as SNR increases for λ1SE than λmax. Finally, (D) examines the effect of class distribution (as 
determined by p, the proportion of observations in the control group) on LCL model performance. All other parameters are held 
constant, with J = 1, F = 5, n = 200, and σ = 1 for both noisy and relevant features. While p does not impact LCL model 
performance when λ1SE is used, the performance of the model with λmax does vary – λmax model performance tends to be worse for 
more extreme values of p.  
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Classification Performance Evaluated Using Publicly Available 16S & WGS Datasets 
​ Next, we used seven publicly available 16S and WGS datasets to evaluate the performance of the LCL 
framework relative to existing DiCoVar and Coda LASSO methods described in the Background section. In the 
preliminary models created, we consistently used an 80/20 train test split for both the inner and outer 
cross-validation loops, lambdas generated as outlined in Methods, and 20 inner and 25 outer folds. This 
combination of parameters showed the best performance in preliminary experiments exploring the effects of 
differing train/test splits and differing numbers of inner and outer splits. 

The results are shown in Figure 4. Importantly, the results displayed for DiCoVar and Coda-LASSO 
classification frameworks are those published by Hinton & Mucha (2021) – we did not recompute these results. 
Thus, when comparing performance results between DiCoVar and LCL or between Coda-LASSO and LCL it 
is vital to consider that Hinton & Mucha (2021) use different parameters for the nested cross-validation and 
different random splits. For analysis of both these publicly available 16S and WGS datasets as well as the case 
studies described in the following section, the rigor of cross-framework comparisons is therefore limited.  
 

 
 

Figure 4 Each graph shows the performance, measured using mean AUC, for each of DiCoVar, Coda-LASSO, and λ1SE 
-regularized LCL classification frameworks on a given publicly available WGS or 16S dataset. The version of DiCoVar used to 
produce the displayed results varies by dataset – the results shown are the results from the best performing DiCoVar model (either 
PLR, ALR, or hybrid signatures) constructed by Hinton & Mucha (2021). The error bars show the minimum and maximum 
AUC values observed in each classification method. The LCL results use 20 inner and 25 outer splits, but note that the results 
from the DiCoVar and Coda-LASSO models, from Hinton & Mucha (2021), use different parameters for the nested 
cross-validation and different random splits. For more information on the dataset size, number of features, and other metrics for 
each of the datasets analyzed here, please see Table 1.  
 
 
 

20 



 

Dataset Name Number of Features (F) Number of Observations (n) F/n 

STH 366 175 2.091 

CRC (Zeller 2014) 652 156 4.179 

Schizophrenia 480 171 2.807 

CDI 259 336 0.771 

NAFLD 341 185 1.843 

Crohn’s Disease 48 975 0.049 

HIV 60 155 0.387 
 

Table 1 This table includes the number of features F, the number of observations n, and the ratio between the number of 
features and number of observations (F/n) for each of the publicly available datasets examined in Figure 4.  

 
Here, we see that the optimal DiCoVar framework (ALR, PLR, or hybrid depending upon the dataset) 

almost always outperforms both Coda-LASSO and the LCL framework based upon mean AUC, except in the 
case of the HIV dataset (Figure 4G). However, the magnitude of the difference in mean performance is generally 
not large relative to the variation in performance. Furthermore, Coda-LASSO and LCL often produce results 
with comparable centers. The mean LCL performance exceeds that of Coda-LASSO in four of the seven 
datasets and is worse in the remaining three, though Coda-LASSO outperforms LCL by a large margin on the 
CDI dataset (Figure 4D). 

Notably, the variation in performance results from the LCL framework appears in Figure 4 to be 
consistently greater than that of the Coda-LASSO or LCL frameworks. That is, the difference between the mean 
AUC and the minimum and maximum observed AUC is much greater for the LCL results than the 
Coda-LASSO or DiCoVar results. While this may be the case, it is important to consider that the differing 
parameters and random splits used by Hinton & Mucha (2021) to evaluate the performance of DiCoVar and 
Coda-LASSO on each dataset likely contribute to this difference. For example, there are many more outer splits 
used to evaluate the performance of the LCL model, making it more likely that more extreme minimum and 
maximum performance metrics will be observed.  

Two datasets tested generate results of particular note, the first being the clostridium difficile infection 
dataset (CDI) (n = 336 and F = 259). While the performance of DiCoVar and Coda-LASSO are relatively 
similar (with mean AUCs of 0.980 and 0.965 respectively), the mean AUC of models constructed using the 
LCL framework is 0.876 – notably much lower (see Figure 4D). Further, while there is very little variation in 
performance among both DiCoVar and Coda-LASSO models (smaller range than all other datasets examined), 
there is a difference of almost 0.2 between the min and max performance of models constructed using LCL. 
While a strict comparison of spread between the models is not feasible given the constraints explained above, it is 
notable that the relative difference in spread between DiCoVar/Coda-LASSO and LCL is much larger for the 
CDI dataset than for the other datasets examined.  
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Second, the mean performance of the LCL framework exceeds that of DiCoVar and Coda-LASSO on 
the HIV dataset (n = 155 and F = 60). The LCL framework performs with a mean AUC of 0.805, while 
DiCoVar produces a mean AUC of 0.710 and Coda-LASSO produces a mean AUC of 0.675. While there is 
much variation in performance for the LCL framework (the minimum observed AUC is 0.381 – worse than 
chance – and the maximum observed is 0.976), it is certainly notable that on average, its performance exceeds 
both other models for this specific dataset. 

Classification Performance Evaluated Using NEC & CRC Case Studies 
​ After exploring the performance of the LCL model on these relatively small, publicly available WGS 
and 16S datasets, we concluded by comparing the performance of LCL on larger case study datasets consisting 
of observations compiled from numerous separate studies. 
​ The first case study dataset that we examined focused on colorectal cancer (CRC) and consisted of 1395 
independent observations with F = 934. The performance of LCL with each of λmax and λ1SE is shown in Figure 
5. Here, we see that the LCL framework regularized with λ1SE (mean AUC = 0.802) performs better than that 
with λmax (mean AUC = 0.735), as expected given our findings using synthetic data.  
 

 
 

Figure 5 Performance of LCL framework on colorectal cancer (CRC) case study dataset using λmax and λ1SE (optimal 
regularization parameter derived through inner-cross validation as described in Methods). The red line marks the mean calculated 
AUC, and the dotted lines designate the values one standard deviation above and below the mean AUC. 
 
​ As shown in Figure 7A, the median performance of the LCL framework regularized using λ1SE is slightly 
greater than that of the ridgeEnsemble DiCoVar model as reported in Hinton & Mucha (2021) (AUCs of 0.801 
and 0.80 respectively). Though rigorous statistical comparison is not possible due to the differences in 
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cross-validation parameters and seeds between Hinton & Mucha’s model construction and that performed here, 
it is reasonable to claim that there is no significant difference in model performance between LCL and DiCoVar 
on the CRC case study data. 
​ The second case study dataset explored the onset of necrotizing enterocolitis (NEC) in infants and was 
composed of 903 independent observations with F = 135. The performance of LCL with each of λmax and λ1SE is 
shown in Figure 6 and demonstrates that, in accordance with all previous analysis, the LCL framework 
regularized with λ1SE (mean AUC = 0.865) performs much better than that with λmax (mean AUC = 0.682).  
 

 
 

Figure 6 Performance of LCL framework on necrotizing enterocolitis (NEC) case study dataset using λmax and λ1SE (optimal 
regularization parameter derived through inner-cross validation as described in Methods). The red line marks the mean calculated 
AUC, and the dotted lines designate the values one standard deviation above and below the mean AUC. 
 

​ As shown in Figure 7B, the LCL framework performs well above the ridgeRegression DiCoVar 
framework as reported in Hinton & Mucha (2021). While the median AUC of all models constructed for the 
NEC dataset using DiCoVar is 0.80, that of LCL is 0.873.  Again, a rigorous statistical comparison of results is 
not possible due to the differences in cross-validation parameters and seeds between Hinton & Mucha’s model 
construction and that performed here. However, it is reasonable to state that the LCL framework performs 
substantially better than the ridgeRegression DiCoVar framework on NEC case study data.  
​ Overall, analysis of the performance of the LCL framework relative to that of DiCoVar in these two 
case studies reveals that for robust datasets with large n, LCL performs at a level comparable to or above 
DiCoVar depending upon the model used within DiCoVar (i.e. ridge regression versus ensemble learning) and 
the nature of the dataset. 
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Figure 7 Each pair of boxplots shows the performance, measured using the AUC, of the LCL framework using λ1SE (red) and 
the DiCoVar framework (blue). (A) shows these results for the CRC case study, and compares the LCL framework performance 
with the performance of the ridgeEnsemble version of the DiCoVar framework. This reveals comparable performance (almost 
exactly the same median) on the CRC dataset between the LCL framework and the DiCoVar framework incorporating 
ensemble learning. (B) reveals that the LCL framework substantially outperforms the ridgeRegression version of the DiCoVar 
framework (which does not use ensemble learning) on the NEC case study dataset.  
 
 

Dataset Name Number of Features (F) Number of Observations (n) F/n 

CRC Case Study 934 1395 0.670 

NEC Case Study 135 903 0.150 
 

Table 2 This table includes the number of features F, the number of observations n, and the ratio between the number of 
features and number of observations (F/n) for the two case study datasets examined in Figures 5, 6 and 7.  
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Discussion 

Analysis of Experimental Data Results 

Performance of LCL and DiCoVar on Publicly Available Datasets 

​ Because the DiCoVar framework used to develop the models used for classification for the publicly 
available datasets analyzed above uses ensemble learning, we expect that this framework will, on average, perform 
better than the LCL framework. The usage of ensemble learning methodologies mitigates the limitations of 
creating a singular model and can reduce bias and variance by combining multiple models, so it is only logical 
that the performance of an ensemble learning model like DiCoVar would exceed that of a single estimator like 
LCL.  
​ With the exception of the CDI and HIV datasets (Figures 4D and 4G), this expected outcome occurs – 
though the LCL framework generally produces a subjectively ‘good’ mean AUC, the mean AUC of DiCoVar 
models is higher. For the CDI dataset, however, LCL does much worse than DiCoVar (mean AUCs of 0.876 
and 0.980 respectively). In contrast, the HIV dataset is the sole dataset for which the mean LCL performance 
exceeds the mean DiCoVar performance (mean AUCs of 0.805 and 0.710 respectively).  
​ What characteristics of the CDI and HIV dataset, given the methods of DiCoVar and the results of our 
synthetic data analysis, might produce such results? (Note: these properties are listed in Table 1). First, let’s 
consider the dimensionality of the CDI and HIV datasets. The CDI dataset has n = 336 and F = 259; unlike 
some of the other publicly available datasets examined there are more observations than features. The same is 
true of the HIV dataset, which contains 155 observations of 60 features (n = 155 and F = 60). Notably, however, 
the ratio between F and n is greater in the CDI dataset (F/n = 0.771) than in the HIV dataset (F/n = 0.387). 
This preliminary comparison suggests that when compared  to the performance of DiCoVar framework, the 
LCL framework does relatively better with datasets with smaller F/n.  

However, other analyses of publicly available data do not support this conclusion. If it were strictly the 
case that LCL performs much better than DiCoVar when F/n is smaller, then we would expect the mean AUC 
from the LCL model to be significantly greater than that of DiCoVar for the Crohn’s disease dataset, which has 
the smallest F/n ratio (0.0492) (see Table 1). This is not the case – while both models perform relatively well, the 
mean AUC generated by DiCoVar exceeds that of LCL by 0.041. Similarly, if it were strictly the case that LCL 
performs much worse than DiCoVar when F/n is larger, then we would expect the mean AUC from the LCL 
model to be significantly smaller than that of DiCoVar for the Zeller CRC dataset, which has the largest F/n 
ratio at 4.179 (many more features than observations) (Table 1). While LCL certainly does not perform as well 
(mean AUC = 0.76 while the DiCoVar mean AUC = 0.84), the magnitude of difference between LCL and 
DiCoVar performance is smaller than that of the CDI dataset. 

Therefore, it is reasonable to conclude that it is at least not only the F/n ratio that is responsible for 
these seemingly aberrant results from the HIV and CDI publicly available datasets. From the results of the 
synthetic data analysis in which the signal-to-noise ratio of features X1 and X2 is manipulated, we also see that 
the performance of the LCL model is, as expected, very sensitive to the SNR (Figure 4C). While it makes sense 
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that a higher SNR would also adversely affect the performance of the DiCoVar model, it is possible that the 
LCL model displays higher sensitivity. If the SNR of selected features in the HIV dataset is significantly higher 
than that of the CDI dataset, this may then explain why LCL performs much worse than DiCoVar on the CDI 
dataset but slightly better on the HIV dataset.  

Performance of LCL and DiCoVar on Case Study Datasets  

​ As displayed in Figure 7, the LCL framework performs almost equivalently to DiCoVar on the CRC 
dataset but exceeds DiCoVar performance on the NEC dataset by a substantial margin (mean AUC from the 
LCL model is 0.073 greater than that of the DiCoVar model). So, why does LCL exhibit such better 
performance relative to DiCoVar on the NEC data compared with the CRC data? 

 Though it is possible that differences in dataset properties between the NEC and CRC case studies 
may contribute to this difference, the primary reason lies in the version of DiCoVar used to model the NEC 
data versus the CRC data. The CRC data is modeled with ridgeEnsemble – an ensemble learning framework – 
while NEC is modeled with ridgeRegression – a single estimator.  

We inherently expect an ensemble learning model to outperform a single regression model. In general, 
ensemble learning reduces variance – that is, the model’s sensitivity to specific training data – and therefore 
overfitting, and by combining models exploits specific models’ strengths while mitigating individual weaknesses. 
In the specific case of the ridgeEnsemble DiCoVar model, individual linear regression models regularized with 
an L2 penalty are fit to PLR-transformed data, and these base models are then combined to improve predictive 
performance. Thus, it is reasonable to assume that a DiCoVar model with ridgeEnsemble constructed for the 
NEC dataset would exhibit better performance than that displayed in Figure 7. However, it remains unclear 
whether such a model would perform at a level below, comparable to, or above the LCL framework. 

In the NEC DiCoVar analysis using a single ridge regression model, the model has access to the same 
feature space as the LCL analysis on this dataset because ensemble learning is not employed in either framework. 
Therefore, we would expect to see comparable performance between these two models. However, the relatively 
better performance of the LCL framework suggests that this is indeed a better model than DiCoVar. 

Using the same line of reasoning, we would expect the DiCoVar ridgeEnsemble analysis of the CRC 
data to significantly outperform the LCL model constructed on the same data. The ensemble space accessed by 
the ridgeEnsemble version of DiCoVar provides this framework with much more freedom to fit an accurate, 
generalizable model. However, the comparable performance of DiCoVar when it does have access to this 
expanded feature space and LCL when it does not further demonstrates the superior performance of the LCL 
framework.  

Cross-Dataset Comparison of Relative Performance of LCL and DiCoVar 

​ For all but one experiment using publicly available data, the DiCoVar framework performs better than 
the LCL framework as demonstrated by a higher mean AUC. However, this is not the case in the CRC and 
NEC case studies, in which LCL performs comparably or better than DiCoVar depending upon the model 
used within DiCoVar (ridge regression versus ensemble learning). Per the discussion in the preceding section, it 
does not make sense to compare the relative performance of DiCoVar and LCL on the NEC case study with the 
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relative performance of DiCoVar and LCL on the publicly available datasets because the DiCoVar model used 
by Hinton & Mucha (2021) in the NEC case study is a ridge regression framework rather than an ensemble 
learning framework as is used in all of the publicly available dataset analyses. As such, this discussion will 
primarily focus on the difference between the relative performance of DiCoVar and LCL on the CRC case 
study data and the publicly available datasets.  
​ First, we note that the CRC case study dataset contains 1395 observations of 934 features, giving it an 
F/n ratio of 0.670 (Table 2). However, examination of relative performance of DiCoVar and LCL on the CRC 
data versus on publicly available datasets with similar F/n confirms the conclusion in the preceding section that 
the feature number to sample size ratio does not (or at least does not solely) affect DiCoVar vs. LCL 
performance comparison. In fact, the CDI dataset – the publicly available dataset for which the LCL framework 
performs most below DiCoVar – is the one with the most similar F/n ratio (0.771) to that of the CRC case 
study dataset. 
​ Next, we consider how class distribution may impact the relative performance of DiCoVar and LCL. 
For the CRC case study data, p = 0.497, representing a remarkably equal class distribution (unlike many of the 
publicly available datasets that, when examined, are better modeled by DiCoVar than LCL). As shown through 
our preceding analysis of the synthetically generated data, the performance of the LCL framework regularized 
with λmax is somewhat dependent upon class distribution (Figure 4D). That is, LCL performance on synthetic 
data decreases on average when p is close to 0 or 1 (very few or majority control observations) while the 
framework performs optimally when p = 0.5. While this effect is isolated to LCL regularized with λmax, which 
notably is not the regularization parameter used in any analysis referenced here, this demonstrates that the 
framework overall does demonstrate some sensitivity to class distribution, perhaps above and beyond DiCoVar. 
The synthetic data is largely dissimilar from the high-dimensional data analyzed here (in the experiments 
examining the effect of manipulating p, the parameters are F = 5, n = 200 and there are only two relevant 
features). Therefore, the conclusion reached in the simulated data experiments that the performance of LCL 
regularized with λ1SE does not vary with p may not generalize to higher-dimensional cases. Indeed, it makes 
logical sense that constructing a model with data equally distributed between classes would result in better 
performance, and this inherent difference in the CRC dataset may be at least partially responsible for the 
equivalent performance of LCL and DiCoVar on this data. 
​ Additionally, it is possible that signal-to-noise ratio differences between the CRC case study data and 
the publicly available datasets may account for the relative improvement of the LCL framework relative to 
DiCoVar. As shown in Figure 4C and described in the preceding section, the LCL framework is highly sensitive 
to SNR – perhaps more so than DiCoVar. If this is the case, and if the CRC case study data includes relatively 
less noise in predictive features (smaller σ2) than many of the publicly available datasets, then it would make 
sense that we would see more comparable performance of the LCL and DiCoVar frameworks on the CRC case 
study data than on the publicly available datasets with higher SNRs.  
​ While we also initially considered sample size (n) as a possible contributor to relatively better 
performance of LCL when compared with DiCoVar on the CRC case study data, it is unlikely that sample size 
alone is a primary cause for the effects seen. First, this performance improvement of LCL relative to DiCoVar is 
not seen in models constructed for the Crohn’s disease publicly available dataset, which is comparable in size to 
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the CRC case study dataset (Crohn’s n = 975). Second, analysis of synthetic data with varied n demonstrated 
that, at least for data with few predictive and noisy features, the number of observations has no statistically 
significant impact on LCL AUC (Figure 4A). Though this synthetic data is not necessarily representative of 
higher-dimensional metabolomic or metagenomic data with more predictive features as described above, this 
finding combined with the stark performance difference between the LCL and DiCoVar frameworks on the 
Crohn’s disease data suggests that sample size does not majorly account for differences in relative performance. 

Despite this, it is possible that the aforementioned sensitivity to SNR in the LCL framework relative to 
DiCoVar is more pronounced when sample size is small. It makes sense that the confluence of a small training 
set and observations with large variance would dually increase the risk of overfitting in LCL models, meaning 
that LCL may be more likely to underperform relative to DiCoVar in cases where the SNR is large and the 
number of samples is small. We know that the publicly available datasets are generally much smaller than the 
CRC case study dataset, and it is possible that they may have (on average) a higher SNR. If this is the case, and it 
is true that LCL’s sensitivity to signal to noise ratio is more prominent in datasets with fewer samples, then this 
would explain the improved performance of LCL relative to DiCoVar on the CRC dataset. 

Computational Requirements of LCL Modeling 
​ Relative to the computational demands of DiCoVar, the LCL framework is much more efficient. All 
experiments for synthetic, publicly available, and case study data used 25 outer loops and 20 inner loops, with 
each inner loop run 102 times (one for each value of λ tested). This represents a total of 51,000 individual 
models generated in each experiment. Each experiment is run on 14 cores and the inner loop function institutes 
parallel computing using the Parallel R package.  
​ With these parameters and parallelization used, each synthetic dataset requires approximately 30-60 
minutes to run, each publicly available dataset requires approximately 40 minutes to run, and the case studies 
require an average of 4.5 hours to run. Figure 8, which displays runtimes to create full models on synthetic 
datasets with varied number of noisy features (F) and varied number of observations (n), reveals that individual 
runtimes (which are a proxy for computational expense) depend upon F and n.  

In the synthetic data used in Figure 8, we see that the runtime increases by only 3.820 minutes (from 
38.566 minutes to 40.860 minutes) when the number of observations increases from 50 to 500 (with number of 
features held constant at 5), representing a 9.91% increase in runtime with a tenfold increase in n. 
 ​ Additionally, we see that the runtime increases from 40.860 minutes to 56.369 minutes when the 
number of noisy features increases from 1 to 250, a difference of 15.509 minutes. With a tenfold increase in F 
from 5 to 50, we see an increase in runtime from 39.740 minutes to 43.623 minutes, which is a 9.77% increase. 
With a tenfold increase in F from 10 to 100, we see an increase in runtime from 41.500 minutes to 44.639 
minutes, which is a 7.56% increase. 

Because similar magnitudes of change in n and F result in similar % change in runtime, we can conclude 
that runtime (which can be interpreted as a proxy for computational expense) depends approximately equally on 
the number of observations and the number of noisy features. 
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Importantly, it is likely that LCL model runtime depends linearly on F and n when either/both of these 
values are high. With the synthetic data examined in Figure 8, we are looking at a relatively small system with 
significant “startup costs” where F and n do not appear to be directly proportional to runtime. However, they 
are likely proportional to runtime at their limits, which the synthetic data experiments do not approach.  
​ Though Hinton & Mucha (2021) do not directly cite the computational requirements of the DiCoVar 
model in their writeup, it is known that the computational resources used to construct a DiCoVar model in 
comparable settings typically involves computations taking days on clusters with 12–48 cores, far exceeding 
those required by the LCL framework. The significantly shorter runtimes for LCL compared to DiCoVar make 
sense given that DiCoVar is computing a much more complex problem in the –dimensional feature space. 𝐹

2( )
Because of the quadratic increase in the number of features seen in DiCoVar as the result of the pairwise log 
ratio transformation, we expect that, at the limit, runtime increases quadratically with the number of features. 
However, it is clear from Figure 8 that runtime is not increasing quadratically with the number of features 
(which makes sense because the LCL model works exclusively in a F-dimensional feature space and therefore 
increases linearly as described previously), which is further evidence for the computational improvements of 
LCL over DiCoVar.  
 

 
 

Figure 8 Time to compute LCL model on synthetic data with varied dataset size and number of noisy features. (A) shows how 
the runtime varies with the number of observations n on synthetic data generated with all other parameters held constant (J = 1, p 
= 0.5, F = 5). This figure reveals that runtime increases slightly as n increases. (B) shows how the runtime varies with the number 
of noisy features F on synthetic data generated with all other parameters held constant (J = 1, n = 200, p = 0.5). Overall, the figure 
shows that runtime is highly positively correlated with F.  
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Examining Model Construction Decisions 
Throughout the development of the LCL framework, numerous design decisions were made 

surrounding methods of imputation, cross-validation, parameter selection, and writing code. While each choice 
occurred intentionally, it is likely that these decisions do affect LCL model performance – though the nature 
and magnitude of this impact is unknown at this time. Additional research into alternate design choices is 
needed to fully understand how different methods may improve model efficacy.  

First, in preliminary analyses of both synthetic and publicly available data, we found that CVXR using 
the MOSEK optimization solver failed seemingly at random. This did not occur often (further exploration 
revealed that this happened at most twice in a model with 25 outer splits and 20 inner splits), but we were 
unable to determine any definitive cause for this failure.  We considered the possibility that data with very 
unequal class distributions might cause this error, as there could be training and splits that contained none of a 
certain class of observation. However, upon further examination of the R caret documentation (the package 
we were using to create random train/test splits), we realized that this algorithm would not permit single-class 
training or testing splits for sufficiently large data (at least three observations of each class). Since all datasets met 
this criteria, this was not the reason for the CVXR failure.  

Notably, these failures were uncommon – in many datasets, the solver never failed. For the few in which 
it did, it occurred in a maximum of two of the 25 outer loops in a maximum of two of the inner splits and for at 
most one value of λ in the given inner loop. This is equivalent to a maximum of four failures of 51,000 models 
constructed. Therefore, we chose to implement R’s tryCatch function to simply skip a run through the inner 
loop and calculate the mean and standard error AUC for the given λ without data from this iteration. Thus, 
further exploration is needed to determine the reason for this solver failure as well as how the omission of these 
iterations may impact LCL model results.  

Next, alternative decisions could have been made surrounding the zero imputation. As described in the 
Methods section, zeros in metabolic and metagenomic input data represent the absence of a given substance or 
bacteria/virus/fungus – but these observations become –∞ when log-transformed. In the LCL framework, these 
values are imputed by replacing them with the smallest nonzero value in the (already log-transformed) training 
set. Zero values in the outer loop test set are also replaced by the smallest nonzero value in the training set. This is 
effectively the same as using the smallest nonzero value as a ‘limit of detection’ – that is, any zero obtained might 
be because it was below this limit, so it makes reasonable sense to replace it with this value.  

However, there are alternative methods of imputing zeros – for example, we could have chosen an 
arbitrarily small number before any cross-validation occurred and replaced all zeros with this value. Or, zeros in 
the test set could have been replaced with the smallest value in the test set split rather than the training split. 
While this is an important consideration when working with older metabolomic datasets, note that many newer 
mass spectrometry machines produce output data without zeros. They give estimates of the limit of detection 
for a given substance (based upon the machine’s capabilities and the properties of the material being analyzed) 
and fill in this value in every place that it did not show up in the reading. This eliminates the need for zero 
imputation, since the log of this data can be computed as-is without producing undefined values.  
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Finally, we made the choice to use a train/test split of 0.8/0.2 for both the inner and outer 
cross-validation loops. This was informed by preliminary analyses on the publicly available datasets. When the 
proportion of data included in the training set for the inner cross-validation was larger (0.9, 0.95), the smaller 
test set prevented the algorithm from effectively finding the best λ since accurate performance estimates could 
not be obtained from the small testing set – which sometimes included only one or two observations of a given 
class for data with uneven class distribution. When the proportion of data included in the training set was 
smaller (0.6, 0.7), there was not sufficient data to train an effective model and it struggled with overfitting.  

Motivated by the understanding that insufficient training data yields a poor model but insufficient test 
data can give inaccurate estimates of model performance, we also explored the use of leave-one-one cross 
validation in the outer loop. We hypothesized that it would provide the inner loop hyperparameter tuning with 
the maximal amount of data with which to find the best λ and perhaps yield better results. Using the HIV 
dataset to test this, we found that this method was ineffective – though it yielded approximately 80% accuracy, 
this was merely because it was assigning all observations to the class constituting 80% of the data.  

Though these preliminary results reveal the importance of train/test split proportions in producing an 
effective model, no rigorous testing on synthetic data nor on different datasets with different characteristics was 
performed. Additional rigorous experimentation is needed to determine how nuanced changes in train/test 
splits in both the inner and outer loops would affect LCL performance and thus to refine the values used  in the 
LCL model.  

Next Steps – Ensemble Learning and LCL 
Based upon the success of the ensemble learning methods employed in the DiCoVar framework, the 

logical next step in creating a more powerful LCL framework to improve its predictive performance is 
introducing ensemble learning. While there are many possible ways to do this, a first step would be to use each 
unique log contrast function learned in the nested cross validation algorithm in an ensemble learning framework 
such as a random forest. A random forest classifier builds a large collection of decision trees, each trained on 
different random subsets of the data and/or its features, and combines the prediction of each tree to produce a 
more robust classification. The combination of multiple log contrasts (many candidate models) in an ensemble 
learning framework allows for performance above and beyond each model’s performance on its own.  

Another possible extension of the existing LCL model to ensemble learning is to consider the space of 
all possible pairwise log ratios between the features extracted in the preliminary model. For datasets in which 
many predictive features are extracted, this would negate the computational efficiency of LCL relative to 
DiCoVar. However, for datasets with fewer extracted features – such as the NEC case study data (see Figure 5 in 
Hinton & Mucha, 2021) – using all possible pairwise log ratios between these extracted features may yield a 
computationally reasonable method of refining the LCL results. These log ratios can then be considered in an 
ensemble learning model, such as a random forest as described above.  

While this study represents a preliminary comparison of LCL with existing methods and additional 
rigorous experimentation is required to how the results shown here generalize to other datasets, our initial 
findings suggest that LCL – especially once integrated with ensemble learning methods – has the potential to 
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revolutionize standard practice in analysis of metagenomic and metabolomic data for biomarker discovery and 
disease classification.  
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