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Abstract. In applications such as magnetic resonance imaging (MRI) and synthetic aperture4
radar (SAR), the typically acquired Fourier measurements are noisy and under-sampled. Many meth-5
ods have been developed to recover the underlying signal or its important structural information,6
such as its interior boundaries or edges. This thesis expands on the Fourier concentration method7
first introduced by Gelb and Tadmor in 1999. The modification is designed to increase adaptability8
of the concentration method so that it may be more generally employed in the context of computa-9
tional inverse problems. In particular the resulting method can capture the behavior produced by10
sparsifying operators used in l1 regularization techniques. Numerical experiments demonstrate that11
our new approach is accurate in recovering edge information of a one-dimensional signal and is also12
robust with respect to noise and undersampling.13

1. Introduction. In applications such as magnetic resonance imaging (MRI)14

and synthetic aperture radar (SAR), measurements are acquired as Fourier data, and15

are typically noisy and under-sampled. Filtering can help mitigate the effects of noise16

and reduce oscillatory artifacts but by design cause structure loss, since the solutions17

are “smoothed out”. By contrast, iterative techniques such as l1 regularization can18

encode structural information using sparse transform operators but are inherently19

more costly. If the edge information is known in advance, this encoding can be done20

more accurately and efficiently.21

The concentration factor edge detection method is one technique used for locating22

these jumps [3]. These are Fourier space “filter” factors that “concentrate” the Fourier23

partial sum towards the singular support (or “edges”) of the underlying function or24

image. Concentration factors have been specifically designed to handle more difficult25

edge recovery problems, such as when data has missing bands and large amounts of26

noise [3]. In this paper, we introduce a modification to the concentration factor design27

to include a regularization term. We would like our design to include an operator28

similar to that of the differencing operator in total variation, or TV regularization,29

because differencing operators are often used to recover edges from noisy data in the30

image domain. TV regularization also promotes the recovery of piecewise smooth31

solutions in computational inverse problems. However, with high levels of noise or32

missing bands of data in the Fourier domain, differencing operators, which can only33

be applied to physical space data, generally do not recover edges accurately. This34

motivates our new concentration factor design that will be able to better handle noisy35

and missing Fourier measurements. The rest of this thesis is organized as follows: In36

section 2 we review Fourier reconstruction of piecewise smooth functions [2] and the37

concentration factor method [3]. We introduce our new concentration factor designed38

to recover the differencing operator in section 3 and demonstrate its use in section 4.39

Some concluding remarks are provided in section 5.40

2. Preliminaries. Let f be a 2π-periodic piecewise smooth function defined in41

[−π, π). The corresponding Fourier coefficients are defined as42

(2.1) f̂k =
1

2π

∫ π

−π

f(x)e−ikxdx.43
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2 J. JIANG

Suppose we are given the first 2N + 1 noisy Fourier coefficients44

(2.2) f̂ ϵ
k = f̂k + ϵk, k = −N, . . . , N,45

where {ϵk}Nk=−N = ϵ ∼ CN (0, σ2I) is circularly symmetric and the variance σ246

is obtained using the signal to noise ratio (SNR), which measures signal strength47

compared to noise level48

nk =

√
Pnoise

2
(θk + iωk).49

Here θk and ωk ∼ N (0, 1), and50

Pnoise =
Psignal

10
SNR
10

, Psignal =
||f̂ ||22
2N + 1

.51

Observe higher SNR levels result in less noise, as the strength of the signal is more52

dominant.53

The Fourier partial sum is defined as54

(2.3) SNf(x) =

N∑
k=−N

f̂ke
ikx,55

and for smooth and periodic functions SNf → f exponentially [2]. Its discrete approx-56

imation on Ngrid grid points is {SNf(xj)}
Ngrid

j=1 . However, when f is only piecewise57

smooth, (2.3) gives rise to the Gibbs phenomenon, which is characterized by the over-58

shooting and undershooting oscillations around discontinuities. The overall order of59

accuracy is also reduced to O( 1
N ) in smooth regions away from the discontinuities.60

For instance, consider a square wave function defined as (recall f(x+2πl) = f(x)61

for l ∈ Z)62

(2.4) f(x) =

{
−1, if − π

6 + π
3m ≤ x < π

6 + π
3m, m = 0,±2

1, otherwise
63

Figure 1(left) displays the approximation of (2.4) using (2.3) and 129 Fourier coeffi-64

cients. As expected, Gibbs oscillations can be seen at the interior jump discontinuity65

locations.

Figure 1: (left) Reconstruction of a square wave function using the standard Fourier
partial sum; (middle) with SNR of 10; (right) missing Fourier bands of −32 ≤ k ≤
−16 ∪ 16 ≤ k ≤ 32 and SNR of 10. Here 2N + 1 = 129.

66
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EDGE DETECTION FROM INCOMPLETE AND NOISY FOURIER DATA 3

The standard Fourier partial sum approximation is also quite sensitive to noise67

which can dominate the magnitude of the high frequency coefficients. Specifically,68

replacing f̂k with f̂ ϵ
k in (2.3) yields more undesirable oscillations, as seen in Fig-69

ure 1(middle) where the SNR is 10. Finally, missing bands of Fourier data can also70

have unwanted effects that distort the reconstruction, as is evident in Figure 1(right)71

where the values of f̂k, −32 ≤ k ≤ −16 ∪ 16 ≤ k ≤ 32, have been “zeroed out”.72

Observe that the edges are less sharp and the correct amplitude at edge locations is73

hard to determine. The “missing band” case reflects the situation where the some74

data acquisitions might be unreliable.75

While various techniques have been designed to improve the overall accuracy of76

the function approximation, in some applications it is important to simply know the77

locations of the jump discontinuities, for example in classification or identification78

algorithms. In other cases the signal recovery algorithm might benefit from first79

identifying such features in a pre-processing step. Hence we are motivated to design80

techniques that recover edges of piecewise smooth signals from their incomplete and81

noisy Fourier data.82

2.1. The concentration factor edge detection method. We begin by de-83

scribing the concentration factor edge detection method, which was introduced in [1]84

to determine the edges of a piecewise smooth periodic function f(x) in [−π, π) from85

its corresponding Fourier coefficients (2.1). This requires the following definition:86

Definition 1. (Jump Function) Let the right and left-hand limits of the function,87

f(x+) and f(x−), be defined at every point x in the domain [−π, π). The jump88

function associated with f and denoted by [f ] is defined as the difference between the89

right and left hand limits of the function at every point x; i.e.,90

(2.5) [f ](x) := f(x+)− f(x−).91

92

Note that the jump function is non-zero only at a jump discontinuity, where it takes93

the value of the jump. We will use the terms “jump” and “edge” interchangeably94

throughout this exposition.95

For ease of presentation, and without loss of generality, we consider that f only96

has a single discontinuity at the value x = ζ. (Our numerical experiments contain97

multiple edges.) In this case we can also write (2.5) as98

[f ](x) = [f ](ζ)Iζ(x),99

where Iζ(x) is the indicator function with Iζ(x) = 1 when x = ζ and 0 otherwise. It100

follows from (2.1) that101

(2.6) f̂k =
1

2π

∫ ζ−

−π

f(x)eikxdx+
1

2π

∫ π

ζ+

f(x)eikxdx.102

Using integration by parts, this becomes103

f̂k = (f(ζ+)− f(ζ−))
e−ikζ

2πik
+

1

ik
(
1

2π

∫ ζ−

−π

f ′(x)eikxdx+
1

2π

∫ π

ζ+

f ′(x)eikxdx).104

Continuing to integrate by parts, we obtain105

f̂k =
1

2π
(
[f ](ζ)

ik
+

[f ′](ζ)

(ik)2
+

[f ′′](ζ)

(ik)3
+ · · · [f

(p)](ζ)

(ik)p+1
+ · · · )e−ikζ , k ̸= 0,106
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4 J. JIANG

where [f (p)](ζ) denotes the jump discontinuity value of the pth derivative of f at ζ.107

It follows that108

(2.7) f̂k = [f ](ζ)
1

2πik
+O(

1

k2
),109

suggesting that one might be able to approximate [f ](ζ) from the given Fourier co-110

efficients {f̂k}Nk=−N in (2.1), and more generally [f ](x) =
∑J

j=1[f ](ζj)Iζj (x) when111

{ζj}Jj=1 are distinct discontinuity locations of f on [−π, π).112

The concentration factor edge detection method, introduced in [1], locates the113

edges of a piecewise smooth function by “concentrating” its Fourier partial sum at114

the singular support. It is defined as:115

(2.8) Sσ
N [f ](x) = i

N∑
k=−N,k ̸=0

σ(
|k|
N

)sgn(k)f̂ke
ikx.116

The concentration factors σ(η), η ∈ (0, 1), satisfy a set of admissibility conditions117

given by118

1. Kσ
N (x) =

∑N
k=1 σ(

k
N ) sin(kx) is odd;119

2. σ(η)
η ∈ C2(0, 1);120

3.
∫ 1

ϵ
σ(η)
η → −π, where ϵ = ϵ(N) > 0 is small.121

Observe that Sσ
N [f ](x) = (Kσ

N ∗f)(x), meaning that convolving f with an odd function122

leads to “concentration” at its singular support. The second admissibility requirement123

enforces enough smoothness for convergence of (2.8), while the third ensures proper124

normalization. Some examples of concentration factors include125

• Trigonometric: σG(η) =
π sin(πη)
Si(π) , where Si(π) =

∫ π

0
sin(x)

x dx.126

• Polynomial: σp
P (η) = pπηp. p > 0127

• Exponential: σE = π
C ηe

1
αη(η−1) where C =

∫ 1−ϵ(N)

ϵ(N)
exp( 1

ατ(τ−1) )dτ and α >128

0.129

Figure 2 plots each of these concentration factor for η discretized as |k|
N . Observe that130

the concentration factors behave like band pass filters which serve to enhance some131

of the high frequency information of the piecewise smooth function f .

Figure 2: Plot of polynomial (p = 1), trigonometric, and Gaussian (α = 1) concen-
tration factors for −40 ≤ k ≤ 40.

132
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EDGE DETECTION FROM INCOMPLETE AND NOISY FOURIER DATA 5

If we seek to approximate [f ](x) on a set of Ngrid equally spaced grid points,133

xj = −π + (j − 1)∆x, j = 1, . . . , Ngrid with ∆x = 2π
Ngrid

, we can write (2.8) in134

matrix vector notation. To this end, we define the inverse Fourier operator matrix135

Finv ∈ CNgrid×2N+1 in terms of its components as136

(Finv)jk = eikxj , j = 1, . . . , Ngrid, k = −N, . . . , N,137

which is appropriately shifted for computational purposes. Similarly,
⃗̂
f = {f̂k}Nk=−N ∈138

C2N+1 is the vector of Fourier coefficients, σ⃗ = {σ(|k|/N)}Nk=−N ∈ R2N+1 corresponds139

to the vector of concentration factors evaluated at |k|/N , and s⃗ = {1 · sgn(k)}Nk=−N ∈140

R2N+1, then141

(2.9) {Sσ
N [f ](xj)}

Ngrid

j=1 = iFinv(
⃗̂
f ⊙ σ⃗ ⊙ s⃗) ≈ {[f ](xj)}

Ngrid

j=1 ,142

where ⊙ represents componentwise multiplication. Note that due to cancellations and143

symmetries, (2.9) recovers real values.144

2.2. Designing concentration factors. This investigation extends the con-145

centration factor design method in [3] to consider other design properties, namely to146

be able to recover the first order finite difference of the discretized function f(xj),147

j = 1, . . . , Ngrid, which will be described more in detail in section 3. For self con-148

tainment purposes, the basic methodology for concentration factor design is reviewed149

below. More details can be found in [3]. We note that in contrast to the original con-150

centration factor method based on admissible concentration factor functions, σ(η),151

the concentration factor design method, seeks a concentration factor vector σ⃗ such152

that (2.9) is satisfied for xj , j = 1, . . . , Ngrid.153

We begin by defining the unit ramp function r(x) as154

(2.10) r(x) =

{
−π−x
2π x < 0

π−x
2π x ≥ 0.

155

The corresponding jump function is156

(2.11) [r](x) =

{
1 x = 0

0 else.
157

The Fourier coefficients (2.1) of r(x) are easily determined as158

(2.12) r̂k =

{
1

2πik , k ̸= 0,

0, k = 0.
159

When comparing (2.12) to (2.7), it is evident that160

f̂k ≈ [f ](0)r̂k,161

that is, a low order approximation to the unknown quantity [f ](0) (in this case, by162

definition of the ramp function, the discontinuity occurs at ζ = 0) can be obtained by163

modeling the known f̂k in terms of the the ramp function coefficients. Based on the164

linearity of the Fourier partial sum (2.3) it follows that165

(2.13) [f ](x) ≈ [f ](0)r(x).166

A few remarks are in order.167
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6 J. JIANG

Remark 2.1. [Translation of discontinuity.] We could also define the ramp func-168

tion to have the discontinuity at x = ζ. In this case we write rζ(x) = r(x− ζ), with169

r̂ζk appropriately translated in (2.1). The relationship between (2.12) and (2.7) still170

holds with f̂k ≈ [f ](ζ)r̂ζk.171

Remark 2.2. [Superposition of ramp functions.] It then follows that a piecewise172

smooth periodic function has a linear approximation which we can write as173

f(x) ≈
J∑

j=1

αjrζj (x),174

for some coefficients αj , j = 1, . . . , J . For the purposes of edge detection, this lin-175

ear approximation to f(x) is sufficient, since we are not interested in recovering the176

variability in the smooth regions.177

To design the concentration factors, we first note that W.L.O.G, for a periodic178

function in [−π, π) with a singular jump at x = ζ, it follows from (2.1) that (2.9) can179

be written as180

Sσ
N [f ](x) =

∑
0<|k|≤N

f̂k i σ

(
|k|
N

)
sgn(k)eikx181

=
∑

0<|k|≤N

[
1

2π

(
[f ](ζ)

ik
+

[f ]′(ζ)

(ik)2
+ · · ·

)
e−ikζ

]
i σ

(
|k|
N

)
sgn(k)eikx182

=
[f ](ζ)

2π

∑
0<|k|≤N

σ
(

|k|
N

)
sgn(k)

k
eik(x−ζ)

183

+
[f ′](ζ)

2π

∑
0<|k|≤N

σ
(

|k|
N

)
sgn(k)

ik2
eik(x−ζ)

184

+
[f ′′](ζ)

2π

∑
0<|k|≤N

σ
(

|k|
N

)
sgn(k)

i2k3
eik(x−ζ) + · · ·(2.14)185

Based on (2.13) and the surrounding discussion, we write the first term on the186

right hand side of (2.14) as [f ](ζ)Wσ,N
0 (x − ζ), where the signature profile Wσ,N

0 (x)187

is defined as188

(2.15)

Wσ,N
0 (x) := Sσ

N [r](x) = i

N∑
k=−N,k ̸=0

σ(
|k|
N

)sgn(k)r̂ke
ikxj =

1

2π

N∑
k=−N,k ̸=0

σ( |k|N )

|k|
r̂ke

ikxj189

with r̂k defined in (2.12). The remaining terms in (2.14) describe higher order jump190

responses, which we write as191

Wσ,N
1 (x) =

∑
0<|k|≤N

σ
(

|k|
N

)
sgn(k)

2πik2
eikx, Wσ,N

2 (x) =
∑

0<|k|≤N

σ
(

|k|
N

)
sgn(k)

2πi2k3
eikx,192
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EDGE DETECTION FROM INCOMPLETE AND NOISY FOURIER DATA 7

and more generally193

Wσ,N
q (x) =

∑
0<|k|≤N

σ
(

|k|
N

)
sgn(k)

2πiqkq+1
eikx.194

Substituting the jump responses back into (2.14) yields195

Sσ
N [f ](x) = [f ](ζ)Wσ,N

0 (x− ζ) + [f ′](ζ)Wσ,N
1 (x− ζ) + [f ′′](ζ)Wσ,N

2 (x− ζ) + · · ·196

= [f ](ζ)Wσ,N
0 (x− ζ) +O

(
1

N

)
.(2.16)197

As already noted, without loss of generality we can translate (2.16) so that the198

discontinuity occurs at x = 0, yielding Sσ
N [f ](x) ≈ [f ](0)Wσ,N

0 (x). It follows that σ⃗199

should be constructed so that its components σk = σ( |k|N ) generate the corresponding200

Wσ,N
0 (x) to behave like the indicator function, given by201

(2.17) δ0(x) =

{
1 x = 0

0 else
202

in order to best approximate [f ](x). Once again we note that δ0(x) can be translated203

to accommodate the discontinuity at x = ζ, which would inevitably lead to the same204

design. The concentration factor design method seeks to satisfy Wσ,N
0 (xj) = δ0(xj),205

j = 1, . . . , Ngrid which leads to the minimization problem:206

min
σ

||Wσ,N
0 ||2207

subject to Wσ,N
0 |x=0 = 1.208

Other constraints can be used to ensure the appropriate choice of σ⃗, including209

• The components of σ⃗ are all non-negative, with σ(1) = 0 and σ(N) = 0. This210

leads to:211

min
σ

||Wσ,N
0 ||2212

subject to Wσ,N
0

∣∣
x=0

= 1213

σk ≥ 0214

σ1 = σN = 0215

216

• In addition to the above constraints, we also seek to restrict the jump response217

to be small beyond the immediate area around the jump locations (reduction218

of oscillatory responses):219

min
σ

||Wσ,N
0 ||2220

subject to Wσ,N
0

∣∣
x=0

= 1221

σk ≥ 0222

σ1 = σN = 0223 ∣∣∣Wσ,N
0

∣∣∣
|x|≥ϵ

≤ tol.224
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8 J. JIANG

• Finally, we address the case where some bands of Fourier data might be225

missing. That is, we define kmissing as the range of integers k ∈ [kmin, kmax]∪226

k ∈ [−kmax,−kmin] for which f̂k is unknown. In this case we desire σ(k) = 0227

for k ∈ kmissing, yielding the optimization problem228

min
σ

||Wσ,N
0 ||2229

subject to Wσ,N
0

∣∣
x=0

= 1230

σk ≥ 0231

σk = 0, k ∈ kmissing232

σ1 = σN = 0233 ∣∣∣Wσ,N
0

∣∣∣
|x|≥ϵ

≤ tol.234

In our examples, we use ϵ = .35 and tol = 10−2. In general these values depend on235

N and kmissing.236

Remark 2.3 (Discrete versus continuous approximation). It is important to note237

that the original concentration factor edge detection method is an approximation to238

the jump function, and that admissible concentration factors are functions defined on239

[0, 1]. The concentration factor design method solves the minimization problem for240

the discrete vector σ⃗ for the recovery of the jump function at a given set of grid point241

values. To avoid cumbersome notation we still write σ and x in the description of the242

design problem and only make a distinction using vector notation when needed.243

3. Concentration Factor Modified Design. The main purpose of this inves-244

tigation is to expand on the concentration factor design previously discussed to further245

include the ability to estimate the predicted edges of Lf⃗ using different operators L,246

such as finite differencing operators of various orders. As already noted, first order247

differencing is often used as an edge detector for functions with sparse gradients in the248

physical domain. We define the first order differencing matrix L1 ∈ RNgrid−1×Ngrid249

as250

L1 =


−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
0 0 −1 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1

 .251

Figure 3 shows the application of L1 on the square wave function defined in (2.4).252

Observe that L1f⃗ recovers the the edge locations at specific grid point locations xj ,253

j = 1, . . . , Ngrid.254

However, using the Fourier partial sum (2.3) with noisy Fourier coefficients f̂ ϵ
k255

and missing bands of data to approximate f⃗ yields inaccurate results when doing256

first order differencing. Results in Figure 4 demonstrate that neither LFinv
⃗̂
fband nor257

LFinv
⃗̂
f ϵ
band accurately recover the jump amplitudes, meaning that we need to seek258

other methods for edge recovery when handling noisy and missing data.259

To design the concentration factors that can recover the edges for Lf⃗ , we first260

need to transform Lf⃗ to the Fourier domain. This is accomplished using the discrete261
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EDGE DETECTION FROM INCOMPLETE AND NOISY FOURIER DATA 9

Figure 3: Plot of a square wave function with edges found through first order finite
differencing matrix L1.

Figure 4: Plot of a square wave function with edges found through first order finite

differencing using LFinv
⃗̂
f as an approximation of Lf⃗ . We use 1025 Fourier coefficients

and missing bands of −256 ≤ k ≤ −128 ∪ 128 ≤ k ≤ 256. (left) no additional noise;
(right) SNR is 20dB. The new designed concentration factor results are also shown
for each case (red).

Fourier transform operator, with components defined as262

(3.1) F (k, j) =
1

Ngrid
e−ikxj , −N ≤ k ≤ N, j = 1, . . . , Ngrid263

for equally spaced grid points xj = −π+(j−1) 2π
Ngrid

. The idea is then that (FLf⃗)k ≈264

if̂kσksgn(k) in (2.8). As before, we also exploit the relationship in (2.13) and use r⃗ for265

our design purposes. Finally, we use the “missing band” discrete Fourier transform266

matrix267

(3.2) (Fmb)(k, j) =

{
0 if k ∈ kmissing

F (k, j) otherwise
268

so that we do not try to use information that is unavailable to us to construct σ⃗. This269
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10 J. JIANG

leads us to the “baseline” design problem,270

min
σ⃗

∥∥∥i ⃗̂f ⊙ σ⃗ ⊙ s⃗ − FmbLr⃗
∥∥∥
2
+ λ

∥∥∥Wσ,N
0

∥∥∥
2

271

subject to Wσ,N
0

∣∣
x=0

= 1272

where we have defined the components of s⃗ as sk = sgn(k) and ⊙ again means compo-273

nentwise multiplication. The regularization term
∥∥∥Wσ,N

0

∥∥∥
2
is included for robustness,274

with parameter λ chosen to minimize the impact of missing bands of information.275

Following the constraint considerations described above, we write the general276

minimization problem as277

min
σ⃗

(
||i ⃗̂f ⊙ σ⃗ ⊙ s⃗ − FmbLr⃗||2 + λ||Wσ,N

0 ||2
)

278

subject to Wσ,N
0

∣∣
x=0

= 1279

σk ≥ 0280

σ1 = σN = 0281

σk = 0, k ∈ kmissing282 ∣∣∣Wσ,N
0

∣∣∣
|x|≥ϵ

≤ tol.(3.3)283

As before, in our examples we choose ϵ = .35 and tol = 10−2. In general these284

values depend on N and kmissing.285

4. Numerical Experiments. We now test our method on various test func-286

tions with different amounts of Fourier data (N), noise (SNR), and missing bands of287

information (kmissing).288

Ramp Function. We first test the operator L = L1, or the first order finite289

differencing operator. We use the ramp function r(x) defined in (2.10) as our first290

test function. Since r(x) is also used to design σ⃗, we anticipate good recovery of the291

edges of Lf⃗ = Lr⃗. Figure 5 compares the results of using (2.9) with the approximation292

of Lf⃗ (which would not be available) and LFinv
⃗̂
f with N = 1025. We also show the293

designed concentration factors σ⃗. It is evident that LFinv
⃗̂
f does not yield the correct294

jump location and amplitude of 1 at x = 0. To complicate the problem, we then add295

varying levels of noise by changing the SNR, with results using SNR = 10, 20, and296

100 shown in Figure 6.297

Even with SNR = 10, the highest noise level, it is clear that the jump function298

still maintains the correct amplitude and jump location. This is promising as many299

real-world problems have high levels of noise.300

Next, we test the use of our designed concentration factors with missing bands301

of data. We impose missing bands of −256 ≤ k ≤ −128 ∪ 128 ≤ k ≤ 256 for 1025302

Fourier coefficients and show the result of the jump function reconstruction and the303

designed concentration factors in fig. 7304

The concentration factors, as can be seen in panel b) of fig. 7, are zeroed out for305

the area of the missing bands on both the positive and negative side. The reconstruc-306

tion of the jump function, however, remains intact with the correct jump height and307

location.308

Lastly, we compare the use of our new designed concentration factors with other309

standard concentration factors as mentioned in sec. 2.2. We first look at the noiseless310
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Figure 5: Ramp function in noiseless case with no missing bands. (left) Concentration
vector σ⃗ found in (3.3); (right) Edge approximation (2.9) using designed concentration

factors (red) compared to L1Finv
⃗̂
f (purple) and the true finite difference edge recovery

Lf⃗ (yellow).

Figure 6: Jump function using designed concentration factors for the ramp function
with SNR = (left) 10; (middle) 20; and (right) 100 dB.

Figure 7: Ramp function in noiseless case with missing bands −256 ≤ k ≤ −128 ∪
128 ≤ k ≤ 256. (left) Concentration vector σ⃗ found in (3.3); (right) Edge approxima-

tion (2.9) using designed concentration factors (red) compared to L1Finv
⃗̂
fband, where

⃗̂
fband is the vector of Fourier coefficients accounting for missing bands (yellow).

case with no missing data in fig. 8. We note that we zero out any concentration311

factors in the Gaussian case where we divide by 0.312
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Figure 8: Jump function for the ramp function using designed concentration factors
compared with (left) σG, (middle) σP , and (right) σE .

We see that the amplitude of the jump is correctly predicted only when using313

polynomial concentration factors. This worsens in the noisy case - when setting SNR314

= 20, we retrieve the results as seen in fig. 9.315

Figure 9: Jump function for the ramp function using designed concentration factors
compared with (left) σG, (middle) σP , and (right) σE with SNR = 20.

Similarly, when looking at the noiseless case with missing bands from −64 ≤ k ≤316

−32 ∪ 32 ≤ k ≤ 64, we retreive fig. 10.317

Figure 10: Jump function for the ramp function using designed concentration factors
compared with (left) σG, (middle) σP , and (right) σE with missing bands from −64 ≤
k ≤ −32 ∪ 32 ≤ k ≤ 64.

4.1. Box Function. In real-world problems, the underlying signal would be318

unknown. We would thus design concentration factors for an estimated underlying319

function that may not be correct. In order to test the effectiveness of the concentration320

factor design for estimating other, unknown function, we use the simple box function321

as a test function for the concentration factors designed for the ramp function.322

This manuscript is for review purposes only.



EDGE DETECTION FROM INCOMPLETE AND NOISY FOURIER DATA 13

The box function is defined as:323

(4.1) fbox(x) =

{
1 −1 ≤ x ≤ 1

0 else
324

We first do a reconstruction of the jump function in the noiseless case with missing325

bands −64 ≤ k ≤ −32 ∪ 32 ≤ k ≤ 64. We retrieve this in fig. 11:326

Figure 11: Jump function of box function with missing bands −256 ≤ k ≤ −128 ∪
128 ≤ k ≤ 256 but no noise.

We see that the jump function is properly recovered, with both jump locations327

with the proper amplitudes of 1 when x = −1 and −1 when x = 1. Furthermore,328

when adding various levels of noise with SNR = 10, 20, and 100 (essentially no noise)329

in fig. 12, we once again see that this does not affect the recovery of jump locations330

and amplitude.331

Figure 12: Jump function for the box function using the new design of concentration
factors where SNR = (left) 10, (middle) 20, and (right) 100, and there are missing
bands of −256 ≤ k ≤ −128 ∪ 128 ≤ k ≤ 256.

4.2. Square Wave Function. We can extend the box function to the square332

wave function.333

We first do a reconstruction of the jump function in the noiseless case with no334

missing bands and compare to the use of LFinv
⃗̂
f as an edge recovery technique. We335

also test the case where we have missing bands of −256 ≤ k ≤ −128 ∪ 128 ≤ k ≤ 256336

and SNR = 20. These results are displayed in fig. 13:337
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Figure 13: Jump function of square wave function with (left) no missing bands and
no noise, and (right) missing bands of −256 ≤ k ≤ −128 ∪ 128 ≤ k ≤ 256 with SNR
= 20.

Even with noise and missing bands, the jump function reconstruction using our338

new design of concentration factors recovers the edge locations and amplitude accu-339

rately. However, using LFinv
⃗̂
f and LFinv

⃗̂
f ϵ
band do not provide the correct amplitudes,340

and the edge recovery is much more sensitive to noise as indicated by the oscillatory341

nature seen in the right graph of fig. 13.342

We can also compare the use of our new design of concentration factors to that343

of the existing trigonometric, polynomial, and Gaussian concentration factors. We344

see in fig. 14 that for a square wave function missing bands, the amplitude of the345

jumps are not correctly predicted when using any of the three previous concentration346

factors. Here we have missing bands from −64 ≤ k ≤ −32 ∪ 32 ≤ k ≤ 64.347

Figure 14: Jump function for the square wave function using designed concentration
factors compared with (left) σG, (middle) σP , and (right) σE concentration factors.
We have missing bands from −64 ≤ k ≤ −32 ∪ 32 ≤ k ≤ 64.

Similarly, when looking at the noisy case with SNR = 20 and missing bands from348

−64 ≤ k ≤ −32 ∪ 32 ≤ k ≤ 64, we retreive fig. 15 and notice that the amplitudes349

are once again not accurately recovered when using trigonometric, polynomial, or350

Gaussian concentration factors.351

4.3. Multi-Feature Function. We also would like to test our recovery on func-352

tions that have multiple, different features.353
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Figure 15: Jump function for the square wave function using designed concentration
factors compared with (left) σG, (middle) σP , and (right) σE concentration factors.
We have missing bands from −64 ≤ k ≤ −32 ∪ 32 ≤ k ≤ 64 and SNR = 20.

fmulti-feature =


3
2 , − 3π

4 ≤ x < −π
2

7
4 − x

2 + sin
(
x− 1

4

)
, −π

4 ≤ x < π
8

11
4 x− 5, 3π

8 ≤ x < 3π
4

0, otherwise

354

Figure 16 shows the reconstruction of the jump function in the noiseless case with355

no missing bands, as well as the case with missing bands −256 ≤ k ≤ −128 ∪ 128 ≤356

k ≤ 256 and SNR = 20.357

Figure 16: Jump function of multi-feature function with (left) no missing bands and
no noise, and (right) missing bands −256 ≤ k ≤ −128 ∪ 128 ≤ k ≤ 256 with SNR =
20.

Even with noise and missing bands, the jump function reconstruction using our358

new design of concentration factors recovers the edge locations and amplitude accu-359

rately. We can see this in comparison to the trigonometric, polynomial, and Gaussian360

concentration factors.361

We see in fig. 17 that for more complicated functions with multiple features and362

missing bands, the amplitude of the jumps are not correctly predicted when using363

any of the three previous concentration factors. Here we have missing bands from364

−256 ≤ k ≤ −128 ∪ 128 ≤ k ≤ 256.365

Similarly, when looking at the noisy case with SNR = 20 and missing bands from366

−256 ≤ k ≤ −128∪ 128 ≤ k ≤ 256, we retreive fig. 18 and notice that the amplitudes367
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Figure 17: Jump function for the multi-feature function using designed concentration
factors compared with (left) σG, (middle) σP , and (right) σE . We have missing bands
from −256 ≤ k ≤ −128 ∪ 128 ≤ k ≤ 256.

are once again not accurately recovered when using trigonometric, polynomial, or368

Gaussian concentration factors.369

Figure 18: Jump function for the multi-feature function using designed concentration
factors compared with (left) σG, (middle) σP , and (right) σE and SNR = 20.

4.4. Robustness. In order to test the robustness of our method of concentration370

factor design, we complete the reconstructions with 3 varying levels of N to vary the371

number of Fourier measurements used. We compare our jump recovery with that of372

using first order finite differencing in fig. 19.373

Figure 19: Jump function of a square wave function using (left) the new design of

concentration factors and (right) first order finite differencing L1f⃗ with 3 different
numbers of Fourier measurements N . We have no noise and no missing bands.
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We also investigate the accuracy of our jump recovery when using 3 different levels374

of missing band data. With N = 512 and 1025 Fourier coefficients, we test the effects375

of using no missing bands, missing bands of −256 ≤ k ≤ −128 ∪ 128 ≤ k ≤ 256, and376

−256 ≤ k ≤ −192 ∪ 192 ≤ k ≤ 256 compared to first order finite differencing as seen377

in fig. 20.378

Figure 20: Jump function of a square wave function using (left) the new design of

concentration factors and (right) finite differencing Lf⃗ with 3 different bandwidths of
missing bands: no missing bands (red), −256 ≤ k ≤ −128 ∪ 128 ≤ k ≤ 256 (yellow),
and −256 ≤ k ≤ −192 ∪ 192 ≤ k ≤ 256 (purple).

From these plots, it can be seen that using first order finite differencing LFinv
⃗̂
fband379

yields inaccurate and variable jump recovery for all levels of N and missing bands.380

However, our concentration factor design yields robust and accurate results when381

varying both these factors.382

4.5. Other Operators. We would also like to analyze the use of other operators383

L, such as higher order finite differencing matrices. Here we present a few examples384

of edge detection with missing bands for various estimation functions in Figure 21.385

5. Concluding remarks. In conclusion, we have created a concentration factor386

design for a ramp function that accurately and robustly recovers the jump function387

of an unknown estimation function. Our method works especially well compared to388

existing methods such as finite differencing when considering noisy data or missing389

bands of data. This method can be used to help recover edge information about the390

underlying function to aid in further function reconstruction and recovery.391
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