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Abstract. A new algorithm is developed to extract a feature registration that effectively in-3
corporates information from Fourier data, succinctly points to relevant areas within an image, and4
exhibits robustness to noise and missing data of various types. We focus four challenges inherent5
to many Fourier imaging applications that hinder accurate feature extraction from typical inverse6
Fourier image recovery. Our new method is designed to isolate target areas in an image by using a7
concentration method factor to identify edges in the frequency domain. Almost all feature extrac-8
tions tested yielded improved precision. Data loss is largely overcome as the Fourier edge detection9
method behaves excellently when standard spatial domain edge detectors fail. Numerical examples10
are provided to demonstrate the accuracy and robustness of this novel idea.11

1. Introduction. Accurate feature recognition is important in many applica-12

tions including medical imaging and remote sensing with Synthetic Aperture Radar13

(SAR). While there is no formal definition of an image feature, existing algorithms ex-14

tract various key details from images including traces of lines, regions, and segments.15

In practice, a feature can be represented as any set of information that provides in-16

sight into the image’s ground truth or distinguishes what in the image is important17

from what may be extraneous.18

While many “off the shelf” feature extraction algorithms are effective given suf-19

ficient input data, several issues render direct application impracticable, including20

vulnerability to missing or corrupted data or lack of robustness to instrumental noise.21

Most importantly, no methods involve direct analysis of images when the measurement22

instruments acquire noisy and possibly corrupted Fourier data. Problematically, both23

MRI and SAR phase history data can be described in this way. Then it is inevitable24

that the information living in the frequency domain often disappears or distorts in a25

spatial representation.26

We are interested in developing a method to extract a feature registration that27

(1) effectively incorporates information from Fourier data (2) succinctly points to28

relevant areas in an image and (3) exhibits robustness to noise and missing data. This29

investigation proposes a new technique for extracting features from images represented30

by Fourier data. To ensure accuracy, efficiency, and robustness, our new method uses31

the Fourier concentration factor edge detection method, first developed in [10]. Almost32

all feature extractions tested yielded improved precision, and data loss was largely33

overcome as the Fourier edge detection method behaves excellently when standard34

spatial domain edge algorithms fail.35

The rest of this thesis is organized as follows. In Section 2 we include some36

important background information needed to develop our new algorithm. In Section 337

we discuss how we plan to detect edges and use them in the downstream process38

of feature extraction. In Section 4 we tune our novel method and test it against39

multitudinous corruption modes to demonstrate its efficacy and robustness. Finally,40

concluding thoughts and ideas for future work are provided in Section 5.41

2. Background Information. Feature extraction is a fundamental operation42

in image processing, enabling the comparison, alignment, and interpretation of visual43

data across applications ranging from medical imaging to remote sensing. Accurate44

feature registration becomes especially critical in scenarios where images differ due to45

missing information, illumination variations, or inherent noise. Synthetic Aperture46

Radar (SAR) imaging presents a particularly challenging case for feature extraction,47

as SAR images differ from optical images in both their noise characteristics and the48
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2 NATHAN SMITH

structure of their underlying data.49

Traditionally, feature extraction algorithms operate directly in the spatial domain50

(Euclidean), detecting distinctive patterns such as corners, edges, or blobs within the51

intensity map of an image. Techniques such as the Scale Invariant Feature Transform52

(SIFT), Speeded-Up Robust Features (SURF), and Oriented FAST Rotated BRIEF53

(ORB) have been extensively applied in this setting, offering robust methods for54

identifying and encoding salient image features. However, these methods are limited55

by their reliance on local pixel-based information, which may be degraded or obscured56

in images characterized by non-Gaussian noise or imaging artifacts, as is common in57

SAR data. Moreover when the data are acquired as Fourier samples, as in the case for58

SAR and MRI, the data must be processed first to obtain an image. The situation is59

exacerbated in conditions where the data might be corrupted or otherwise unreliable60

in certain frequency bands.61

The goal of this research is to investigate whether integrating edge information62

derived from its collected Fourier samples can enhance feature extraction, particularly63

in contexts where traditional spatial domain algorithms struggle. In particular, this64

project examines methods for extracting edge locations using Fourier concentration65

factors, with the broader aim of improving the alignment and matching of images in66

applications such as SAR imaging.67

2.1. Standard Feature Extraction Algorithms from Digitized Images.68

There are too many “standard” image feature extraction algorithms to reasonably69

explain and demonstrate thoroughly in this thesis. However, as our goal is to iden-70

tify key targets given a certain image, it is instructive to evaluate the performance71

of prominent existing feature extraction algorithms on a meaningful test problem.72

Because we are motivated by SAR imaging applications, we use a SAR image for73

this purpose (see left image in Figure 4). To generate a realistic data environment,74

zero mean Gaussian noise with different SNR values is added the original SAR image,75

along with the features we seek to identify (building, cars, and ship) and distinguish76

from the background.77

Three main existing algorithms for computing keypoints in images are the Scale78

Invariant Feature Transform (SIFT), the Speeded Up Robust Features (SURF), and79

the Oriented FAST and Rotated BRIEF (ORB) methods. I will provide a brief80

overview of how these algorithms work.81

SIFT: A widely used classical feature detection method is the Scale-Invariant82

Feature Transform proposed by David Lowe in 2004 [8][14]. SIFT detects distinc-83

tive local keypoints in an image and computes feature descriptors that are robust to84

common image transformations. In particular, SIFT features are invariant to image85

scale and rotation and partially invariant to illumination and viewpoint shifts [14].86

This makes SIFT useful for matching features between images when they are at dif-87

ferent zoom levels, rotations, or lighting schemes [14]. The algorithm achieves these88

properties through a series of steps.89

SIFT identifies candidate keypoints by searching for local extrema in a multi-90

scale representation of the image which is progressively blurred and subtracted using91

a Difference-of-Gaussian approach92

(2.1) D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ f(x, y) = L(x, y, kσ)− L(x, y, σ),93

to create a scale-space in which interest points can be identified across different scales94

[14]. Here σ represents a blurring level scaled k ∈ 1, . . . ,K times. Keypoints found95

this way associate with a characteristic scale giving them scale invariance.96
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Each candidate is then refined: SIFT filters out unstable point such as those97

with low contrast or those lying along edges, since these are less reliable [8]. By98

discarding keypoints that are too edge-like or noise sensitive, the algorithm guarantees99

repeatability of remaining keypoints.100

For surviving keypoints, SIFT assigns a consistent orientation based on the local101

image gradients. In a neighborhood around the keypoint, the algorithm computes102

a gradient (with gradient magnitude m(x, y)) orientation (with orientation θ(x, y))103

histogram and chooses the dominant orientation(s) [8], computed as104

(2.2)
m(x, y) =

√
(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y)))
105

Observe that the image patch is conceptually rotated to align with the dominant106

direction, providing rotational invariance. Specifically, the descriptor computed for107

the keypoint will be oriented relative to the keypoint’s predominant local orientation108

so that rotation of the image yields the same descriptor values [14].109

SIFT generates a descriptor that encodes the local image structure around each110

keypoint. After scaling and rotating the neighborhood to canonical orientation, the111

algorithm measures the distribution of local gradients (edge orientations) within the112

patch [8]. The gradient orientations are summarized in a set of historgrams [14]. The113

discriptor is normalized to withstand illumination changes. The resulting representa-114

tion is a rich keypoint encoding that contains local texture pattern that can enable115

reliable matching between multiple images. SIFT’s effectiveness and robustness have116

made it a cornerstone of computer vision with adaptations made for SAR [8].117

SURF: In 2006, the Speeded-Up Robust Features algorithm was introduced [11]118

as a local feature detector and descriptor inspired by SIFT but optimized for greater119

speed. SURF employs a blob detector based on the Hessian matrix using the deter-120

minant of the Hessian as the measure of interest point strength (this is called the121

”Fast-Hessian” detector). To achieve computational efficiency, SURF approximates122

Gaussian second order derivatives with square-shaped box filters and uses integral123

images to rapidly evaluate these filters at any scale.124

For example, the SURF detector uses a 9×9 box filter to approximate a Gaussian125

with σ ≈ 1.2 at the initial scale; the filtered outputs (denoted Dxx, Dyy, Dxy for126

second-order derivatives in the x, y and xy directions) are combined to compute127

the approximate Hessian determinant as det(H) ≈ Dxx, Dyy − (Dxy)
2 The SURF128

descriptor component then summarizes the local intensity distribution using Haar129

wavelet responses in the neighborhood of each keypoint, which are also efficiently130

calculated via the integral image technique. SURF yields repeatable and distinctive131

features with robustness comparable to SIFT while running much faster [13].132

ORB Oriented FAST and Rotated BRIEF is a local feature detector introduced133

by Rublee et al. (2011) as a fast and efficient alternative to classical algorithms like134

SIFT and SURF [6]. ORB combines the FAST corner detector with an oriented vari-135

ant of the BRIEF descriptor; it detects keypoints using FAST and then asigns each136

keypoint a consistent orientation based on the intensity centroid of its local image137

patch using image moments [20]. The BRIEF descriptor is subsequently rotated ac-138

cording to this keypoint orientation, producing a binary feature vector that is invariant139

to in-plane rotation [20]. By design, ORB achieves comparable matching performance140

to SIFT with fractional computational cost and boasts robustness to noise [6]. It has141

been wiedely adopted as an efficient alternative in real-time vision applications, and142

has been even adapted for use in SAR imagery. An ORB-based method for SAR143
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image matching demonstrated strong robustness to speckle noise and outperformed144

SIFT in such scenarios [7].145

Figure 1 illustrates how the three feature algorithms mentioned in this section146

identify keypoints on our test problem. Their performance is demonstrated on the147

original image, uncorrupted, as well as on a version of the image whose data as given148

in the frequency domain is obstructed along radial lines such as in .149

Fig. 1: Top 200 keypoints detected by SIFT, SURF, and ORB before (top row) and
after (bottom row) radial Fourier corruption.

As SIFT is the top performer in our cursory image tests and widely considered to150

be the gold standard keypoint algorithm, we will choose SIFT as the baseline moving151

forward in the thesis.152

2.2. Standard Edge Detection Algorithms. We are interested in the hy-153

pothesis that recovering the digitized image from the given Fourier data is not nec-154

essary for feature extraction, but rather that the algorithms mentioned above only155

require the corresponding edge map, since it appears that the keypoints detected by156

front-running feature-finders congregate around the image’s edges. Therefore, we may157

be able to recover equally useful information about the underlying ground truth with-158

out requiring the entire image. This is important because recovering an image from159

noisy and corrupted Fourier data is less accurate, less efficient, and less robust than160

recovering its edges [23].161

The immediate option is then to apply the aforementioned feature recoveries162

to edge maps generated by applying standard edge detections algorithms on images163

digitized out of the frequency domain. Several such edge detectors exist, and below I164

will introduce the a few.165

In general, in the spatial domain, edge detection is performed pixel-wise using166

kernels that amplify jump discontinuities in magnitude. The simplest kernel for edge167

detection is called Roberts Cross, which applies 2 × 2 differencing kernels in two168

dimensions. The kernels appear as follows:169

Gx =

[
1 0
0 −1

]
, Gy =

[
0 1
−1 0

]
170
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EDGE-INFORMED FEATURE DETECTION 5

The gradient magnitude is given by171

|G| =
√
G2

x +G2
y172

and approximated as173

|G| ≈ |Gx|+ |Gy|174

for quicker computation. Given pixel grid:175 [
a b
c d

]
176

The corresponding magnitude of the edge-mapped output is given by |G| = |a− d|+177

|b− c| and slotted into the the top left at pixel a.178

Roberts Cross edge detection is the simplest and the easiest to compute [21].179

However, its small kernel size leaves it vulnerable to image noise, it requires a large180

separation of scales to generate edges robust to thresholding, and it lacks optional181

parameters for tailoring edge recognition to the specific case [17]. subsection 2.2 (top182

right) demonstrates some of these pitfalls. Here we begin with a 256× 256 pixelated183

noisy image,184

(2.3) Imnoise = Im+ η,185

where η ∼ N (0,Σ), and covariance matrix Σ is determined by the SNR. In subsec-186

tion 2.2, the noisy image (top-left) is generated with Σ = σ2I and σ = .1.187

Fig. 2: (top-left) Given noisy data (2.3); (top-right) Roberts Cross edge map; (bottom-
left) Sobel edge map; and (bottom-right) Canny edge map.

Similar to the Roberts Cross kernel is the Sobel kernel [18]:188

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 , Gy =

−1 −2 −1
0 0 0
+1 +2 +1

189

Computation for the Sobel edges follows the same procedure as for the Roberts Cross190

kernel, but the larger 3 × 3 kernel comes with a few advantages. With the larger191
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kernel whose output slots in the center, the computation better blurs the effect of192

noise than the Roberts Cross method [18]. The Sobel operator approximates the193

spatial gradient of image intensity by convolving the image with two 3 × 3 kernels,194

Gx and Gy, corresponding to the horizontal and vertical directions . The gradient195

magnitude at each pixel is then given by196

G(x, y) =
√
(Gx ∗ Im)2 + (Gy ∗ Im)2,197

which quantifies the local rate of intensity change and identifies edges. Since the198

output magnitude relates to a gradient, the resulting edge map better reports the199

sharpness of each discontinuity. This also ensures that any point of constant magni-200

tude in the input image translates to a zero value in the edge map [18][21].201

Finally, Canny edge detection is another popular edge finding algorithm. First,202

the algorithm reduces image noise using a 5×5 Guassian filter. Then, it applies Sobel,203

as seen before, where:204

(2.4) Edge Gradient(G) =
√
G2

x +G2
y, Angle(θ) = tan−1

(
Gx

Gy

)
.205

Each pixel is then checked against the neighboring pixels on both sides along the206

gradient line to determine whether the center pixel is a local maximum, and the pixel207

is suppressed if it is not a local maximum. Finally, through a process called Hysteresis208

thresholding, pixels the algorithm is uncertain are edges are determined to belong to209

edges if they lie near edge pixels the algorithm is more certain about. [19]210

Figure 3 illustrates how the SIFT algorithm is applied to the edge maps produced211

by the Roberts Cross, Sobel, and Canny edge maps on data obtained AS HOW. The212

top 200 SIFT keypoints are the red crosses superimposed onto each corresponding213

edge map. These edges are recovered from pixelated image data reconstructed from214

an uncorrupted Fourier sample.215

Fig. 3: On each image, the top 200 SIFT keypoints are overlaid as red crosses. The
leftmost image is a Roberts Cross edge map of our test image. The middle is
Sobel and the right is Canny. The canny hysteresis thresholding parameter is set as
[0.2, 0.4].

As seen in Figure 3, visually apparent failures plague these edge maps. Since Roberts216

Cross and Sobel have similar constructions, it makes sense that their edge maps are217

similar; unfortunately, both capture thin edges, unfit for our desires, and gaps exist218

where edges should represent closed objects. In addition, SIFT, which is our strongest219

feature identifying candidate so far, fails to identify three prominent shapes.220
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2.3. Images in the Fourier Domain. In some applications, such as Synthetic221

Aperture Radar (SAR) and Magnetic Resonance Imaging (MRI), data are acquired222

as Fourier samples. Assume that the underlying image f(x, y) in on the domain223

[−1, 1]× [−1, 1].1 The corresponding N Fourier samples are then224

(2.5) f̂(k, l) =
1

4

∫ 1

−1

∫ 1

−1

f(x, y)e−iπ(kx+ly)dxdy, −N

2
≤ k, l ≤ N

2
− 1.225

More precisely, the given data is of the form226

(2.6) b̂(k, l) = f̂(k, l) + ϵ̂(k, l), −N

2
≤ k, l ≤ N

2
− 1,227

where ϵ̂ ∼ CN (0,Σ) is complex circularly symmetric zero-mean Gaussian noise with228

covariance matrix Σ, typically taken to be diagonal with constant entries when the229

noise is assumed to be uncorrelated and homoscedastic across frequencies. We also230

note that instrumentation failure may lead to b̂(k, l) = ϵ̂(k, l) (meaning that no un-231

derlying signal information was collected or is otherwise unusable) in some frequency232

bands. Since lower frequencies encode smooth global structures and high frequency233

components capture finer details like edges and sharp gradients, careful consideration234

must be given to how (2.6) can be exploited to isolate meaningful features, suppress235

noise, and analyze image geometry.236

Note that the standard feature extraction algorithms described earlier would re-237

quire a preprocessing step to recover (2.3), obtained by238

(2.7) fN (x, y) =

N
2 −1∑

k=−N
2

N
2 −1∑

l=−N
2

b̂(k, l)ei(kx+ly),239

at a specific set of grid points xj , ym ∈ [−1, 1] × [−1, 1]. Even with filtering this240

preprocessing step of image recovery can cause issues such as image artifacts, loss of241

sharp edges (if the coefficients are heavily filtered), or misrepresentations of feature242

shapes or intensities, issues which ultimately can undermine downstream feature ex-243

traction algorithm. These issues are exacerbated if the collected samples are corrupt244

or missing.245

Discretized model of Fourier coefficients. Since this investigation uses a246

SAR image as its test case (see Figure 4), we provide the corresponding discrete247

Fourier transform (DFT) matrix [12]248

(2.8) F (k, l) =

N−1∑
j=0

N−1∑
m=0

f(xj , ym)e−ı2π( kj
N + lm

N ), −N

2
≤ k, l ≤ N

2
− 1,249

where xj = −1 + 2j
N and ym = −1 + 2m

N , j,m = 0, . . . , N − 1. Our numerical250

experiments use (2.8) on the underlying noisy image Imnoise in (2.3) with different251

SNR levels. Specifically we define252

(2.9) B(k, l) =

N−1∑
j=0

N−1∑
m=0

Imnoise(j,m)e−ı2π( kj
N + lm

N ), −N

2
≤ k, l ≤ N

2
− 1.253

1The domain boundaries are only defined for convenience, as a linear transformation allows for
any x ∈ [a, b], y ∈ [c, d].
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2.4. Potential Issues in Frequency Domain Images. In practice, we may254

not have data for every frequency in our spectrum. For example, radar instruments255

operating concurrently alongside other systems using similar frequencies may expe-256

rience data corruption or may be prohibited from transmitting frequencies regulated257

by frequency management agencies [16]. Moreover, we are interested in long-term258

compression of data; therefore, it is instructive to know how little data we can store259

and still obtain useful information about the underlying truth behind an image.260

You can observe in Figure 4 the visual effects of two specific kinds of corruption261

that can occur when collecting Fourier samples. The digital reconstructions are shown262

beside an image digitized from an uncorrupted sample.263

Fig. 4: The leftmost image displays the uncorrupted base test image [5][23]. In the
middle, 12 radial lines are missing, and on the right a random sample of the Fourier
coefficients disappeared. This can have deleterious effects on Standard edge detection.

In this investigation we consider the removal of some radial lines in the given Fourier264

data (2.9). This can be accomplished by first choosing J angles θj =
j
J π j ∈ 0, . . . , J .265

We then apply fftshift to the image so the zero frequency component moves to the266

center of the Fourier image. From here we define frequency component matrices267

(2.10) K =

−
N
2 · · · N

2 − 1
...

...
...

−N
2 · · · N

2 − 1

 and L =

 −N
2 · · · −N

2
...

...
...

N
2 − 1 · · · N

2 − 1

 ,268

leading to J radial mask matrices269

(2.11) R(θj) = abs(cos(θj)K+ sin(θj)L), j ∈ 1, . . . , J.270

Finally, to simulate missing frequency bands in applications such as SAR, we mask271

radial lines in our frequency domain image data. If f is an image in the frequency272

domain, then273

(2.12) Bmask
j (k, l) =

{
F (k, l) if R(θj)) ≥ 1

0 if R(θj) < 1,
274

Where Bmask
j , j = 1, . . . , J gives the radially masked image missing J radial lines of275

frequency data. Then our radially masked Fourier data is generated iteratively as276

We apply the mask Bmask
J iteratively over F0(k, l) = F (k, l) where if277

Fj(k, l) = Fj−1 ⊙Bmask
j for j = 1, . . . , J278

Then Frad = FJ where Frad denotes the final radially corrupted image.279
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Our remote sensing instrument may instead be damaged such that it relinquishes280

data randomly, and we can simulate this disastrous scenario easily by initializing a281

random matrix defined below. If Im has size N ×N , the matrix is given by282

(2.13) R ∼ U(0, 1)N×N
283

Where u ∼ U(0, 1). We choose some number ρ ∈ (0, 1) to say284

(2.14) M(k, j) =

{
1 if R(k, l) > ρ

0 otherwise
285

We then apply this mask to simulate frequency-domain dropout:286

(2.15) FM (k, l) = Mk,l ⊙ F (k, l),287

where ⊙ means componentwise multiplication. This models a scenario where a pro-288

portion ρ of frequency coefficients are lost. The resulting corrupted spectrum f̂corrupted289

can then be used to investigate how edge formation degrades under random measure-290

ment loss.291

We will talk in the next section about how edges manifest in frequency space, a292

development fundamental to many modern edge detection and reconstruction meth-293

ods.294

2.5. Concentration Factor Based Edge Detection. The methods discussed295

in this section are based on [23] and [9]. Edge detection for images can be conducted296

by looking at the jump discontinuities of piecewise smooth functions f(x, y). We can297

reasonably assume that edges occur along a finite collection of smooth (often closed)298

curves in the spatial image domain.299

We first study a one-dimensional case. Let f : [0, 1] → R be a piecewise smooth300

function with M jump discontinuities at locations {ξm}Mm=1. Our N Fourier coeffi-301

cients are given by302

(2.16) f̂k =

∫ 1

0

f(x)e−ı2πkxdx, k = −N

2
, · · · , N

2
− 1303

And the jump function is304

(2.17) [f ](x) = f(x+)− f(x−),305

with f(x+
0 ) = lim+

x→x0
f(x) and f(x−

0 ) = lim−
x→x0

f(x). The jump function can then306

be written307

(2.18) [f ](x) =

n∑
m=1

[f ](ξm)Iξm(x)308

where309

(2.19) Iξm(x) =

{
1 if x = 0

0 otherwise
310

This manuscript is for review purposes only.
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From our Fourier samples given in (2.16), [23] defines the concentration factor edge311

detection method as312

(2.20) Sσ
Nf(x) = ı

∑
1≤|k|≤N

2

sign(k)σ

(
|k|
N

)
f̂ke

ı2πkx
313

Where, for our purposes, σ
(

|k|
N

)
= 2πı · |k| ·

√
π
σ · exp

(
−π2

σ |k|2
)
denotes the expo-314

nential concentration factor as defined in [1]. This is smooth and rapidly decaying to315

suppress high frequency noise.316

2.6. Edge Detection for Images from Fourier Samples. Since images are317

two dimensional and discrete, there are infinite jump discontinuities, and the disconti-318

nuities are not pixel-wise unique but are instead dependent on the direction at which319

you measure the jump. Therefore we instead look for jumps in the normal direction320

of the edge curve.321

Definition [23] Assume the discontinuities of f form finite closed, smooth edge322

curves Γm, 1 ≤ m ≤ M. For a point (x, y) ∈ Γm at a discontinuity, let n(x, y) be323

normal to (x, y) with respect to the edge curve Γm. Consider the corresponding one324

dimensional continuous function g(t) = f(x, y) + tn(x, y). The jump function is then325

defined as326

(2.21) [f ](x, y) = [g](0), (x, y) ∈ Γm, 1 ≤ m ≤ M327

In this thesis, we assume we are given uniformly spaced Fourier samples (2.5). We328

want [f ](x, y)IΓ(x, y) such that IΓ is the indicator similar to (2.19) defined for one329

edge curve. We parameterize the Γ as330

(2.22) x = u(s), y = v(s), s ∈ [a, b]331

where u(s), v(s) are smooth and [a, b] is some region of the image.2 Let θ(s) be the332

normal direction to (u(s), v(s)) such that333

(2.23) x = u(s) + r cos θ(s), y = v(s) + r sin θ(s)334

parameterizes the points around Γ and r is a small range r ∈ [−ϵ, ϵ] with ϵ > 0 ∈ R335

is small.336

The indicator function Iγ has support of measure zero, so we must apply a regu-337

larization h( rϵ ) defined on the small closed interval [−ϵ, ϵ] and satisfying h(0) = 1. As338

in [23], we use339

(2.24) h
(r
ϵ

)
= exp

(
−5

(r
ϵ

)2
)

340

Giving regularized edge function341

(2.25) h(x, y) = [f ](u(s), v(s))h
(r
ϵ

)
342

Given data as a Fourier partial sum, our Fourier partial sum approximation of h(x, y)343

is written similarly to (2.8)344

(2.26) h(x, y) ≈ hN (x, y) =

N/2−1∑
k=−N/2

N/2−1∑
l=−N/2

H(k, l)e2πı(kx+ly),345

2We use [a, b] just to define the relationship between H(k, l) in (2.27) and (2.28) but the values
themselves are arbitrary and not used in computation.
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with coefficients346

(2.27) H(k, l) =

∫ b

a

[f ](u(s), v(s))(v′ cos θ − u′ sin θ)ϵĥ(ϵ(k cos θ + l sin θ))ds,347

where ĥ(·) are the Fourier coefficients of (2.24). Using the parameterization given by348

(2.23), we can approximate f̂(k, l) as349

(2.28) f̂(k, l) ≈
∫ b

a

[f ](u(s), v(s))(v′ cos θ − u′ sin θ)

2πı(k cos θ + l sin θ)
e−2πı(ku+lv)ds350

As done in [23] we fix θ = θr so that351

H̃θr (k, l) = 2πı(k cos θr + l sin θr)ϵĥ(ϵ(k cos θr + l sin θr))f̂(k, l).352

This allows us to construct R edge masks for our image where our R rotation angles353

are given by354

(2.29) θr =

(
r − 1

R− 1

)
π, r = 1, . . . , R,355

Finally, we compute R partial sum approximations at θr, r = 1, . . . , R, using (2.28)356

inside the sum by (2.8). Our final edge map is created by averaging over R to find357

ER ∈ RN×N358

(2.30) ER(xj , ym) =
1

R

R∑
r=1

Hθr (xj , ym), j,m = 1, . . . , N.359

This approach offers a mathematically grounded and rotation-aware alternative to360

classical gradient-based edge detectors, particularly useful when operating directly on361

Fourier data or under conditions where the spatial domain is inaccessible or corrupted.362

3. Main Idea. This thesis introduces a novel pipeline for feature extraction363

directly from Fourier-domain image data. The goal is to derive a representation of364

stable, spatially localized features that (1) incorporates information available in the365

frequency domain, (2) suppresses unstable or noisy edges, and (3) remains robust366

under realistic corruption modes commonly found in SAR and other indirect imaging367

techniques. Inspired by [23], we begin by constructing a ground truth image Im368

composed of natural background scenes and a small set of embedded objects (e.g.,369

vehicles, ships, buildings). Each image is formed by overlaying scaled and shifted370

versions of object templates onto a fixed background image.371
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12 NATHAN SMITH

Fig. 5: left An aerially captured image of a golf course; right Five objects, including
three tanks (magnitude = 1), a ship (magnitude = 1), and a building (magnitude =
1.5) are added to the underrlying image.

Figure 5 displays SAR images borne and shaped in the spatial domain, stored and372

represented pixel-wise as a grid or matrix of magnitudes. We are not exactly inter-373

ested in this data, however, as tackling our goals from images represented by data in374

the frequency domain presents a much richer challenge and a problem far more imme-375

diately reflective of the challenges inherent to SAR and MRI applications. Therefore,376

the setup of our toy problem continues.377

First, the image Im is shifted and transformed to the frequency domain as378

(3.1) f̂ = F(Imtrue) = fft2(ifftshift(Imtrue)).379

We assume the data were provided in this way, and from now on we make no use of380

the original spatially described canvas. We have options for several corruption models381

to the Fourier data, yielding multiple problems in the same image.382

1. We do nothing: The data, having undergone the Fourier transform in (3.1)383

now provides a baseline off which to evaluate the robustness of various tech-384

niques to the following forms of corruption.385

2. Additive Complex Gaussian Noise: Simulating thermal or instrumental386

noise with controlled SNR.387

3. Random Missing Coefficients: Emulating incoherent or partial acquisi-388

tion patterns.389

4. Radial Line Removal: Mimicking limited-angle data in SAR or missing390

look directions.391

5. Low Magnitude Features: Simulating disguised targets or non reflective392

surfaces.393

In order to visually check our progress, we feed the corrupted frequency data into the394

inverse-transformed shown below:395

(3.2) Imcorrupted =
∣∣∣F−1{f̂}

∣∣∣ .396

These corruptions, commonplace in aforementioned applications, can amount to catas-397

trophic information loss as demonstrated earlier in Figure 4. We explore the idea that398
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EDGE-INFORMED FEATURE DETECTION 13

the corrupted data left in the frequency domain contains better information than its399

digitized counterpart.400

3.1. Frequency-Based Edge Detection. Since edge information plays an in-401

tegral role in accurate feature representations but that locations of edges can be lost402

in digitization, we instead extract edges from the corrupted Fourier data using the403

spectral differentiation method based on the concentration factor framework from404

Subsection 2.6. Directional derivatives of the regularized edge function are computed405

in the frequency domain and integrated (2.28). The edge responses are averaged over406

a discrete set of R directions θr ∈ [0, π] r = 1, . . . , R given by (2.29) to estimate jump407

magnitude. Let f̂(k, l) denote the possibly corrupted 2D Fourier transform of the408

image f(x, y) where k, l ∈ Z.409

For each θr an edge estimation is computed as a directional derivative along θ410

and transformed back with (3.2)411

(3.3) Eθ(x, y) = F−1
[
σ(ξθ) · f̂(k, l)

]
(x, y)412

Finally, we average over a finite set of R angles {θr}Rr=1 ∈ [0, π]:413

(3.4) E = Edge(x, y) =
1

R

R∑
r=1

|Eθr (x, y)|414

The result is therefore a map E capturing edge strength in the spatial domain. (Ex-415

plained extensively in Subsection 2.6)416

Fig. 6: On the left see the corrupted frequency domain image visualized here in its
form digitized from (3.2). On the right see its edges computed directly from their
Fourier representations and similarly digitized.

Since a spatially informed edge detector is relatively meaningless in the frequency417

domain, if we choose to proceed with its output we would be treating frequency com-418

ponents as if they were pixel intensities. Fourier coefficients encode global frequency419

content, so exploiting directional spectral differentiation and concentration factors420

enables us to find stronger edges, evident in Figure 6. As a bonus, we can repeat this421

process over multiple rotations to enhance the robustness of detection.422
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3.2. Region Extraction and Filtering. Because the resulting edge maps rep-423

resent closed shapes when represented spatially, we can isolate the key features of the424

images. That is, morphological closure and hole filling are applied to form connected425

regions. We then extract geometric properties using connected component analysis.426

Very small blobs (e.g., noise or artifacts) and excessively large ones (e.g., background427

bleed or artifacts of under-smoothing) are discarded. The remaining regions represent428

spatially coherent and statistically stable features in the noise realizations.429

Fig. 7: On the left is the original base image also shown in Figure 5, and on the right
appears the regions identified and filled inside the edges

To achieve the result in Figure 7, the edge map E(x, y) is thresholded—note that430

we are now working in the spatial domain—by a threshold τE defined as431

(3.5) τE = mean(E) + 2 · std(E)432

So that we can get a thresholded black and white edge map433

(3.6) Eτ (x, y) =

{
1 if E(x, y) > τ

0 otherwise
434

Figure 8 demonstrates the process of finding closed regions from edge maps: after an435

edge map is thresholded, the following morphological builtin matlab operations are436

applied in order:437

(3.7)

(1) Eτ = imdilate(Eτ ) dilate blobs to fill gaps

(2) Eτ = imclose(Eτ ) close small gaps with thin lines

(3) Eτ = imfill(Eτ ) fill holes to

438

This the ”thresholded” image into the ”filled” image. Finally, blobs are removed if439

their area is less than the largest dimension of the image.440
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Edges Thresholded Filled Filtered

Fig. 8: The leftmost image shows the edges computed on an image where the added
objects are scaled down by 0.75. The steps of morphological filling and filtering as
explained in this section are then displayed left to right.

This process illustrates how, given corrupted Fourier samples that we would other-441

wise struggle to meaningfully digitize, we can extract and isolate regions of importance442

in the image.443

3.3. Edge Informed Feature Extraction. In this thesis we are interested in444

how edges can inform feature extraction in images collected from Fourier samples,445

such as SAR or MRI images. We have three ideas to utilize edge information in446

feature extraction.447

(1) Regions as features: If, for purposes such as radar target location, it suffices448

to identify regions of interest in a SAR image, it may very well suffice to define449

these regions themselves as our image features. Each feature, then, is defined450

as the regions center point and its surrounding shape.451

(2) Keypoints on edges: For other purposes, such as SAR Coherent Change452

Detection (CCD) or SAR image registration, we may be interested in feature453

descriptors that maintain rotational and scale invariance, such as SIFT key-454

points. However, when data are missing, it is up to experimentation, then, to455

determine how a SIFT feature extraction performs on an image’s edge map.456

(3) Keypoints on regions*: Our final (bonus) approach is to filter our key-457

point finder’s output to keypoints located inside regions so that our feature’s458

erroneous behavior is, in a way, tamed by edge information.459

In the next section, we perform numerical experiments to evaluate the efficacy460

of Edge Informed Feature Extraction. It is henceforth our goal to extract features461

that highlight the objects added to the image and ignore the background. As in (1),462

we may simply want to isolate these objects as regions of interests, and in (2) we463

attempt to coerce SIFT to focus on the objects identified by their edges. Owing to464

time constraints and approach (3)’s resembling a trivial masking of existing SIFT465

keypoints by the already-identified regions of interest, offering little novelty, we have466

deferred its numerical evaluation to future work.*467

4. Numerical Experiments. We now present numerical experiments to assess468

the robustness of our feature localization pipeline under realistic synthetic aperture469

radar (SAR) imaging conditions. The algorithm relies on a spectral edge-detection al-470

gorithm based on the concentration factor framework developed in [3]. This technique471

concentrates Fourier spectral information to sharply delineate image discontinuities,472

yielding an effective detector of edges that accurately recovers their locations [3]. We473

evaluate the pipeline on several common SAR data degradation modes, including474

sever additive noise (low signal-to-noise ratio), missing/incomplete data, directional475

undersampling or occlusion simulated by radial line removal, and spatially bounded476

low intensity features. Each of these corruption modes presents a meaningful chal-477
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lenge for edge-based feature extraction. For example, heavy speckle noise can obscure478

true image edges and introduce spurious high-frequency artifacts [22, 4]. Likewise,479

missing data or limited angular converage (e.g. removal of radial lines) produces imag-480

ing artifacts such as ghosting and anisotropic blurring that distort edge features and481

reduce effective resolution [2]. Similarly, weak-contrast features may fail to produce482

discernible edges above the background, as low-magnitude edge signals are often in-483

distinguishable from noise fluctuations [22]. This is especially problematic for our484

method, which identifies features as the centroids of contiguous regions extracted485

from the edge map; any disruption of edge continuity or clarity can therefore lead to486

missed detections or false feature identifications.487

4.1. Tuning Edge Response. First, however, given our edge isolation method488

in Subsection 2.6 relies on applying a concentration factor at varying rotation angles489

θj , it will be useful to determine how many angles are required to obtain meaningful490

results, noting that the ideal number will ultimately depend upon data resolution,491

SNR, and scale contrast of the underlying image. In this regard we consider a test492

problem consisting of a blank image with straight, diagonal, and curved features at493

different magnitudes displayed in Figure 9. First, we convert the pixelized image into

Fig. 9: One vertical, one horizontal, and two diagonal lines are overlaid onto a black
image with a circle in the center. Each object is initialized with magnitude 1, and
where shapes intersect the magnitues are additive. Finally, a gaussian blur with
standard deviation σ = 3 is applied for smoothing.

494

Fourier data using (2.8). Then, to evaluate an ideal number J of angles at which to495

detect edge response from concentration factors, we look at the average magnitude of496

the edge output as well as the edge maps themselves. Each angle is given by (2.29).497

Figure 10 shows that as J grows the average edge magnitude appears to converge,498

dipping for odd J and peaking at even J . For J = 1, J = 3, and J = 5 we can observe499

varying magnitudes in the edges around the circle with gaps at the top and on the500

sides. We suspect this phenomenon occurs because when J is even we evaluate θ at501

and π/2, but we do not when J . Since we want the strongest and most accurate502

possible edge response, we thus prefer J > 10. We can evaluate edge response in the503

same way with our test problem for feature extraction.504

Figure 11 confirms that the edge response levels out as J grows and that J > 10505

is a strong choice for detecting thorough and coherent edges. Although J = 1 and506

J = 2 return edge maps with greater average magnitude when processed on our507

radar image, the far left edge map in Figure 11 demonstrates the erroneous nature508

of a unidirectional edge response. Based on this experiment, when using the edge509

detection method outlined in Subsection 2.6, we will choose J = 12.510
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J = 1 J = 3 J = 5 J = 12 J = 24

Fig. 10: Caption

J = 1 J = 3 J = 5 J = 12 J = 24

Fig. 11: Caption

4.2. Robustness to noise. Existing edge detectors and feature extraction al-511

gorithms are vulnerable to noisy Fourier coefficients. To evaluate our method’s ro-512

bustness under degraded conditions, noise is introduced into the test images through513

a physically motivated procedure. Starting from a synthetic spatial image (a toy ex-514

ample approximating a SAR reflectivity map), the discrete Fourier transform (DFT)515

(2.8) is used to obtain F ∈ CN×N with entries F (k, l), −N
2 ≤ k, l ≤ N

2 − 1. Zero-516

mean indepedent circularly symmetric complex Gaussian noise ϵ̂ ∼ CN (0, σ2I) is then517

added to obtain518

(4.1) Fnoisy(k, l) = F (k, l) + ϵ̂(k, l),519

where σ2 is determined by the signal to noise ratio (SNR) which we define as520

(4.2) SNR = 10 log10

(
∥F∥22
N2σ2

)
.521

The noisy data Fnoisy is then fed into our feature localization algorithm. This ap-522

proach mirrors how SAR noise arises in practice: speckle is generated by coherent523
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processing in the measurement (frequency) domain rather than by simple additive524

noise in the spatial domain [15]. The noise level is controlled by a target signal-to-525

noise ration (SNR, in decibels), with experiments spanning SNR values from 10 dB526

down to an extremely low 0.1 dB. By testing such a wide range, including very poor527

SNR conditions, we rigorously assess performance under increasingly severe corrup-528

tion. High levels of measurement domain noise (low SNR) pose a known challenge529

for edge-based methods: the injected high freqency fluctuations introduce spurious530

edges and diminish true edge contrast [9] and if left unmitigated lead to false edge531

detections.532

Figure 12 demonstrates our region localization method’s robustness to Complex533

Guassian noise added in the frequency domain.

SNR = 10 SNR = 1 SNR = 0 SNR = −1 SNR = −10

Fig. 12: In the first row, see the digitized image. In the second row, find the edge
maps computed from the Fourier data. In the last row, see the isolated figures and
centroids plotted as features.

534

Even when there is intense noise in the frequency domain, the concentration535

factor edge detection method outlined in Subsection 2.6 remains extremely robust to536

low SNR. In fact, the right two columns in Figure 12 demonstrate scenarios in which537

the noise is stronger than the signal itself. Where as in Subsection 2.2 spatial edge538

detection algorithms began to struggle at SNR ≈ 8.0dB, our method identifies the539

correct edges and corresponding regions in significantly worse data conditions.540

4.3. Robustness to missing data. To evaluate the resilience of our method541

under degraded measurement conditions, we simulate two forms of missing data in the542

Fourier domain. Our first approach follows the procedure outlined in Subsection 2.4543

for removing radial frequencies. That is, for a given number of angles θ ∈ [0, π],544

we construct radial masks based on directional projections in Fourier space and zero545

out coefficients lying within a narrow band around each direction. This emulates546

directionally biased measureent loss such as occlusion, limited aperture coverage, or547

missing look angles.548

Our second approach follows the procedure outlined in Subsection 2.4 to simulate549

stochastic or probabilistic data loss which can arise in SAR imagine due to irregular550

sampling patterns, sensor dropouts, or hardware limitations.551

This manuscript is for review purposes only.



EDGE-INFORMED FEATURE DETECTION 19

Both forms of corruption pose a significant challenge for edge based methods552

since edge detection relies on jump information and such information is spectrally553

distributed. Missing frequency components distort the reconstruction of discontinu-554

ities and induce anisotropic or aliased artifacts. The spectral edge detection technique555

employed our algorithm [9][23] relies on integrity of directional frequency content to556

recover edge magnitudes.557

Figure 13 represents random missing frequencies (2.15) applied at varying thresh-558

old levels ρ to evaluate our method’s robustness to missing data.559

ρ = .1 ρ = .2 ρ = .3 ρ = .4 ρ = .5

Fig. 13: In the first row, see the digitized image. In the second row, find the edge
maps computed from the Fourier data. In the last row, see the isolated figures and
centroids plotted as features.

Figure 13 demonstrates our methods robustness to missing data. Even with half the560

data missing, as shown in the fifth column, our method successfully identifies the561

regions of interest.562

In Figure 14, we vary the number of radial lines removed from our Fourier samples563

to simulate another potential type of data loss. The radial lines are removed as564

outlined in (2.12) where J denotes the number of evenly spaced radial lines removed.565

It is evident in Figure 14 that missing radial lines in sampled Fourier image data566

is problematic for our edge detector. As the number if missing radial lines J grows,567

the small gaps in the edges even after morphological operations presents a challenge568

for accurate region identification.569

4.4. Robustness to dimness. In this experiment, we evaluated the feature al-570

gorithm under conditions where the target objects have uniformly low intensity. At571

low magnitudes the regions appear subtle, making them difficult to distinguish even572

visually in the digitized image. Such low contrast targets pose a significant chal-573

lenge for edge-based feature detectors because their boundaries have weak intensity574

gradients. As a result, recovering these boundary jumps via spectral edge detection575

becomes much more difficult than in high-contrast settings. This test examines the576

algorithm’s ability to detect subtle yet spatially significant features. This ability is577

important because in SAR imagine even small differences in reflectivity can reveal578

meaningful physical structures.579

In Figure 15 we vary the scale of the objects added to the image. The objects580
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J = 5 J = 10 J = 15 J = 20 J = 25

Fig. 14: In the first row, see the digitized image. In the second row, find the edge
maps computed from the Fourier data. In the last row, see the isolated figures and
centroids plotted as features.

are scaled by some s ∈ (0, 1] of their pixel magnitude before being placed on top of581

the digitized SAR image and before being translated into the frequency domain. We582

assume this Fourier data is given, and proceed.583

s = .9 s = .8 s = .7 s = .6 s = .5

Fig. 15: In the first row, see the digitized image. In the second row, find the edge
maps computed from the Fourier data. In the last row, see the isolated figures and
centroids plotted as features.

Figure 15 demonstrates that objects which do not vary in brightness/reflectivity584

from their surroundings become significantly more difficult to pick up via edge detec-585

tion. This matches our expectations given that edge detection fundamentally relies586

on gradient jumps.587
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4.5. Keypoint Identification on Edge Maps. As explained in Subsection 3.3,588

we are interested in extracting features from SAR images, and one way we can do that589

is by running an image through a keypoint identifiers such as SIFT. However, SIFT590

does not work on Fourier data; therefore, we must digitize the image via an inverse591

Fourier transform before we can extract any meaningful features.592

Unfortunately, as seen in Subsection 2.1, apply standard keypoint identification593

algorithms on digitized images can be fruitless when the Fourier samples are plagued594

by strong noise or data loss. However, we know we can find the edges of images, even595

ones suffering such corruption.596

Fig. 16: 150 SIFT keypoints are plotted on (left) an image with SNR = −1, on
(middle) the corresponding canny edge map, and on (right) the corresponding Fourier
edge map.

Figure 16 demonstrates that SIFT underperforms on highly noisy images. For-597

tunately, using edge maps to isolate high contrast regions and suppress noisy high598

frequency coefficients enables SIFT to bypass excess image noise.599

The same experiment can be performed for other forms of data corruption. For600

example, if frequencies are randomly dropped from the Fourier samples as in (2.15), we601

may be curious whether edge maps can serve as an adequate guide for algorithms like602

SIFT. In Figure 17, images, corrupted to varying degrees ρ denoting the likelihood603

of frequency dropout, are processed by SIFT and the corresponding keypoints are604

plotted over the image.605

ρ = 0.3

ρ = 0.5

Fig. 17: 150 SIFT keypoints are plotted on (left) an image with corrupted by ran-
domly dropped data, on (middle) the corresponding canny edge map, and (right) the
corresponding Fourier edge map.

This manuscript is for review purposes only.



22 NATHAN SMITH

Figure 17 is shown in this way to demonstrate that the Fourier edges exhibit606

stronger performance than the directly digitized image at higher dropout rates in the607

Fourier data sample. This is expected because in Subsection 4.3, the Fourier edge608

detection method demonstrated robustness high random data dropout rates ρ that609

render the digitized image visually useless.610

5. Concluding Remarks. In this work, we developed a new technique that611

incorporates edge information into a feature extraction pipeline. Whereas “standard”612

feature extraction algorithms are often designed to perform on spatially defined im-613

ages, we assume our data are given as potentially corrupted or incomplete Fourier614

samples. There are thus significant challenges downstream when attempting to derive615

meaningful feature extractions out of images digitized from corrupt frequency infor-616

mation. Our methods combine a concentration factor based, multi-directional edge617

detection algorithm with morphological closing operations to isolate regions of interest618

that may not be identifiable from the digitized image. When data are missing, edge619

information may still be recoverable, so incorporating edge information into feature620

extraction is essential for isolating significant features from ones distracted by data621

corruption.622

Our numerical experiments demonstrate that our new edge informed feature ex-623

traction algorithm yields improved accuracy both in isolating regions of interest in the624

frequency domain and in coercing traditional feature extraction algorithms to focalize625

on relevant areas rather than on noise. A main advantage of our approach is that we626

are able to overcome significant data loss by directly using the given Fourier data to627

determine the edge masks needed both for region isolation and for algorithm coersion.628

Our initial investigations indicate that it is beneficial to use the Fourier based629

concentration factor method. For future work, it will be instructive to attempt this630

method on more challenging datasets. In addition, more attention can be paid to631

the morphological closing operations to overcome small gaps that are inevitable with632

significant data corruption, especially radial line dropount in the frequency domain.633
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