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Abstract

As large language models (LLMs) are increasingly used in research and demonstrate

the potential to mimic aspects of human reasoning and behavior, a key question

remains unexplored: how does interdisciplinary exposure affect their learning be-

havior? This study investigates whether prior training on secondary subjects (e.g.,

mathematics, economics) influences LLM performance on tasks in a primary domain.

We evaluate how different subject pairings affect performance—whether they lead to

improvements or declines—and examine how the order of exposure influences these

outcomes. We also compare multiple LLM architectures to assess whether the ob-

served patterns are consistent across models or architecture-specific. Additionally,

we investigate the role of Chain-of-Thought (CoT) reasoning in facilitating interdis-

ciplinary gains. Results show that interdisciplinary exposure leads to both gains and

interference depending on the pairing and order, and that CoT selectively boosts

performance in structured domains like math while degrading accuracy in others.

This work presents a scalable framework for studying cross-domain generalization in

LLMs, with experiments centered on Computer Science assessments but designed to

extend easily to other subjects.

Keywords: Large Language Models, Interdisciplinary Learning, Knowledge Trans-

fer, Chain-of-Thought, AI in Education, Cognitive Flexibility, Cross-Domain Perfor-

mance
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0.1. INTRODUCTION CONTENTS

Section 0.1

Introduction

0.1.1. Background

The debate on the value of a liberal arts education, and more broadly, interdisciplinary

learning, is not new. It reflects longstanding societal tensions around the purpose of

education—whether it should serve as a vehicle for immediate economic productiv-

ity or as a foundation for cultivating thoughtful, adaptable citizens (Carmichael and

LaPierre, 2014; Liu et al., 2022; Xu et al., 2022). Critics argue that in an economy

increasingly driven by technological advancement, automation, and domain-specific

expertise, the broad-based approach of liberal arts education may fall short in pro-

viding short-term, market-aligned skills. As such, there has been a growing emphasis

on STEM-oriented curricula and vocational training. However, proponents of the lib-

eral arts maintain that the value of interdisciplinary education lies in its capacity to

foster critical thinking, ethical reasoning, creative problem-solving, and the ability to

synthesize diverse perspectives—competencies that are essential not only for leader-

ship and innovation, but also for navigating complexity in a globalized and uncertain

world.

In parallel, the rise of large language models (LLMs) like GPT-4 has introduced a

powerful new tool for simulating various aspects of human cognition. Researchers are

beginning to explore whether LLMs can approximate or even extend human abilities

in areas such as social reasoning, moral judgment, collaborative problem-solving,

and generalization across domains (Chan et al., 2023; Gao et al., 2023; Leng and

Yuan, 2024; Li et al., 2023; Webb et al., 2023). Yet despite the growing interest

in LLMs as proxies for human intelligence, a critical gap remains: we still know

little about how LLMs respond to interdisciplinary exposure, or whether they exhibit
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behavioral patterns analogous to human learning when encountering multiple domains

in sequence. In traditional education, students often transfer knowledge from one

subject to another—for better or worse—depending on the relevance, structure, and

sequencing of the content. Do LLMs exhibit similar patterns of transfer learning? Do

certain combinations of subjects enhance reasoning in a target domain, while others

cause cognitive interference?

This study takes a critical step toward understanding how LLMs respond to inter-

disciplinary exposure by investigating whether they exhibit learning patterns analo-

gous to those observed in human education. Rather than claiming to replicate human

cognition, we focus on characterizing how subject pairing, order of exposure, and

reasoning strategies (e.g., Chain-of-Thought) affect LLM performance on Computer

Science learning assessments. By simulating domain exposure through structured

prompting, we examine how and when LLMs generalize across disciplines. In doing

so, this work contributes to AI interpretability and educational research, offering a

scalable and ethical framework to explore the potential of LLMs as tools for modeling

learning behavior in complex, cross-domain settings.

Section 0.2

The Interdisciplinary Learning Task

To systematically evaluate interdisciplinary learning in LLMs, we examine how mod-

els apply knowledge given contextual information from one subject (s1) to another

subject (s2) when sequentially prompted. This study measures whether prior expo-

sure to s1 changes how the model processes and generates responses in s2, capturing

any evidence of knowledge transfer. To ensure the effects of interdisciplinary learning

are clearly isolated, we adopt an evaluation framework where knowledge application

is assessed exclusively on one subject before and after exposure to another. We define

2
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different model states to describe how the LLM has been exposed to subject-specific

contextual information. The Raw Model State (M0) represents the LLM before re-

ceiving any subject-specific context. The Single-Subject Model State (Ms1 or Ms2)

refers to the model after being prompted with context from only one subject. Lastly,

the Interdisciplinary Model State (Ms1,s2) describes the model after sequentially re-

ceiving contextual information from two subjects.

The model’s response function, conditioned on its state, is defined as:

fM : X → Y, (1)

where fM(x) represents the model’s response to problem x when in model state M .

To measure the effects of interdisciplinary exposure, we conduct evaluations in two

controlled settings. In the single-subject baseline, the model is provided contextual

information only from subject s2, and its responses to problems from s2 are recorded.

The response function in this scenario is:

fMs2
(x) → y, (2)

where x ∈ Xs2 represents a problem from subject s2 and y is the model’s response.

In the interdisciplinary exposure setting, the model is first provided context from

subject s1, followed by subject s2. The response function in this case is:

fMs1→Ms2
(x) → y, (3)

where x ∈ Xs2 represents a problem from subject s2 and Ms1 → Ms2 indicates the

transition from the single-subject state Ms1 to the final state Ms2 after sequential

exposure.

3
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The change in response patterns due to interdisciplinary exposure is quantified as:

∆Y = fMs1→Ms2
(Xs2)− fMs2

(Xs2), (4)

where fMs2
(Xs2) represents the model’s baseline response when provided context

from only subject s2. A positive ∆Y indicates that prior exposure to s1 improves

the model’s performance in s2, suggesting effective knowledge transfer. A negative

∆Y implies interference, where training on s1 hinders performance in s2, possibly

due to conflicting reasoning patterns. If ∆Y = 0, interdisciplinary exposure has no

measurable effect, indicating that knowledge from s1 neither enhances nor disrupts

performance in s2.

0.2.1. Additional Tasks: Order and Reasoning Strategy Effects

Beyond measuring whether interdisciplinary exposure affects performance, we fur-

ther investigate two key factors that may modulate these effects: the order in which

subjects are presented and the use of explicit reasoning strategies like CoT. These

analyses help clarify under what conditions transfer occurs and how prompting struc-

ture shapes the model’s learning behavior.

Effect of Subject Order To evaluate the effect of subject order, we define two

distinct interdisciplinary model states:

Ms1→s2 and Ms2→s1

These represent the model after receiving context from both subjects, but in differ-

ent sequences. To isolate the impact of ordering, we compare the model’s response

functions:

∆orderY = fMs1→s2
(Xs2)− fMs2→s1

(Xs2) (5)
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A nonzero ∆orderY implies that the sequence of subject exposure influences the

model’s reasoning, revealing order-sensitive learning dynamics.

Effect of Reasoning Strategy (Chain-of-Thought) We define the Chain-of-

Thought (CoT) variant of the model’s response function:

fCoT
M (x) and fnoCoT

M (x)

These denote the model’s responses with and without CoT prompting, respectively.

The effect of reasoning strategy under interdisciplinary exposure is measured as:

∆CoTY = fCoT
Ms1→s2

(Xs2)− fnoCoT
Ms1→s2

(Xs2) (6)

A positive ∆CoTY indicates that CoT prompting enhances transfer in subject s2,

while a negative value suggests potential reasoning inefficiencies or interference.

We also define the interaction effect between ordering and CoT prompting:

∆order, CoTY = fCoT
Ms1→s2

(Xs2)− fCoT
Ms2→s1

(Xs2) (7)

This measures whether CoT reasoning amplifies or dampens the ordering effect across

interdisciplinary exposure.

Section 0.3

Data

To evaluate interdisciplinary learning in LLMs, we constructed a dataset comprising

training and testing materials, leveraging Advanced Placement (AP) exam questions

as a standardized benchmark. AP exams provide structured assessments across mul-
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tiple subjects, ensuring consistency in cognitive skill evaluation and question com-

plexity. This framework enables a controlled study of LLMs’ ability to generalize

across disciplines.

0.3.1. Training Data

For training, we used AP preparation materials, such as 5 Steps to a 5, which pro-

vide structured, self-contained content aligned with AP curricula. We extracted these

materials using Optical Character Recognition (OCR) and web scraping. Text and

equations were processed for clarity, with equations converted into structured text

representations. Tables were extracted in a structured format to preserve relational

data, ensuring accessibility for text-based processing. Images were excluded unless

they had attached textual descriptions, which were incorporated to retain relevant

contextual information. This preprocessing ensured that the extracted content re-

mained interpretable and aligned with AP standards.

0.3.2. Test Data

For evaluation, we used official AP sample test questions, focusing exclusively on

multiple-choice questions (MCQs). MCQs were selected because they allow for objec-

tive grading and minimize ambiguity in assessing correctness. Additionally, APMCQs

cover a range of cognitive skills, from factual recall to applied reasoning, providing

a structured way to analyze how prior exposure to one subject affects performance

in another. Unlike free-response questions (FRQs), which require subjective grading

and can introduce response variability, MCQs ensure a controlled and reproducible

assessment framework.

Subjects with fewer figures were prioritized to minimize reliance on visual infor-

mation. For graph-heavy subjects where inclusion was necessary, we attached textual

descriptions summarizing key information. These descriptions were iteratively refined
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and tested to ensure they were comprehensible to LLMs, preserving the integrity of

the original content while allowing for accurate text-based evaluation.

Section 0.4

Methods

To evaluate interdisciplinary learning in LLMs, we employed two different methods:

a LangChain-based retrieval system and OpenAI’s Assistant API file search. The

former involved manually structuring subject materials into a vector database and

retrieving relevant content before generating responses. Later, we transitioned to

OpenAI’s Assistant API, which allowed for direct file-based retrieval, eliminating the

need for manual chunking and improving efficiency. This transition was driven by

improvements in speed, cost, and retrieval transparency, ensuring a more controlled

evaluation of knowledge transfer effects. For consistency, all evaluations were run

with temperature set to 0 to eliminate randomness and ensure deterministic outputs.

0.4.1. LangChain-Based Retrieval Approach

The LangChain-based approach required segmenting AP subject materials into smaller

chunks due to LLM context window limitations. Each segment was embedded us-

ing OpenAIEmbeddings and stored in a FAISS vector database for retrieval. When

presented with a test question, the system retrieved the most relevant document seg-

ments, formatted a structured prompt, and generated a response using the LLM. This

method ensured that models referenced structured training materials but introduced

inefficiencies due to manual preprocessing and retrieval overhead.
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Algorithm 1 LangChain-Based Retrieval and Response Generation

Require: AP training material S = {s1, s2, ..., sn}

Require: AP test questions X

Require: Pre-trained LLM M

Require: Maximum token limit T

1: Initialize vector store V

2: for each subject s in S do

3: Split text from s into chunks C = {c1, c2, ..., cm} where |ci| ≤ T

4: Compute embeddings for each chunk using OpenAIEmbeddings

5: Store embeddings in FAISS vector store V

6: end for

7: for each test question x ∈ X do

8: Reset model state M

9: Retrieve top k most relevant chunks C ′ ⊂ C from V

10: Construct input prompt P as:

11: “ Context: {C’}

12: Question: {x}

13: Answer: ”

14: Generate response y = M(P )

15: Compare y with ground truth answer key

16: end for

17: Compute overall accuracy based on correct responses

While LangChain provided a structured retrieval process, it required significant

preprocessing. Chunking content manually added complexity, and similarity-based

retrieval introduced variability in responses. Moreover, test execution was computa-

tionally expensive, often requiring extended processing times and multiple API calls,
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making large-scale evaluations inefficient.

0.4.2. OpenAI Assistant API File Search

To address these inefficiencies, we transitioned to OpenAI’s Assistant API, which

allows for full-document retrieval without manual chunking. Instead of segmenting

materials, the entire AP textbook for each subject was uploaded as a file, and queries

were answered based on the Assistant API’s built-in search mechanism. This method

removed the need for external vector indexing, reduced API calls, and provided a

more transparent and reproducible retrieval process.

Algorithm 2 OpenAI Assistant API File Search (with per-question stateless query-

ing)

Require: AP training material S = {s1, s2, ..., sn}

Require: AP test questions X

Require: Pre-trained LLM M

1: Upload full-text files S to OpenAI Assistant API storage

2: Initialize API assistant instance A with file search enabled

3: for each test question x ∈ X do

4: Reset assistant context

5: Query API A with:

6: “Refer to uploaded materials and answer: x”

7: Receive generated response y from API

8: Compare y with ground truth answer key

9: end for

10: Compute overall accuracy based on correct responses

The OpenAI Assistant API provided multiple advantages over LangChain. First,

it eliminated the need for text chunking and embedding-based retrieval, allowing for

9
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more efficient and accurate content access. Second, its built-in file search ensured con-

sistent and deterministic retrieval, reducing variations that might arise from vector-

based similarity searches. Finally, this approach significantly reduced computational

overhead and execution time, making large-scale testing feasible.

0.4.3. Evaluation Setup

For both evaluation settings, model responses were assessed using official AP answer

keys. Each response was classified as correct or incorrect, and accuracy was calculated

as the proportion of correct answers. To quantify the impact of interdisciplinary

exposure, we measured performance differences in two ways.

First, we compared the model’s performance after sequential exposure to s1 and

s2 with its baseline state:

∆Y = fMs1→Ms2
(Xs2)− fM0(Xs2) (8)

Second, we compared performance against the single-subject training condition:

∆Y = fMs1→Ms2
(Xs2)− fMs2

(Xs2) (9)

Here, fMs1→Ms2
(Xs2) represents model performance on subject s2 after prior exposure

to s1, fMs2
(Xs2) reflects performance after training only on s2, and fM0(Xs2) denotes

performance from the unexposed raw model. A positive ∆Y in either case suggests

knowledge transfer, while a negative value indicates potential interference from prior

subject exposure.

Handling Non-Responses and Random Outputs Initially, the model occa-

sionally failed to generate a response or produced irrelevant text instead of selecting

an answer. This was especially problematic in multiple-choice evaluations, where

10
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the expected output was a single letter corresponding to one of the answer choices.

To mitigate this issue, we refined the prompting strategy by explicitly instructing

the model to select one of the given choices. This adjustment significantly reduced

instances of non-responses and arbitrary outputs, ensuring more reliable and stan-

dardized evaluation.

Addressing Context Loss in Prompting A key observation during testing was

that batch prompting—where all test questions were asked at once—significantly

degraded accuracy. We hypothesize that this was due to the model losing track

of earlier context as the prompt length increased, causing information relevant to

later questions to become less salient. Additionally, some responses may have been

contextually influenced by prior questions or answers, leading to inconsistencies in

reasoning. To address this issue, we adopted a per-question prompting strategy in

which the full contextual training process was repeated before each test question

rather than performing it once for all questions. This ensured that each question was

answered in a consistent and independent context, eliminating biases introduced by

the order of questions. Through experimental validation, we found that this approach

resulted in a measurable improvement in accuracy, producing results that were both

more reliable and unbiased. Based on these findings, we adopted this new approach

for all subsequent evaluations.

11
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Algorithm 3 Previous Approach: Batch Prompting

Require: Contextual training data T , test questions X

Require: Pre-trained LLM M

1: Provide training context T once

2: Query M with all test questions X = {x1, x2, ..., xn}

3: for each response yi do

4: Compare yi with the correct answer

5: end for

6: Compute overall accuracy

Algorithm 4 Current Approach: Per-Question Contextual Prompting

Require: Contextual training data T , test questions X

Require: Pre-trained LLM M

1: for each test question xi do

2: Provide full training context T before asking xi

3: Query M with xi and retrieve response yi

4: Compare yi with the correct answer

5: end for

6: Compute overall accuracy

The batch prompting approach in Algorithm 3 provided training context once

and then presented all test questions in sequence. However, this method led to con-

text degradation, where later questions lost relevance due to an extended prompt

length or potential interference from prior questions. Additionally, responses could

be influenced by previous test answers rather than being based purely on the subject

content.

In contrast, Algorithm 4 introduces a per-question contextual prompting strategy.

12
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Instead of providing context once, we refresh the model’s knowledge for each test

query by reintroducing the relevant training data before every question. This ensures

that each response is generated from a fresh, unbiased, and contextually accurate

state.

Experimental results confirmed that the per-question approach significantly im-

proved accuracy compared to batch prompting. By reducing context loss and prevent-

ing cross-question interference, this method yielded more consistent and interpretable

results, making it the preferred strategy for evaluating interdisciplinary learning ef-

fects.

Statistical Testing To assess whether performance differences were statistically

significant, we applied multiple hypothesis tests tailored to the structure of each

comparison. For row-level comparisons between each interdisciplinary pairing and

the baseline, we used Welch’s two-sample t-test on five trial scores, chosen for its

robustness to unequal variances and suitability for small samples. To evaluate overall

trends in performance shift, we applied one-sample t-tests and Wilcoxon signed-rank

tests to the distribution of average accuracy differences across pairings. These tested

whether interdisciplinary exposure led to consistent improvement or interference rel-

ative to baseline conditions. For subject order effects, we applied Welch’s t-tests

between reversed pairings (e.g., Math CS vs. CS Math), followed by aggregate tests

on directional differences. For CoT prompting, we used paired t-tests and Wilcoxon

tests on accuracy scores across matched pairings with and without CoT. In all cases,

we report p-values to verify robustness under different distributional assumptions.

13
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Section 0.5

Results

This section evaluates the impact of interdisciplinary learning on LLM performance.

Each evaluation condition is based on 60 multiple-choice test questions drawn from

publicly available AP-style subject exams. For robustness, we ran five independent

trials per condition and report the average accuracy.

We begin with a cross-model comparison, analyzing how different architectures

(GPT-3.5 Turbo, GPT-4o Mini, and GPT-4o) generalize across training conditions,

highlighting differences between LangChain-based and OpenAI Assistant retrieval.

Next, we assess subject cross-impact, focusing on Computer Science (CS) as the

test subject to determine which interdisciplinary pairings enhance or hinder perfor-

mance, and how training order influences results. Finally, we examine the effect of

Chain-of-Thought (CoT) prompting, identifying subjects that benefit from structured

reasoning and cases where CoT unexpectedly reduces accuracy. These findings offer

insights into optimizing interdisciplinary training for LLMs.

0.5.1. Cross-Model Performance Comparison

To evaluate the impact of interdisciplinary learning on LLM performance, we first an-

alyze how different architectures respond to cross-subject exposure. Since LLMs vary

in their capacity to generalize knowledge, we begin by comparing the performance of

different models before examining the specific effects of interdisciplinary learning.

A key distinction emerges between LangChain-based retrieval and OpenAI As-

sistant retrieval for GPT-3.5 Turbo across different training conditions. As shown

in Table 1, OpenAI Assistant achieves a higher accuracy only in the Raw Model

condition (60.0% vs. 42.5% for LangChain). However, in all other training condi-

tions, LangChain retrieval consistently outperforms OpenAI Assistant retrieval. For

14
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Table 1: Performance Comparison of Models Across Different Training Conditions

Trained On LangChain OpenAI Assistant

GPT-3.5 Turbo GPT-3.5 Turbo GPT-4o Mini GPT-4o

Raw 42.5% 60.0% 67.5% 67.5%

CS 45.0% 42.5% 65.0% 67.5%

CS-Econ 45.0% 37.5% 60.0% 70.0%

Econ-CS 47.5% 35.0% 65.0% 67.5%

CS-Psych 45.0% 42.5% 65.0% 70.0%

Psych-CS 47.5% 32.5% 62.5% 70.0%

CS-Latin 50.0% 30.0% 65.0% 67.5%

Latin-CS 47.5% 35.0% 67.5% 62.5%

CS-CompLit 45.0% 40.0% 60.0% 70.0%

CompLit-CS 45.0% 30.0% 67.5% 70.0%

Table 2: Accuracy is reported as the average across 5 trials on a set of 60 multiple-
choice Computer Science questions. Each model was evaluated after training on
either a single subject (e.g., CS) or a subject pair (e.g., CS-Econ) to assess the effect
of interdisciplinary exposure. Results are shown for both LangChain-based retrieval
and OpenAI Assistant API retrieval across three model variants.

instance, in Econ-CS, LangChain achieves 47.5%, whereas OpenAI Assistant records

35.0%. Similarly, in CS-Econ and CS-Psych, LangChain reaches 45.0%, compared

to 37.5% for OpenAI Assistant. Despite these higher accuracy scores, LangChain

retrieval introduces greater variability and lacks transparency, primarily due to its

vector-based similarity search mechanism, which may retrieve inconsistent context. In

contrast, OpenAI Assistant retrieval provides a more deterministic and reproducible

evaluation framework, eliminating potential retrieval-based confounders. Due to these

methodological advantages, OpenAI Assistant retrieval was adopted as the standard

method for all subsequent analyses.

Within OpenAI Assistant retrieval, a clear ranking emerges: GPT-4o consistently

outperforms both GPT-4o Mini and GPT-3.5 Turbo across nearly all training con-

ditions. For example, in the CS-Econ pairing, GPT-4o achieves 70.0% accuracy,

15
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compared to 60.0% for GPT-4o Mini and 37.5% for GPT-3.5 Turbo. In Psych-CS,

the gap is similarly wide—GPT-4o reaches 70.0%, far ahead of Mini (62.5%) and

Turbo (32.5%). These patterns suggest that more advanced architectures generalize

more effectively across subject pairings.

Notably, GPT-4o is also the only model in our evaluations to consistently sur-

pass the Raw baseline when trained on additional interdisciplinary content. This is

especially significant given that Computer Science, our test subject, is likely well-

represented in pretraining corpora. Smaller models may already perform near their

ceiling on CS tasks, limiting the observable benefits of added context. In contrast,

GPT-4o appears more sensitive to the structure and sequencing of interdisciplinary

inputs, showing both stronger gains and sharper declines depending on the pairing.

Given these observations—and the methodological advantages of OpenAI Assis-

tant’s file-based retrieval—all subsequent analyses in this paper use GPT-4o as the

evaluation model.

0.5.2. Subject Cross-Impact Analysis

To evaluate the effect of interdisciplinary learning on GPT-4o’s ability to generalize

knowledge, we systematically tested its performance across different training condi-

tions, focusing on CS as the test subject. Prior experiments indicated that CS ex-

hibits substantial variation when trained alongside different disciplines, making it an

ideal candidate for analyzing interdisciplinary transfer effects. A more comprehensive

preliminary graphic of subject impacts is provided in the Appendix (see Figure 5).

For each training condition, we conducted five independent trials to account for

potential variability in model responses. This repeated evaluation ensures that any

observed patterns are not due to stochastic fluctuations in the model’s outputs but

instead reflect systematic differences in knowledge transfer. The trials were then

averaged to obtain a reliable measure of accuracy under each training condition.
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Table 3 presents the results across all tested conditions. The Raw model represents

GPT-4o’s base performance without any additional subject training and achieved an

accuracy of 70.5%, serving as a benchmark for evaluating the impact of interdisci-

plinary training. Interestingly, when the model was trained exclusively on CS, ac-

curacy declined to 67.5%. This suggests that exposure to CS alone may constrain

generalization. One possible explanation is that CS-only training leads the model to

overfit narrow syntactic or procedural patterns, which do not translate well to broader

problem-solving contexts.

Since CS exposure already appears to hinder performance, we use the CS-only

model (67.5%) as the primary benchmark for most comparisons. To assess whether

interdisciplinary training meaningfully alters performance, we conducted hypothesis

tests on the average accuracy differences between subject pairings and the CS-only

baseline. Across 42 subject pairings, interdisciplinary training yielded an average

improvement of +1.36 percentage points over CS (p < 0.001), with 28 pairings show-

ing improvement, 10 showing decline, and 4 neutral. These results were robust to

non-normality, as confirmed by a Wilcoxon signed-rank test (p < 0.001).

When compared to the Raw model, however, the same subject pairings resulted

in a mean accuracy decrease of −1.64 percentage points (p < 0.001). This contrast

highlights that while interdisciplinary input helps counter the rigidity introduced by

narrow CS-only training, it does not universally outperform a more balanced initial

model state. Together, these findings suggest that the effectiveness of interdisciplinary

learning is sensitive to baseline conditions and subject pairings—it can mitigate over-

fitting, but also introduces the risk of distraction or interference.

Table 3: GPT-4o CS Performance Across Different Training

Conditions
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Model: GPT-4o — Test Subject: CS

Training Subjects Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg. Accuracy

Raw 72.5 70.0 70.0 67.5 72.5 70.5

CS 67.5 67.5 65.0 70.0 67.5 67.5

CS Econ 67.5 67.5 65.0 65.0 67.5 66.5

Econ CS 67.5 67.5 65.0 70.0 67.5 67.5

CS Psych 65.0 70.0 65.0 65.0 65.0 66.0

Psych CS 67.5 65.0 67.5 67.5 65.0 66.5

CS Latin 67.5 70.0 67.5 65.0 70.0 68.0

Latin CS 65.0 70.0 65.0 65.0 65.0 66.0

CS CalculusAB 67.5 70.0 67.5 67.5 65.0 67.5

CalculusAB CS 67.5 55.0 67.5 62.5 70.0 64.5

CS Stats 72.5 67.5 70.0 67.5 65.0 68.5

Stats CS 60.0 70.0 70.0 67.5 62.5 66.0

CS CompLit 67.5 67.5 65.0 65.0 65.0 66.0

CompLit CS 65.0 65.0 65.0 70.0 70.0 67.0

Econ Psych 67.5 70.0 65.0 70.0 62.5 67.0

Psych Econ 77.5 70.0 72.5 70.0 72.5 72.5

Econ Latin 70.0 70.0 67.5 75.0 70.0 70.5

Latin Econ 70.0 70.0 67.5 72.5 70.0 70.0

Econ CalculusAB 67.5 70.0 72.5 72.5 70.0 70.5

CalculusAB Econ 67.5 75.0 62.5 67.5 65.0 67.5

Econ Stats 72.5 67.5 75.0 70.0 65.0 70.0

Stats Econ 70.0 70.0 72.5 67.5 65.0 69.0

Econ CompLit 67.5 70.0 72.5 72.5 67.5 70.0

CompLit Econ 67.5 75.0 70.0 67.5 72.5 70.5

Psych Latin 72.5 70.0 72.5 70.0 72.5 71.5
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Latin Psych 70.0 65.0 65.0 70.0 70.0 68.0

Psych CalculusAB 70.0 70.0 67.5 70.0 67.5 69.0

CalculusAB Psych 67.5 67.5 70.0 65.0 67.5 67.5

Psych Stats 70.0 72.5 70.0 70.0 72.5 71.0

Stats Psych 67.5 72.5 70.0 75.0 72.5 71.5

Psych CompLit 70.0 72.5 67.5 70.0 70.0 70.0

CompLit Psych 72.5 65.0 70.0 70.0 72.5 70.0

Latin CalculusAB 70.0 67.5 65.0 72.5 70.0 69.0

CalculusAB Latin 72.5 65.0 70.0 75.0 72.5 71.0

Latin Stats 72.5 70.0 70.0 70.0 72.5 71.0

Stats Latin 75.0 72.5 72.5 70.0 67.5 71.5

Latin CompLit 67.5 70.0 65.0 67.5 65.0 67.0

CompLit Latin 70.0 72.5 67.5 70.0 70.0 70.0

CalculusAB Stats 65.0 70.0 72.5 65.0 72.5 69.0

Stats CalculusAB 70.0 72.5 67.5 67.5 67.5 69.0

CalculusAB CompLit 67.5 72.5 70.0 70.0 67.5 69.5

CompLit CalculusAB 70.0 67.5 67.5 67.5 72.5 69.0

Stats CompLit 67.5 70.0 72.5 70.0 70.0 70.0

CompLit Stats 70.0 75.0 70.0 62.5 72.5 70.0

Note: GPT-4o accuracy on 60 AP Computer Science questions across different interdis-

ciplinary training conditions. Each row reports accuracy averaged over 5 trials using the

OpenAI Assistant API. Models were trained on a single subject or subject pair.

Subjects That Improve CS Performance. A number of subject combinations led to

statistically significant improvements (at p < 0.05) over the CS baseline (67.5%), though

none showed significant gains relative to the Raw model (70.5%). The strongest gain was

observed in Psych-Econ, which improved CS performance by 5.0 percentage points. Other

significantly improving combinations includePsych-Latin, Stats-Psych, and Stats-Latin
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(each with +4.0 points), followed by Psych-Stats and Latin-Stats (each with +3.5

points), and Econ-CalculusAB (+3.0 points). These results suggest that exposure to

conceptually rich or complementary reasoning domains—particularly those rooted in social

science, formal logic, or mathematical abstraction—may enhance performance on CS tasks,

especially in comparison to more narrowly focused CS-only training.

Subjects That Reduce CS Performance. Conversely, several interdisciplinary subject

pairings result in statistically significant performance declines (at p < 0.05) relative to

the Raw model baseline (70.5%), though none of these declines are significant when com-

pared to the CS-only baseline (67.5%). The most pronounced drops occur in CS-Psych,

Latin-CS, and CS-CompLit, each reducing performance by 4.5 percentage points. Addi-

tional significant declines include CS-Econ and Psych-CS (−4.0 points), as well as Latin-

CompLit (−3.5 points), andEcon-CS,CS-CalculusAB, andCalculusAB-Psych (each

−3.0 points).

Notably, seven of these nine combinations involve CS, either as the first or second

subject. The only non-CS-inclusive pairings to show significant performance drops are

Latin-CompLit and CalculusAB-Psych, suggesting that interference effects are espe-

cially common in CS-related configurations.

For a complete visualization of all subject pairings and their performance effects—including

which were significantly beneficial or harmful—see Figure 1.
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Figure 1: Impact of Interdisciplinary Training on GPT-4o’s CS Task Accuracy. Both

panels show average accuracy by subject pairing, sorted in descending order. Panel

(a) presents the full ranking: green bars indicate performance increases and blue

bars indicate decreases, regardless of significance. Panel (b) filters for statistical

significance: green bars indicate improvements significant relative to the CS baseline,

red bars indicate declines significant relative to the Raw baseline, and gray bars are

not statistically significant. Dashed lines show the Raw and CS baselines.

Several of these combinations also reveal asymmetries depending on subject order—for

example, Latin-CS (66.0%) significantly underperforms, while the reversed pairing CS-

Latin (68.0%) leads to improvement. These findings point to subject order as a critical

factor in determining whether interdisciplinary exposure helps or hinders performance, a

dynamic we explore further in the next section.
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Order of Subject Exposure Matters. To evaluate whether the sequence of exposure

influences outcomes, we conducted pairwise comparisons of reversed subject orders (e.g.,

CS-Econ vs. Econ-CS ). On average, the difference in accuracy between reversed pairs was

only +0.14 percentage points, with no statistical significance detected (p = 0.76). This

suggests that, overall, the order in which subjects are introduced does not systematically

alter model performance.

Significant Order Effects. However, certain subject pairs exhibited statistically sig-

nificant directional effects. For instance, Psych-Econ significantly outperformed Econ-

Psych by 5.5 percentage points (p = 0.025), suggesting that introducing Psychology be-

fore Economics better facilitates downstream reasoning. Similarly, Latin-CompLit out-

performed CompLit-Latin by 3.0 points (p = 0.041), and Psych-Latin outperformed

Latin-Psych by 3.5 points (p = 0.044). These findings imply that knowledge transfer in

LLMs may be asymmetric and that certain conceptual domains serve better as priming con-

texts for others. While not universal, these effects highlight the need to consider sequencing

when modeling interdisciplinary learning in LLMs (Table 4).

Table 4: Impact of Subject Order on CS Performance (Significant Order Effects

Highlighted)

Pair Accuracy (First) Accuracy (Second) Difference p-value

Psych-Econ vs Econ-Psych 72.5 67.0 +5.5 0.025

CompLit-Latin vs Latin-CompLit 70.0 67.0 +3.0 0.041

Psych-Latin vs Latin-Psych 71.5 68.0 +3.5 0.044

Psych-CalculusAB vs CalculusAB-Psych 69.0 67.5 +1.5 0.174

CS-Latin vs Latin-CS 68.0 66.0 +2.0 0.182

These overall trends motivated a closer look at specific subjects where order effects

were most pronounced. Psychology and Latin stood out as particularly informative case

studies—each appeared in multiple pairings with varied outcomes depending on their order.
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Tables 5 and 6 present all combinations where Psychology or Latin was involved, high-

lighting how performance differs when each subject is introduced first versus second.

Table 5: Impact of Training Order for Psychology-Related Pairs

Training Order Accuracy (%) Reverse Order Accuracy (%) Difference

Psych-CS 66.5 CS-Psych 66.0 +0.5 (Psych first better)

Psych-Econ* 72.5 Econ-Psych 67.0 +5.5 (Psych first better)

Psych-Stats 71.0 Stats-Psych 71.5 –0.5 (roughly the same)

Psych-CompLit 70.0 CompLit-Psych 70.0 0.0 (No difference)

Psych-Latin* 71.5 Latin-Psych 68.0 +3.5 (Psych first better)

Psych-CalculusAB 69.0 CalculusAB-Psych 67.5 +1.5 (Psych first better)

* Indicates statistically significant difference at p < 0.05

Table 6: Impact of Training Order for Latin-Related Pairs

Latin First Accuracy (%) Latin Second Accuracy (%) Difference

Latin-CS 66.0 CS-Latin 68.0 –2.0 (Latin second better)

Latin-Econ 70.0 Econ-Latin 70.5 –0.5 (roughly the same)

Latin-CompLit* 67.0 CompLit-Latin 70.0 –3.0 (Latin second better)

Latin-Psych* 68.0 Psych-Latin 71.5 –3.5 (Latin second better)

Latin-Stats 71.0 Stats-Latin 71.5 –0.5 (roughly the same)

Latin-CalculusAB 69.0 CalculusAB-Latin 71.0 –2.0 (Latin second better)

* Indicates statistically significant difference at p < 0.05

Notably, Psychology frequently yields better downstream performance when it appears

first in the sequence, while Latin tends to result in higher accuracy when it is introduced

second.

Stable Performance Across Similar Domains Some interdisciplinary pairs ex-

hibit stable performance regardless of order, suggesting that their effects are bidirectional

and mutually reinforcing. This is evident in the following cases:
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Table 7: Subject Pairs with No Performance Difference Based on Training Order

Training Order Accuracy (%) Reverse Order Accuracy (%) Difference

Stats-CompLit 70.0 CompLit-Stats 70.0 0.0 (No difference)

CalculusAB-Stats 69.0 Stats-CalculusAB 69.0 0.0 (No difference)

Psych-CompLit 70.0 CompLit-Psych 70.0 0.0 (No difference)

These results suggest that interdisciplinary training does not exert a uniform influence

on CS performance. Rather, its impact depends on the specific subjects involved and the

sequence in which they are introduced. Importantly, all comparisons are based on the

model’s accuracy on CS-related questions. As observed earlier, Psychology tends to yield

more favorable outcomes when it is introduced before the paired subject, acting as an effec-

tive primer that enhances downstream reasoning in CS tasks. In contrast, Latin often leads

to better CS performance when it is introduced after the paired subject, suggesting that

Latin may benefit more from prior conceptual scaffolding. These subject-specific patterns

underscore the role of directional influence in interdisciplinary learning and its implications

for transfer effectiveness in large language models.

Some subjects, such as CalculusAB, exhibit mixed or neutral effects depending on the

pairing—suggesting that not all domains function as consistent facilitators or recipients

of transfer. Meanwhile, the presence of stable pairs, where training order has no impact,

suggests that some interdisciplinary effects are bidirectional and mutually reinforcing. These

patterns are illustrated in Figure 2, which shows both the full set of order comparisons (Panel

a) and a filtered view of statistically significant effects (Panel b).

Overall, these findings point to the potential for directional knowledge transfer in

LLMs—certain subjects may better prepare the model for reasoning in another domain,

while others introduce interference. Although this paper does not primarily focus on knowl-

edge transfer mechanisms, the results suggest an avenue for further exploration.
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Legend: • Header Subject First • Header Subject Second

Figure 2: Subject Order Effects on CS Performance by Base Subject. Each plot

groups subject pair comparisons by the first-listed (header) subject. Red dots indi-

cate performance when the header subject is introduced first; black dots when it is

introduced second. The connecting line is colored based on which order yields higher

accuracy. Left: all comparisons. Right: only statistically significant differences.

0.5.3. Evaluating the Impact of Chain-of-Thought Prompting

To further explore reasoning structures, we examine the impact of Chain-of-Thought prompt-

ing on model performance. CoT prompting has been shown to enhance reasoning capabili-

ties by encouraging step-by-step explanations rather than direct answer generation Wei et al.

(2022). Prior research suggests that CoT is particularly beneficial for mathematical and

symbolic reasoning Sprague et al. (2024), motivating our investigation into its effectiveness

in this setting.

To analyze the effect of CoT prompting on interdisciplinary learning, we conducted

two sets of evaluations. First, we ran five trials per subject pairing without CoT. Then,

we implemented CoT using prompt refinement, instructing the model to provide explicit

reasoning before arriving at a final answer. The results, presented in Table 9, reveal notable
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trends in performance shifts across different subject pairings.

Table 8: Comparison of Accuracy With and Without Chain

of Thought (CoT)

Subjects Without CoT (%) With CoT (%) Change (%)

Raw 70.5 72.5 +2.0

CS 67.5 73.0 +5.5

CS Econ 66.5 70.0 +3.5

Econ CS 67.5 70.0 +2.5

CS Psych 66.0 69.5 +3.5

Psych CS 66.5 69.0 +2.5

CS Latin 68.0 69.0 +1.0

Latin CS 66.0 69.5 +3.5

CS CalculusAB 67.5 70.5 +3.0

CalculusAB CS 64.5 70.5 +6.0

CS Stats 68.5 68.5 0.0

Stats CS 66.0 69.5 +3.5

CS CompLit 66.0 69.5 +3.5

CompLit CS 67.0 69.5 +2.5

Econ Psych 67.0 70.0 +3.0

Psych Econ 72.5 69.0 -3.5

Econ Latin 70.5 71.0 +0.5

Latin Econ 70.0 69.0 -1.0

Econ CalculusAB 70.5 73.5 +3.0

CalculusAB Econ 67.5 69.5 +2.0

Econ Stats 70.0 69.5 -0.5

Stats Econ 69.0 69.5 +0.5
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Econ CompLit 70.0 70.0 0.0

CompLit Econ 70.5 70.0 -0.5

Psych Latin 71.5 68.5 -3.0

Latin Psych 68.0 70.0 +2.0

Psych CalculusAB 69.0 71.0 +2.0

CalculusAB Psych 67.5 69.5 +2.0

Psych Stats 71.0 70.0 -1.0

Stats Psych 71.5 70.5 -1.0

Psych CompLit 70.0 69.5 -0.5

CompLit Psych 70.0 69.5 -0.5

Latin CalculusAB 69.0 70.5 +1.5

CalculusAB Latin 71.0 72.0 +1.0

Latin Stats 71.0 68.5 -2.5

Stats Latin 71.5 70.5 -1.0

Latin CompLit 67.0 71.0 +4.0

CompLit Latin 70.0 70.5 +0.5

CalculusAB Stats 69.0 71.0 +2.0

Stats CalculusAB 69.0 69.0 0.0

CalculusAB CompLit 69.5 72.0 +2.5

CompLit CalculusAB 69.0 71.5 +2.5

Stats CompLit 70.0 68.0 -2.0

CompLit Stats 70.0 68.0 -2.0

Note. Accuracy is reported as the average across five trials on 60 AP-style multiple-choice

Computer Science questions. Each row shows the performance difference with and without

Chain-of-Thought prompting. Positive changes indicate improved performance with CoT

prompting.
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Table 9: Comparison of Accuracy With and Without Chain

of Thought (CoT)

Subjects Without CoT (%) With CoT (%) Change (%)

Raw 70.5 72.5 +2.0

CS 67.5 73.0 +5.5

CS Econ 66.5 70.0 +3.5

Econ CS 67.5 70.0 +2.5

CS Psych 66.0 69.5 +3.5

Psych CS 66.5 69.0 +2.5

CS Latin 68.0 69.0 +1.0

Latin CS 66.0 69.5 +3.5

CS CalculusAB 67.5 70.5 +3.0

CalculusAB CS 64.5 70.5 +6.0

CS Stats 68.5 68.5 0.0

Stats CS 66.0 69.5 +3.5

CS CompLit 66.0 69.5 +3.5

CompLit CS 67.0 69.5 +2.5

Econ Psych 67.0 70.0 +3.0

Psych Econ 72.5 69.0 -3.5

Econ Latin 70.5 71.0 +0.5

Latin Econ 70.0 69.0 -1.0

Econ CalculusAB 70.5 73.5 +3.0

CalculusAB Econ 67.5 69.5 +2.0

Econ Stats 70.0 69.5 -0.5

Stats Econ 69.0 69.5 +0.5

Econ CompLit 70.0 70.0 0.0

CompLit Econ 70.5 70.0 -0.5
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Psych Latin 71.5 68.5 -3.0

Latin Psych 68.0 70.0 +2.0

Psych CalculusAB 69.0 71.0 +2.0

CalculusAB Psych 67.5 69.5 +2.0

Psych Stats 71.0 70.0 -1.0

Stats Psych 71.5 70.5 -1.0

Psych CompLit 70.0 69.5 -0.5

CompLit Psych 70.0 69.5 -0.5

Latin CalculusAB 69.0 70.5 +1.5

CalculusAB Latin 71.0 72.0 +1.0

Latin Stats 71.0 68.5 -2.5

Stats Latin 71.5 70.5 -1.0

Latin CompLit 67.0 71.0 +4.0

CompLit Latin 70.0 70.5 +0.5

CalculusAB Stats 69.0 71.0 +2.0

Stats CalculusAB 69.0 69.0 0.0

CalculusAB CompLit 69.5 72.0 +2.5

CompLit CalculusAB 69.0 71.5 +2.5

Stats CompLit 70.0 68.0 -2.0

CompLit Stats 70.0 68.0 -2.0

Note. Accuracy is averaged over five trials on 60 AP-style CS multiple-choice questions.

Rows show the performance change with Chain-of-Thought prompting. Green highlights

indicate improvements (darker = larger gain), red indicates declines, and gray indicates no

change.

General Improvement Across Most Conditions Notably, while CS underper-

formed the Raw baseline in the absence of CoT prompting, this trend reversed when CoT
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was introduced: CS with CoT achieved an accuracy of 73.0%, exceeding the Raw baseline

with CoT (72.5%). This shift suggests that CoT may enhance the model’s ability to engage

with and apply prior training more effectively. In this case, the structured nature of CoT

could have supported deeper integration or retrieval of CS-relevant knowledge, even though

the training materials remained unchanged. Additionally, every combination that included

CS showed an improvement with CoT, further supporting this trend.

Overall, CoT yielded a statistically significant average accuracy increase of 1.23 percent-

age points across all subject pairings (p = 0.0004). At the 5% significance level, four training

conditions demonstrated significant improvements: CS (+5.5 percentage points), CS-Econ

(+3.5), Latin-CS (+3.5), and Psych-CalculusAB (+2.0). In contrast, only two pairings

exhibited statistically significant declines: Psych-Latin (–3.0) and Latin-Stats (–2.5).

These patterns can be visualized in Figure 3, which shows the change in accuracy after

applying Chain-of-Thought prompting across all subject pairings. Bars to the right indicate

performance gains, while bars to the left indicate declines.
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Figure 3: Change in Accuracy After Chain-of-Thought Prompting Across All Sub-

ject Pairings. Blue bars indicate performance increases; red bars indicate decreases.

Results reflect the difference in average accuracy (in percentage points) between the

CoT and non-CoT conditions for each training configuration.

Evaluating the Impact of CoT on Order Sensitivity To assess how CoT prompt-

ing influences the effect of subject order, we conducted two complementary analyses: one

focusing on directional shifts, and the other on stability.
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First, we compared the directional differences in performance between reversed subject

pairings (e.g., Psych-Econ vs. Econ-Psych) before and after CoT prompting. The average

change in order effect (CoT minus no-CoT) was minimal at +0.048 percentage points, with

no statistically significant difference detected (p = 0.930, paired t-test; p = 0.856, Wilcoxon

signed-rank). This indicates that CoT prompting does not reliably change which subject

order yields better performance.

Next, we examined whether CoT reduces the overall sensitivity to order by analyzing

changes in the absolute value of order effects. Here, CoT was associated with an average

reduction of 0.619 percentage points in absolute value of the effect, suggesting a modest

stabilizing effect. While this reduction was not statistically significant under the Wilcoxon

test (p = 0.124), it was marginally significant under the paired t-test (p = 0.085), indicating

weak evidence that CoT reduces variability introduced by subject order.

Together, these results suggest that CoT prompting does not alter the direction of order

effects but may slightly diminish their magnitude, potentially improving model stability in

interdisciplinary contexts. To further explore this stabilizing effect, we shift focus from

directional ordering to overall performance outcomes across pairings under each condition.

To isolate the effect of Chain-of-Thought prompting independent of subject ordering, we

visualized the change in CS performance across all pairings without emphasizing directional

effects (i.e., whether the header subject was introduced first or second). As shown in

Figure 4, accuracy under CoT (black) almost always consistently improves upon or remains

comparable to the No-CoT condition (pink). In addition to a general rightward shift, many

of the black segments are shorter, suggesting increased stability.
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Figure 4: Comparison of CS Accuracy With and Without Chain-of-Thought Prompt-

ing Across Subject Pairings. Each line shows accuracy before (pink) and after (black)

CoT prompting for a specific subject pairing. Directionality is omitted to focus on

overall effect. CoT generally increases or stabilizes performance, with less variation

across configurations.
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Section 0.6

Future Directions

This study introduces a scalable framework for evaluating interdisciplinary learning in LLMs

and reveals several avenues for future exploration. While our analysis centered on CS

tasks, the findings suggest that interdisciplinary effects—both positive and negative—are

highly dependent on the specific subject pairing, order of exposure, and reasoning strategy

employed.

First, future research should investigate whether the observed patterns generalize be-

yond CS. While CS served as a controlled benchmark, evaluating additional target subjects

such as history, physics, or biology would help determine whether certain domains are more

sensitive to cross-subject transfer. Additionally, extending evaluations to non-multiple-

choice formats (e.g., free response, open-ended reasoning) could test whether the observed

trends persist under less structured conditions.

Second, our findings suggest that CoT prompting may enhance not only reasoning but

also the model’s ability to absorb and apply previously seen material. In particular, we

observed that while CS alone underperformed the Raw baseline without CoT, it surpassed

Raw with CoT—despite having identical training content. This suggests that CoT may help

the model engage with training materials more effectively, potentially increasing the depth

or salience of learned representations. Future work should investigate whether this effect

generalizes across subjects and whether other reasoning strategies (e.g., few-shot exemplars,

self-reflection prompts) yield similar benefits.

Third, the role of subject order in shaping learning outcomes deserves continued at-

tention. While most pairs showed stable or minimal order effects, certain subjects—such

as Psychology and Latin—displayed directional sensitivity depending on when they were

introduced. Additional experiments are needed to test whether this asymmetry is driven by

semantic properties of the subjects, cognitive load balancing, or representational overlap.

Moreover, adaptive ordering strategies could be explored to determine whether models can
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learn optimal subject sequences for maximal transfer.

Finally, deeper interpretability analyses are needed to understand the internal mech-

anisms driving these effects. Do models update internal attention patterns, intermediate

representations, or token associations in ways that mirror human schema formation? Lever-

aging techniques such as probing classifiers, representation similarity analysis, and attention

diagnostics could shed light on the nature of interdisciplinary integration in LLMs.

In sum, this study opens up rich questions at the intersection of education, cognitive

science, and AI interpretability. As LLMs continue to be deployed in learning and decision-

making settings, understanding how they process and integrate information across domains

will be crucial for building reliable and pedagogically aligned AI systems.

Section 0.7

Conclusion

This study presents a novel framework for evaluating how LLMs respond to interdisciplinary

exposure, with a particular focus on subject pairing, ordering effects, and the role of Chain-

of-Thought prompting. By systematically varying the sequence and combination of subject

matter provided to GPT-4o, we demonstrate that LLM performance is sensitive to both

the content and structure of training inputs.

Our results reveal that interdisciplinary exposure can yield both gains and interference,

depending on the conceptual relationship between subjects and the order in which they are

introduced. Notably, certain subjects—such as Psychology—consistently improved down-

stream performance when introduced first, while others—such as Latin—tended to benefit

more when introduced second. These findings highlight the directional nature of knowledge

transfer in LLMs, suggesting that some domains serve as more effective primers than others.

We also find that CoT prompting significantly boosts performance across most subject

combinations, particularly in structured domains like Computer Science. In some cases, CoT

not only improved reasoning accuracy but also appeared to enhance the model’s ability to
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engage with training content—allowing CS to outperform a stronger Raw baseline when

paired with CoT. While CoT did not eliminate the impact of subject ordering, it showed

modest evidence of stabilizing performance by reducing the variability caused by sequencing.

Together, these findings suggest that interdisciplinary learning in LLMs is neither uni-

formly beneficial nor neutral—it is context-dependent, order-sensitive, and modifiable through

prompt design. This work contributes to a deeper understanding of how LLMs integrate in-

formation across domains, and offers practical implications for how educational content and

AI training pipelines might be structured to enhance generalization. Future work will fur-

ther probe the cognitive parallels and mechanistic underpinnings of these effects, informing

both AI alignment and the design of next-generation educational tools.

Section 0.8
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Section .1

Appendix

.1.1. Subject Cross-Impact Visualization

To provide a more comprehensive overview of the preliminary interdisciplinary effects on

GPT’s ability to generalize knowledge, we include a visualization of subject impacts when

preliminarily tested using GPT-3.5-Turbo.
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Figure 5: Subject cross-impact visualization across four test subjects (CS, Macroeco-

nomics, CompLit, Latin). Among them, CS exhibits the greatest variation in response

to interdisciplinary pairings, showing both strong gains and declines across conditions.
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