

Mathematical Data Science

Data Intensive Final Project

Faculty Advisor: Professor Peter Mucha

Digital Twins for Athletic Performance

A Statistical Integrative Physiology Approach to an Augmented Coupled Tank Model for
Human Metabolism, Physiology, and Fatigue in Endurance Sports

John DeForest

Abstract

This project develops and validates an individualized physiological digital twin model for
endurance performance using test data from 53 runners. Extending Boillet’s (2024)
dynamic three-tank energy model and Lidar’s (2023) metabolic breakdown, we simulate
VO₂ kinetics, lactate accumulation, ventilatory load, and energy substrate use in response
to graded treadmill protocols. Ventilatory and lactate thresholds are detected
algorithmically, and model parameters such as efficiency (η), oxygen energy yield (C1), and
anaerobic work capacity (W′non-ox) are inferred per subject. A novel correction method
addresses systematic bias in raw RER = VCO₂/VO₂ data using global scaling constrained by
plausible RER ranges. Model outputs match measured VO₂ trends with strong fidelity
(mean RMSE = 0.365 L/min, MAPE = 11.9%) despite noisy data, and extend to estimate
blood lactate, fatigue state, and metabolic demand composition under arbitrary
workloads. The resulting digital twins not only replicate classical test behavior (e.g., 3-min
all-out, threshold trials) but enable constant-load simulations and physiological inference
in silico. This modeling framework provides a foundation for robust, data-grounded
estimation of endurance potential and mechanistic understanding of performance
limitation.

Introduction
Modeling human endurance performance requires integrating diverse physiological
subsystems—oxygen uptake, energy production, and fatigue dynamics—into a coherent,
mechanistically grounded framework (Sreedhara et al., 2019). While traditional exercise
science research often isolates individual variables, pathways, or associations, recent
advances in digital twin modeling aim to synthesize this fragmented knowledge into
unified, predictive systems. This project extends such efforts by recreating and augmenting
the tank-based energetic model introduced by Boillet et al. (2024), incorporating additional
insights from Lidar et al. (2023), and adapting them to running-based exercise test data.

The core objective of this project is to develop a personalized simulation framework that
estimates and predicts an athlete’s physiological state and performance potential across a
wide spectrum of exercise intensities. This begins with the reconstruction of Boillet’s
differential equation model, which captures the interaction of aerobic and anaerobic
energy systems through a system of biophysically interpretable compartments. The
framework is extended to incorporate additional physiological mechanisms, including
dynamic blood lactate behavior, variable oxygen-to-energy efficiency (C1), and ventilatory
energy cost modeling.

The resulting model is applied to treadmill-based threshold and VO₂max tests from a
cohort of 53 runners with diverse performance profiles. To support data fidelity and
inference accuracy, automated procedures are implemented for ventilatory threshold
detection and for correcting known sources of bias in raw metabolic cart data.The digital
twin framework is used to simulate not only standard physiological testing protocols but
also novel scenarios, such as constant-load time-to-fatigue estimates and muscle-to-
blood lactate lag effects. In doing so, the model connects local muscular metabolism to
whole-body oxygen and lactate behavior, enabling parameter inference for individuals from
sparse test data.

The results demonstrate strong alignment between simulated and measured values for key
outputs (e.g., VO₂, metabolic power, RER, blood lactate), and provide interpretable
parameter estimates (e.g., W′, η) with physiological meaning. This integrated modeling
approach lays the groundwork for personalized diagnostics, endurance prediction, and
future machine learning-based parameter estimation from partial test data.

Background
Human endurance performance is governed by a complex interplay of aerobic and
anaerobic energy systems, muscle fiber characteristics, and metabolic feedback
processes (Lidar et al., 2023). During prolonged or high-intensity exercise, the body must
dynamically regulate oxygen uptake (VO₂), manage metabolite accumulation (e.g., lactate),
and allocate energy across multiple physiological pathways to sustain effort (Van Der
Zwaard et al., 2021). Traditional exercise science has characterized these processes via
threshold testing (e.g., lactate or ventilatory turnpoints from incremental stages), isolated
regression studies, and other focused but uncomprehensive analyses. However, such
approaches often fail to capture the full time-dependent, nonlinear dynamics of
performance or connect local muscle metabolism to system-wide outputs (Sreedhara,
2019).

Physiological Modeling of Energy Systems

A central concept in endurance modeling is that energy supply is partitioned among three
major pathways:

• Oxidative (aerobic) system: Supplies the majority of energy in steady-state exercise.
Characterized by oxygen uptake and efficient but slow energy release.

• Glycolytic (anaerobic) system: Breaks down carbohydrates without oxygen,
producing energy quickly but also lactate.

• Phosphocreatine (PCr) system: Provides rapid energy for short bursts (seconds), but
is quickly depleted.

Building on previous work by Margaria and Morton (Morton, 1986; Morton et al., 1990),
Boillet et al. (2024) formalized these systems as a three-tank model, where each "tank"
represents an energy reservoir (aerobic, glycolytic, phosphagen), and power output is
governed by flow between them based on tank "heights" (pressures). The model is built as a
system of coupled differential equations where energy flow constraints and physiological
parameters control response behavior. Crucially, the Boillet model reproduces several
hallmark features of exercise physiology, including threshold behaviors, VO₂ kinetics, and
fatigue onset, while remaining interpretable and grounded in physical analogies (Gonzalez
et al., 2019). This model will be explained in mathematical detail in the Methods section.

Understanding endurance energetics has importance beyond sport -- Aerobic metabolism
underpins the energy production needed for life itself. Mitochondrial dysfunction—the

failure of aerobic energy systems—is implicated in diseases like Type 2 diabetes, cancer,
cardiovascular disease, and Alzheimer’s (San Millán, 2023). Thus, endurance modeling can
contribute both to performance optimization and broader biomedical understanding of
how the body responds to energetic demands.

VO₂ Kinetics and Fatigue

VO₂ kinetics—the rate at which oxygen uptake adjusts to changes in exercise intensity—
has been modeled since at least Hughson (1988) using exponential or multi-compartment
dynamic models. At intensities below the first lactate threshold (LT1), VO₂ tends to reach
steady state rapidly (Barstow, 2000). At higher intensities, particularly above the second
threshold (LT2), VO₂ continues to rise ("drift") and can indicate rising fatigue (Saunders et
al., 2000). Endurance athletes have been long tested for and characterized by their
“VO2max” – the maximal amount of oxygen their body can use during exercise (Seiler,
2010). Many different multi-component saturating exponential models have been
constructed and proposed, which tend to try to best describe the following behavior drawn
out by Jones et al. (2011):

Figure 1: Conceptual model of VO2 responses to constant work rate (speed or power)
demand at different intensities, showing time constant variations and other observed and

hypothesized effects. Taken from Jones, et al. (2011)

Fatigue arises from both local (muscular) and systemic causes, including metabolite
buildup (especially lactate and associated ions), depletion of energy stores, and increased
ventilatory and metabolic demand (Zuccarelli et al., 2018). Understanding the interplay of
these factors, how they vary across individuals, and how they reveal themselves in
ventilatory data is key to modeling endurance performance.

Lactate, Thresholds, and the Physiology of Exercise Intensity

Exercise intensity in endurance physiology is often stratified into distinct zones based on
underlying metabolic transitions. These zones are defined by measurable breakpoints—
called thresholds—which signal shifts in the dominant energetic systems. Two such
thresholds are particularly important in modeling: the first lactate turnpoint (also called the
first lactate threshold) (LT1) and the second lactate turnpoint (LT2). These correspond
approximately to the onset of non-zero lactate accumulation above resting levels and the
limit of sustainable lactate clearance, respectively (Caen et al., 2022; Stegmann et al.,
1981).

Why Lactate?

As detailed by Van Der Zwaard et al. (2021), Lactate is a byproduct of anaerobic glycolysis,
the metabolic pathway by which glucose is rapidly broken down in the absence of
sufficient oxygen, primarily in Type II (fast-twitch) muscle fibers. When exercise intensity
increases beyond what aerobic metabolism alone can support, anaerobic energy
production is recruited—yielding lactate as a measurable consequence. Thus, lactate
concentration functions as an indirect biomarker of anaerobic system engagement.

However, lactate is not merely a waste product. It is increasingly recognized as a fuel,
signaling molecule, and buffer substrate, shuttled between muscle fibers and
metabolically active tissues (Bartoloni et al., 2024). It is correlated with—but not causative
of—fatigue. Still, because its concentration reflects an accumulation of fatigue-inducing
conditions (e.g., hydrogen ion concentration, reduced pH, metabolite accumulation),
lactate remains one of the most practical and interpretable indicators of metabolic stress
and threshold crossing (Fischer et al., 2025; Poole et al., 2021).

Why Ventilatory Behavior?

While lactate is the most direct biochemical marker of metabolic threshold, it requires
invasive or semi-invasive sampling. In contrast, ventilatory markers—changes in oxygen
uptake (VO₂), carbon dioxide output (VCO₂), and minute ventilation (VE)—can be
continuously measured using a metabolic cart (and facemask-tube apparatus(. These
variables respond to the increased buffering demand for acid byproducts of anaerobic
metabolism, especially above LT2. As lactate accumulates, hydrogen ions (H⁺) are buffered
by bicarbonate (HCO₃⁻), producing additional CO₂ (Green et al., 1983). This leads to a
secondary rise in VE and VCO₂, enabling the detection of ventilatory thresholds (VT1, VT2)
that often correspond closely with LT1 and LT2 (Cerezuela-Espejo et al., 2019).

Therefore, ventilatory breakpoints are used as non-invasive surrogates for lactate
thresholds, especially in modeling applications or real-time assessment, and both types of

thresholds are considered interchangeable to a degree, depending on the protocol and
sensitivity of measurements.

Threshold Definitions and Their Modeling Relevance

• Lactate Threshold 1 (LT1): The first inflection point where blood lactate
concentration begins rising significantly above resting levels, typically around 2
mmol/L. Below this point, energy is almost entirely produced aerobically by Type I
(slow-twitch) muscle fibers, with high efficiency and minimal fatigue. Fat oxidation is
maximal near here. VO₂ increases linearly with power or speed, and the body
operates in a true steady state (Morton et al., 1990).

Figure 2: Conceptual lactate curve model (right) and corresponding critical power model
(left), modified from Vanhatalo, 2016.

• Lactate Threshold 2 (LT2): The second breakpoint, where lactate production
exceeds clearance, typically around 4 mmol/L (though this varies). Exercise above
this point enters the severe domain: VO₂ rises continuously (slow component),
lactate accumulates rapidly, and fatigue onset is imminent. LT2 approximates
Critical Power (CP), Ventilatory Threshold 2 (VT2), or Maximum Lactate Steady State
(MLSS) depending on the testing method (Poole et al., 2021; Caen, 2022; 2024).

LT2 is closely connected to the Critical Power (CP) model -- Exercise below CP can be
sustained aerobically, with manageable lactate levels and VO₂ kinetics reaching
equilibrium (Chorley, 2020). Above CP, however, energy demand exceeds aerobic
supply, leading to progressive lactate accumulation, VO₂ drift, and eventual exhaustion
(Sreedhara 2019).

Mathematically, CP defines the asymptotic power limit in the two-parameter hyperbolic
model of work and time to exhaustion:

𝑊 = 𝐶𝑃 ⋅ 𝑡 + 𝑊′

Where W is total work performed, CP is the critical power (in watts), and W′ is a finite
work capacity (in joules) representing the energy available above CP. The power
intercept of the linear fit of constant-power exercise trials to exhaustion versus 1/Time
is often used to find CP, but a 3-minute All-out test is also frequently utilized (where the
subject is instructed to do maximal effort at every given second, rather than holding a
stated power) (Vanhatalo, 2016; Caen, 2024).

In well-controlled graded exercise tests, CP corresponds closely to LT2 and Ventilatory
Threshold 2 (VT2) as well as an RER near ~1.0, and can therefore be used
interchangeably for modeling purposes in this project (Caen et al., 2024; Korkmaz
Eryılmaz & Polat, 2021). Specifically, CP serves as a reference point for estimating
anaerobic system size, particularly the G-tank capacity (AG) in the Boillet model. The
depletion of W′ during high-intensity exercise directly informs how quickly the
anaerobic reserve is used, and thus how the G tank drains under suprathreshold
efforts.

While traditional CP models are limited in handling recovery and dynamic pacing, they
remain physiologically interpretable markers of boundary conditions for fatigue onset,
and provide critical anchors for calibrating dynamic simulation models like the one
developed here (Sreedhara, 2019).

• Zone Between LT1 and LT2: This intermediate zone (Zone 2/3 in some systems)
reflects semi-steady conditions. Lactate accumulation occurs slowly but remains
manageable. Both aerobic and anaerobic systems are active, and fatigue is a
function of exercise duration and individual clearance capacity.

Blood vs. Muscle Lactate: Modeling Implications

Though muscle lactate is the true origin of production, it is difficult to measure directly (Van
De Casteele et al., 2024). Instead, blood lactate, sampled via capillary collection, is used
as a proxy. However, the kinetics of transport from muscle to blood involve delays and
nonlinear saturation, influenced by perfusion, diffusion, transporter proteins (e.g., MCT-
1/4), and metabolic reuse of lactate as fuel (Stegmann, 1981).

These considerations are critical in digital twin modeling, where muscle lactate is a state
variable and blood lactate is a delayed, filtered observation used for validation. Without

accounting for these lags, any attempt to infer fatigue or threshold crossing from measured
lactate would risk systematic error.

Recent research has shown that lactate itself is not necessarily what causes fatigue and
failure, but rather a highly-correlated byproduct, fuel, and signaling molecule that can be
used to infer the fatigue inducing accumulated metabolites and conditions that do induce
fatigue. However, lactate is produced and cleared dynamically, and the relationship
between muscle and blood lactate is nonlinear and time-lagged (Van Der Zwaard, 2021).

While direct muscle lactate measurement requires invasive biopsy, blood lactate can be
sampled from finger or earlobe capillaries (Poole et al., 2021). Models that connect these
compartments—such as first-order saturation or lagged regression—allow for indirect
estimation of muscular states from more easily accessible data.

Digital Twin Modeling

A digital twin in this context refers to a personalized physiological model that can simulate
how a specific individual's body would respond to various exercise intensities. Such a
model requires identifying subject-specific parameters (e.g., VO₂max, muscle mass,
mechanical conversion efficiency η, W′ for anaerobic work capacity) from experimental
data. Once fit, the model can be used to explore hypothetical training scenarios, simulate
time-to-fatigue, or estimate unmeasured physiological states.

This thesis extends the Boillet framework by incorporating additional physiological
mechanisms that enhance both interpretability and predictive realism. First, explicit
modeling of blood lactate is introduced, drawing on empirical muscle–blood relationships
from prior literature (e.g., Moneta, 1989) and adapting these dynamics to the tank-based
structure of the original model.

Second, mechanical efficiency (η) and oxygen-metabolic conversion efficiency (C₁) are
allowed to vary as functions of speed and respiratory exchange ratio (RER), moving beyond
the limitations of fixed-parameter assumptions and capturing known nonlinearities in
substrate utilization.

Finally, the simulation integrates conceptual and empirical advances from Lidar et al.
(2023), who decomposed metabolic power into aerobic demand, ventilatory work, and
metabolite clearance using synchronized VO₂ and VCO₂ data. Together, these
enhancements allow the model to reflect more detailed internal physiology while
remaining compatible with sparse, real-world test data.

Measurement and Data Challenges

Ventilatory and metabolic data—including VO₂, VCO₂, and respiratory exchange ratio
(RER)—are typically collected using metabolic carts such as the Parvo TrueOne 2400
during graded treadmill step tests. However, in practice, such data often exhibit
measurement noise, calibration drift, and missing values that can obscure underlying
physiological patterns (Crouter et al., 2006; Lii et al., 2024).

To address these limitations, the present framework implements a global correction
scheme for miscalibrated VO₂ and VCO₂ values, using constrained optimization to align
observed RER trajectories with physiologically plausible bounds. In addition, ventilatory
thresholds are automatically detected from raw time-series data by analyzing inflection
points in VE/VO₂, VE/VCO₂, and RER traces, following established guidelines from prior
work (e.g., Cerezuela-Espejo et al., 2018).

To accurately translate treadmill running speed and incline into external workload
estimates, the model also integrates grade-adjusted pace (GAP) calculations, allowing
biomechanically grounded inference of power demand across all test segments. Together,
these innovations enable robust simulation of test data from over 50 runners and allow for
meaningful interpretation of individual endurance traits through a computational lens.

Muscle Fiber Typology and Mechanistic Considerations
Although this project centers on modeling running performance from VO₂, RER, and lactate
dynamics, underlying muscle fiber composition remains a critical determinant of
endurance capability, anaerobic reserve, and fatigue resistance. Numerous modeling
assumptions—including energy system engagement thresholds, time constants of fatigue,
and recruitment dynamics—are deeply tied to individual variation in muscle typology.

Conceptual Relevance of Fiber Type

Skeletal muscle fibers are broadly categorized into two primary types with distinct
metabolic and functional characteristics. Type I fibers, also known as slow-twitch fibers,
are highly oxidative due to their elevated mitochondrial density and rich capillary supply.
These fibers are fatigue-resistant and are predominantly recruited during sustained, low-
to-moderate intensity exercise (Bex et al., 2017). In contrast, Type II fibers, or fast-twitch
fibers, are more glycolytic in nature (Vikne et al., 2012). They are capable of generating high
power output over short durations but fatigue more rapidly, in part due to their lower
oxidative capacity. These fibers become increasingly recruited as exercise intensity rises,

particularly above the second lactate threshold (LT2), where anaerobic energy systems
play a more prominent role (Conde Alonso et al., 2020).

Type I fibers tend to be have a smaller cross-sectional area than Type II fibers, but the intra-
group (different types, genders, and training histories of athletes) and intra-individual
variation tends to render anything but obvious conclusions (olympic 100m sprinters have
more fast-twitch composition than an endurance cyclist, for example) feebly supported
(Swinnen et al., 2024; Derave, 2024; Nuzzo, 2023).

The size principle of motor unit recruitment implies that Type I fibers tend to be recruited
first, with Type II engagement scaling with torque and fatigue (as Type II fibers fatigue, it is
suggested that more are recruited to cover the power demand) (Henneman, 1964; Dotan,
2012) . This has clear implications for modeling endurance performance: the rate at which
anaerobic stores are accessed, lactate is produced, and VO₂ kinetics drift all depend on
the magnitude and timing of Type II fiber recruitment (Tesch et al., 1981).

Although muscle fiber type cannot be directly inferred from the VO₂ and lactate data used
in this study, existing literature offers valuable insight into its downstream effects on
measurable physiological variables. Fast-twitch–dominant athletes tend to exhibit higher
peak torque and optimal cadence during maximal cycling efforts, consistent with findings
from sprint studies (Wackwitz, 2025; Hautier, 1996).

The torque–cadence relationship itself reflects a tradeoff between gross mechanical
efficiency, metabolite accumulation, and oxygen cost, with fiber composition influencing
both the slope and intercept of this relationship (Van Vossel, 2023; Van der Zwaard, 2021;
Barclay, 2004). In contrast, slow-twitch–dominant athletes typically sustain a higher
fraction of their VO₂max at LT2, exhibit a more gradual rise in lactate during graded
exercise, and often attain higher absolute VO₂max values (Barstow, 2000; Tesch, 1981).

Further, non-invasive proton magnetic resonance spectroscopy (^1H-MRS) studies have
shown that muscle carnosine content correlates strongly with Type II fiber area,
particularly in the gastrocnemius and soleus, providing a viable proxy for muscle typology
in human subjects (Baguet, 2011). These findings help contextualize observed differences
in test responses and suggest potential avenues for inferring fiber composition indirectly
through extended physiological modeling.

A series of inter-study regressions was assembled from the literature, linking muscle fiber
typology, muscle carnosine concentration, torque–cadence profiles, and maximal power
outputs. Although the data were heterogeneous and underpowered for formal inference,
the regressions demonstrated consistent physiological directionality. For example,
estimated optimal cadence derived from fiber-type–based regression models aligned

closely with empirical values observed in sprint cycling protocols—approximately 121 ± 5
rpm from Baguet et al.(2011) compared to 118 ± 4 rpm reported by Hautier et al. (1996).
Similarly, torque–cadence curves display characteristic negative slopes (around −1 Nm per
rpm), with systematic shifts reflecting underlying fiber distribution (Wackwitz et al., 2025).
These findings suggest potential modeling routes for estimating fiber-type contributions to
fatigue dynamics and performance decay. In future work, such relationships could be
formalized as priors or physiological constraints—embedding domain knowledge in the
form of statistical regularization, or as a latent structure in hierarchical models.

Despite the conceptual appeal of ground-up fiber-informed digital twin modeling, this
approach was not pursued as a primary analysis in the present study. First, the running test
data lacked direct measurements of relevant indicators such as carnosine content, torque,
or sprint-derived peak power. Second, the source studies varied widely in methodology,
sample size, and athlete population, introducing inconsistency in how fiber type was
quantified—whether by area, percentage, raw count, or mass-normalized estimates. Third,
while fiber composition strongly influences contractile and metabolic properties, it is not
the sole determinant of functional output -- Type II fibers, in particular, exhibit high
adaptability toward oxidative or glycolytic function depending on training history and
muscle environment. As noted by Laia et al. (2011), factors such as capillary density and
intracellular ion concentrations further modulate fiber-specific performance potential.
Finally, the present study focused on running rather than cycling, limiting the direct
applicability of torque–cadence analyses and Wingate-derived anaerobic metrics, though
both modalities engage large muscle groups under predominantly isometric contraction
conditions at submaximal intensities (Swinnen et al., 2024).

Nonetheless, the literature review of typology-informed regressions provides valuable
physiological context for several results observed in simulation—such as differences in
lactate threshold onset relative to VO₂max, or variation in threshold oxygen uptake across
subjects. These relationships reinforce the long-term modeling goal of individualizing
energy system structure and fatigue profiles based on muscle-level parameters. While the
original ambition of this work was to construct a fully bottom-up model, deriving
macroscopic outcomes like VO₂max and threshold from individual fiber type distributions
and cross-sectional areas, the available data proved insufficient to support such a granular
approach (Hansen et al., 2002). Instead, this project demonstrates that meaningful
physiological insight and simulation accuracy can be achieved through modifications to
the Boillet model alone, without requiring direct inference of microscopic muscle
properties.

Methods
Literature data were collected from tables and scraped from figures using WebPlotDigitizer
where necessary (Rohatgi, 2021). Simulations run in Google Colab and PyCharm.

Running threshold and VO2max test data were collected from Parvo metabolic cart and
accessory sensor data from a treadmill setup (ParvoMedics TrueOne 2400) in a climate-
controlled lab.

53 subjects (36 Male / 17 Female) of a range of sport backgrounds, though mostly runners,
did both “eco” (threshold) and “max” (VO2max) testing. Average weight was 71.79 +-13.38
kg, VO2max was 62.84 +- 10.09 ml/kg/min, and Age was 31.26 +- 6.08 yrs.

Much of the work done was based around two main interpretations of coupled dynamic
ODE models, namely that of Boillet (2024) and Lidar et al. (2023), which are detailed below.

Boillet et al. (2024) 3-Tank Model Recreation
This project implements and extends the 2024 Boillet et al. dynamic three-tank model of
endurance energetics. Boillet’s model conceptualizes the human energy system as a
hydraulic analog: energy flows from multiple reservoirs, or "tanks", into mechanical output
based on height-driven pressure differentials and constrained flow capacities. The model is
governed by nonlinear ordinary differential equations (ODEs) that simulate time-dependent
energy dynamics during exercise at varying intensities.

This section details a rederivation and discrete-time implementation of Boillet’s model,
and discusses the physiological rationale for each equation and parameter in relation to
observable endurance data.

Conceptual Overview: The Three Energy Tanks

While the three energy systems have long been recognized in exercise physiology, the
Boillet framework captures their interactions through a set of interpretable differential
equations, cast in a hydraulic metaphor. The model treats the oxidative, glycolytic, and
phosphagen systems as coupled reservoirs, each governed by depletion dynamics and
flow constraints. The oxidative system (O) is modeled as an effectively infinite supply
limited only by flow rate, while the glycolytic (G) and phosphagen (P) systems behave as
finite tanks with second-order dynamics based on their respective depletion states. These
are represented by tank “heights,” denoted h(t) and l(t), which evolve over time in
response to energetic demands. Power output is modeled as a composite of flow rates
from each system, with physiological-to-mechanical energy conversion modulated by an
efficiency factor η\etaη. This structure supports dynamic simulation of fatigue, recovery,

and threshold behaviors under varying workloads. The mathematical formulation that
follows specifies these interactions in detail.

Figure 3: The 3-tank model as defined by Boillet (2024) in Figure 1B. The height of the whole
system is 1.

Governing Equations

Boillet’s model simulates the total physiological power output as:

𝑃physio(𝑡) = 𝑉𝑃̇(𝑡) + 𝐷𝑂→𝑃(𝑡) + 𝑉𝐺̇(𝑡)

Where:

• 𝑉𝑃̇(𝑡): Flow from phosphagen tank P

• 𝑉𝐺̇(𝑡): Flow from glycolytic tank G

• 𝐷𝑂→𝑃(𝑡): Flow from oxidative tank O into P (recharging P)

All flows represent energy rates in J/s. This total internal power is what the body must
produce to sustain external work. However, the measurable mechanical power output is
only a fraction:

𝑃mec(𝑡) = η ⋅ 𝑃physio(𝑡)

Where 𝜂 is the gross efficiency (typically ~0.20–0.25 for cycling), the fraction of metabolic
power that is converted to mechanical work (Lopez, 2023; Hansen, 2002; Boillet, 2024).

Oxidative and Glycolytic Tank Dynamics

To simulate realistic energy contributions and fatigue, Boillet models the O and G tanks
with second-order differential equations, capturing both capacity and rate limitations.

The relative heights of the tank drive the dynamics, assuming hydraulic-analog constant
pressure at the top (surface).

• ℎ(𝑡): depletion of phosphocreatine tank P

• 𝑙(𝑡): depletion of glycolytic tank G

• θ: G tank depletion threshold separating sub-LT1 power from LT2 dynamics

• λ: Critical value for glycolytic exhaustion (no energy left if 𝑙 reaches 1 − λ)

• ϕ: related to the rate of Phosphocreatine (P tank) concentration depletion relative to
the current aerobic power, and is considered fixed by both Boillet and Behnke
(1993).

ϕ = 1 − (∆[𝑃𝐶]𝑚𝑢𝑠𝑐𝑙𝑒𝑚𝑚𝑢𝑠𝑐𝑙𝑒𝐶3)/(𝐴𝑃 ∗ %𝑉𝑂2𝑚𝑎𝑥) = 0.3

The key governing dynamics below LT1 (moderate intensity) are:

𝑑𝑙

𝑑𝑡
= 𝑀𝐺 ⋅

ℎ − 𝑙

1 − λ
𝐴𝑇 , for 𝑙 < θ

This describes the draining of the G tank (lactate accumulation) driven by potential lack of
oxidative supply (based on the drain level of the P tank).

𝑃𝑝ℎ𝑦𝑠𝑖𝑜 = 𝑀𝑂 ⋅
ℎ

1 − ϕ
+ 𝐴𝑃 ⋅

𝑑ℎ

𝑑𝑡
+ 𝐴𝑇 ⋅

𝑑𝑙

𝑑𝑡

Which results in an effective second-order system for 𝑙(𝑡):

𝑎 ⋅
𝑑2𝑙

𝑑𝑡2
+ 𝑏 ⋅

𝑑𝑙

𝑑𝑡
+ 𝑐 ⋅ 𝑙 = 𝑃physio(𝑡)

With constants:

where 𝑎 =
𝐴𝑃𝐴𝐺

𝑀𝐺

(1 − 𝜆), 𝑏 = (
𝑀𝑂(1 − λ)

𝑀𝐺(1 − ϕ)
+ 1) 𝐴𝑇 + 𝐴𝑃, 𝑐 =

𝑀𝑂

1 − ϕ

Where:

• 𝑀𝑂: Aerobic power or transfer rate (kJ/s), which has a maximal value equal to the
subject’s VO2max converted via C1 into kilojoules/s.

• 𝐴𝑇 , 𝐴𝑃, 𝐴𝐺 : Tank capacities (in kJ)

• 𝑀𝐺: Glycolytic transfer rate (kJ/s)

The model captures both transient kinetics and steady-state behavior. Initial conditions
h, l, and dl/dt are all zero. The VO₂ response is then modeled as:

𝑉𝑂2
̇ (𝑡) =

1

η𝐶1
[𝑃physio(𝑡) +

𝑀𝑂

1 − ϕ
(𝐾1𝑒𝑟1𝑡 (1 + 𝑟1

𝐴𝑇

𝑀𝐺(1 − λ)
) + 𝐾2𝑒𝑟2𝑡 (1 + 𝑟2

𝐴𝑇

𝑀𝐺(1 − λ)
))]

For a constant work demand rate, where r1 and r2 are the roots of the characteristic
equation of the second order system. The exponential terms arise from solving the second-
order ODE. Despite its complexity, at low intensity it behaves almost indistinguishably from
a simple single-component saturating exponential for VO2.

Thresholds and Physiological Zones

Below LT1: The G tank capillary section empties slowly, VO₂ increases linearly with power,
and overall power is supported primarily by aerobic energy, fully at steady state.

Between LT1 and LT2: The main G tank begins depletion, lactate accumulates faster, and
VO₂ shows a slow component. 𝐴𝐺 now governs the equation:

𝑑𝑙

𝑑𝑡
= 𝑀𝐺 ⋅

ℎ − 𝑙

1 − 𝜆
𝐴𝐺 , for 𝑙 < 𝜃

Above LT2: G drains faster than O can replenish, and exhaustion occurs once thresholds
are passed (i.e., 𝑙(𝑡) ≥ 1 − 𝜆). The same dynamics apply as for Between LT1 and LT2.

Lactate dynamics are simple l(t)-dependent exponentials as well:

[La]𝑚(𝑡) =
1

𝐶2
[1𝑙≤θ ⋅ 𝑙(𝑡) ⋅ 𝐴𝑇 + 1𝑙>θ ⋅ ((𝑙 − θ) ⋅ 𝐴𝐺 + θ ⋅ 𝐴𝑇)]

(using the indicator function 1)

The maximum sustainable aerobic power (at Critical Power = LT2) is:

𝑃crit = η ⋅
𝑀𝑂(1 − λ)

(1 − ϕ) +
𝑀𝑂

𝑀𝑃
(1 − θ − λ)

= β ∗ 𝑀𝑂 ∗ η

Where 𝑀𝑃 = 𝑃𝑚𝑎𝑥/𝜂 = 𝑀𝑂 + 𝑀𝐺, i.e., the maximum physiological power supported by all
systems combined. β is the fraction of VO2max used at 𝑃𝑐𝑟𝑖𝑡. Similarly, 𝛼, the aerobic
power as a fraction of VO2max that is done at LT1 is:

𝛼 = 𝜃/(1 − 𝜙) = 𝑉𝑂2 𝑎𝑡 𝐿𝑇1/𝑉𝑂2𝑚𝑎𝑥

And λ = 1 − θ ∗ (((1/α) − (𝑀𝑂/𝑀𝑃))/((1/β) − (𝑀𝑂/𝑀𝑃)))

Parameter Estimation from Athlete Data

Many of the tank model’s parameters map directly to physiological observables – eta is
estimated by Boillet from low-intensity trials where all power is assumed supplied by
aerobic sources:

η = 𝑃𝑚𝑒𝑐𝑎𝑡 𝐿𝑇1 / (%𝑉𝑂{2)𝑚𝑎𝑥 𝑎𝑡 𝐿𝑇1 ∗ 𝑉𝑂2𝑚𝑎𝑥 ∗ 𝐶1)

Boillet uses anthropometric methods to estimate muscle mass and determine AP and AG.
In this project, the process was inverted: starting from observed data, fit energy system
parameters assuming a ~50% effective muscle mass of total body mass, given lean leg
mass and volume ratios of Hopker et al. (2010).

From literature data, three constants are used by Boillet, for the respective tank
conversions to power:

C1 = 20.9 J/ml of oxygen

C2 = 100J/mmol of accumulated muscle lactate

C3 = 43.3 J/mmol of Phosphocreatine (PC)

The tank widths (‘capacities’) are estimated as:

𝐴𝑇 = [𝐿𝑎]𝑚𝑢𝑠𝑐𝑙𝑒𝑎𝑡𝐿𝑇1/θ ∗ 𝑚𝑚𝑢𝑠𝑐𝑙𝑒 ∗ 𝐶2

And:

𝐴𝑃 = [𝑃𝐶]𝑚𝑢𝑠𝑐𝑙𝑒,𝑚𝑎𝑥 ∗ 𝑚𝑚𝑢𝑠𝑐𝑙𝑒 ∗ 𝐶3

Which then are paired with 3-min All-out Critical Power test data to find 𝐴𝐺, via the W’
estimates of the non-oxidative power supplied (all the power done above CP = LT2):

𝐴𝐺 = (𝑊{𝑚𝑒𝑐 𝑛𝑜𝑛−𝑜𝑥)/η − 𝐴𝑃 ∗ 𝑙𝑃𝑐𝑟𝑖𝑡
 − 𝐴_𝑇 ∗ θ/(𝑙𝑃𝑐𝑟𝑖𝑡

 − θ)

Where, derived from the P_crit formula,

𝑙𝑃𝑐𝑟𝑖𝑡
=

1 − λ

(
𝑀𝑂

𝑀𝑃
⋅

1 − θ − λ
1 − ϕ) + 1

Discrete-Time Simulation

To implement the model computationally, we discretize the governing ODEs using a
forward Euler method with time step Δt for the tank depletion levels. For example:

𝑙𝑡+1 = 𝑙𝑡 + Δ𝑡 ⋅ 𝑀𝐺 ⋅
ℎ𝑡 − 𝑙𝑡

1 − λ

Higher-order derivatives were implemented as finite differences where needed, and the full
state vector was advanced using an explicit integration scheme.

𝑙𝑡̈ =
𝑃physio,𝑡 − 𝑏𝑡 ⋅ 𝑙𝑡̇ − 𝑐𝑡 ⋅ 𝑙𝑡

𝑎𝑡

where A is either AT or AG depending on whether 𝑙𝑡 is below or above the threshold θ, and
the coefficients 𝑎𝑡, 𝑏𝑡, 𝑐𝑡 depend on the energy system regime (recruitment or recovery).

The updated tank levels are, from the first derivative of h:

ℎ𝑡̇ = 𝑙𝑡̇ + (
1 − 𝜆

𝑀𝐺
⋅ 𝐴) ⋅ 𝑙𝑡̈

ℎ𝑡+1 = ℎ𝑡 + Δ𝑡 ⋅ ℎ𝑡̇

𝑙𝑡+1 = 𝑙𝑡 + Δ𝑡 ⋅ 𝑙𝑡̇

Phosphocreatine concentration is derived from tank height as:

[PCr]𝑡 =
(1 − ℎ𝑡) ⋅ 𝐴𝑃 ⋅ 1000

𝐶3 ⋅ 𝑚muscle

Thus the modeled contribution of the P tank to mechanical power (after accounting for
previous timestep PCr) is:

𝑃PCr,𝑡 = ([PCr]𝑡−1 − [PCr]𝑡) ⋅ 𝑚muscle ⋅ 𝐶3 ⋅ 𝜂

Anaerobic glycolytic power follows the usage of the G tank:

𝑃G,𝑡 = 𝐴𝐺 ⋅ 𝑙𝑡̇ ⋅
1000

𝐶2

And VO2 (aerobic) power follows from the remainder of the physiological power not
covered by the anaerobic system(s):

𝑃O,𝑡 = 𝑃physio,𝑡 − 𝑃G,𝑡 − 𝑃P,𝑡

While the G tank energy availability is monitored as:

𝐸𝐺,𝑡 = (𝑙𝑡 > 𝜃) ⋅ [𝐴𝐺(1 − 𝜃 − 𝜆 − (𝑙𝑡 − 𝜃))] + (𝑙𝑡 ≤ 𝜃) ⋅ [𝐴𝐺(1 − 𝜃 − 𝜆) + 𝜃𝐴𝑇 − 𝑙𝑡𝐴𝑇]

Failure was defined by:

• Energetic failure: G tank depletion

• Mechanical failure: Torque (estimated by power vs max power) demand exceeds
capacity – often when Type II fibers fatigue

• Metabolic failure: Accumulated lactate > tolerance (e.g., >30 mmol/kg muscle)

Failure modes were not explicitly imposed on the model but rather considered subjectively
during model evaluation, espeically as lactate at task failure and exhaustion vary
considerably (both for blood and muscular) (Tesch et al., 1981; Brooks et al., 2022).

Full code is in the appendix.

Replication of Boillet results

To ensure model validity, simulations were run using Cyclist 1
data from Boillet Table 2 (below), and ground-truthed against
Boillet’s example performance figures. Cyclist 1 (and the other
subjects in that study) is an elite female cyclist.

3-min All-out replication:

One of the constraints of the Boillet model is the G tank’s
determination of the maximum possible power at any given moment
in time – as the aerobic tank’s time constant is much too slow to
contribute to instantaneous power but rather supports it. This
conveniently allows us to impose the maximum power as one would
normally do in the 3-minute Critical Power test, and iteratively figure
out the athlete’s estimated response and potential power over the
duration. Table 1 at right contains the twin-defining parameter values
for Cyclist 1, from Boillet.

Table 1: Cyclist 1 Parameters
from Boillet (2024)

Eta η for Cyclist 1 was estimated by taking peak simulated power from Boillet’s 3 minute
all-out trial and converting through the stated MP value to get η = 0.2098 𝑊(𝑚𝑒𝑐)/𝑊(𝑝ℎ𝑦𝑠)

Figure 4: 3-min All-out Critical Power test, replicating Figure 3 of Boillet et al., 2024.

Figure 5: Corresponding lactate and tank utilization curves for Figure 4 CP test.

Note how according to the simulation, by the third minute, nearly all power output is
fulfilled by aerobic power, the anaerobic glycogenic and phosphocreatine components all
but gone. A good theoretical confirmation of the test validity of Critical Power as the
maximum sustainable aerobic power, if executed correctly.

Basic Sub-LT1 Constant Power Replication:

Figure 6A and B: Replication of Boillet Figure 2B: Sub-LT1 constant workload replication.
Note the first-order behavior of the tank system’s aerobic component (blue), and the stable
lactate dynamics (right – orange and yellow).

Between-threshold (LT1, LT2) Constant Power Replication:

Figure 7: Between-threshold (L3) power replication of Boillet Figure 2D – showing some
nonlinearity in the VO2 and other power supply responses.

Note the non-linear dynamic result in both where the first threshold is crossed – the slow
linear drift begins in the (blue) VO2 response, and here the lactate will not reach an
asymptote necessarily. The small blue spike is an artefact of the discrete solver calculating
some oscillations in the tank dynamics, and isn’t necessarily representative of the physical
reality, but does not seem to impact the steady-state results.

Severe Doman >LT2 Replication:

Figure 8A and B: Imposed power on Cyclist 1 above Critical Power – demand is not met by
aerobic (blue) and lactate levels rise to levels that certainly indicate task failure.

Here the predicted lactate at time of failure matches that of Boillet 2F, following the same
rough curvature that was determined in part from work by Green (1983).

Full VO2max Test Replication:

Figure 9: Incremental Step Test of 1-minute stages at increasing power until failure (vertical
line) of Cyclist 1, matching that of Boillet figure 5B.

All of these simulation replications are in line with the findings Vanhatalo et al. (2016) of
lactate profiles over and under critical power.

Lidar et al. (2023) Metabolic Breakdown Overview
The Boillet model conceptualizes energy supply through a three-tank system—oxidative
(O), glycolytic (G), and phosphagen (P)—which dynamically respond to physiological power
demands over time. However, while Boillet elegantly captures energy availability and
depletion dynamics, it does not explicitly decompose the total physiological power into
mechanistically distinct metabolic contributors such as ventilation cost or metabolite
accumulation. This decomposition is where the work of Lidar et al. (2023) complements
the Boillet framework.

Lidar’s 4-state variable coupled ODE model introduces a modular framework for
decomposing total metabolic demand into physiologically meaningful components. First,
the fundamental mechanical work component (MRf) captures the baseline metabolic cost
of performing external work, such as sustaining treadmill speed or mechanical cycling
power. Second, the ventilatory demand (MRve) reflects the energetic burden placed on
respiratory musculature, which rises with increasing ventilation and is modeled as a
nonlinear function of the ratio VE/VEmax. Finally, the accumulated metabolite demand
(MRacc) accounts for the additional energy required to buffer and clear byproducts such as
lactate and hydrogen ions. This term scales nonlinearly with a proxy variable x4, which
reflects the proportion of glycolytic energy reserve that has been depleted (or the
accumulated muscle lactate). Together, these components sum to produce the total
metabolic rate MRdem, allowing the model to attribute energetic cost not only to overt
work output but also to internal physiological stress and compensatory processes.

The above combined total metabolic demand in Lidar:

𝑀𝑅dem = 𝑀𝑅rest + 𝑀𝑅𝑓 + 𝑀𝑅𝑣𝑒 + 𝑀𝑅𝑎𝑐𝑐

And can be mapped to the Boillet model’s physiological power, Pphysio, offering a more
granular interpretation of the energy “sink” fed by the O, G, and P tanks.

Moreover, the aerobic metabolic rate in Lidar:

𝑀𝑅𝑎𝑒 = 𝑀𝑅rest + 𝑥3

directly parallels Boillet’s modeled oxygen-derived power contribution at the muscular
level, adding in the resting physiological load.

This mapping allows the Lidar formulation to be embedded as a post-processing layer in
the digital twin simulations: Boillet's simulated state variables (e.g. h,l, mechanical power
Pmec, and VO₂ estimates) are passed into Lidar-style state variables (x3, x4) and equations
to decompose the total power into constituent metabolic sources.

The hybrid dual-model structure offers several advantages that enhance both the
interpretability and practical utility of the model. First, it improves physiological
interpretability by explicitly attributing portions of the Boillet-derived energy expenditure to
distinct costs such as ventilation or metabolite accumulation. This allows simulated
outputs to align more closely with observed gas exchange patterns—particularly VO₂,
VCO₂, and RER trajectories—offering a richer understanding of how different physiological
systems contribute to total metabolic load. Second, the Lidar framework introduces
predictive extensibility, as its parameterized equations for ventilatory and accumulation-
related costs can be individualized and scaled for each subject if necessary.

This flexibility supports more accurate simulations across varied athletes and test
conditions. Finally, the model offers diagnostic utility: mismatches between Lidar’s
estimated aerobic metabolic rate (MRae) and Boillet’s predicted physiological power
(Pphysio) help identify situations in which aerobic supply is insufficient to meet total
energetic demand—indicating recruitment of glycolytic or phosphagenic pathways.

Lidar’s demand decomposition enhances Boillet’s supply model by anchoring it to
interpretable ventilatory and metabolic measurements. This integration allows the digital
twin to both simulate energy system interactions and diagnose the physiological costs
incurred at each moment of exercise.

Blood Lactate Gauge Integration – New Tanks Dynamics
In Boillet’s base model, muscle lactate is a secondary computation based off of the G tank
fill level, but to advance the ability of the model, it may be useful to directly add the lactate
of the muscle and blood as their own gauges in the tank system. More than a visual effect,
this explicit inclusion of blood lactate will allow exponentially more performance data to
refine and reshape the model, as muscle lactate testing is very rare and invasive, especially
in comparison to the current usage of easily accessible blood lactate testing worldwide.

Lactate is most closely tied to the glycolytic balance and anaerobic side of the model, and
will thus have direct impact on muscle lactate estimates and then to Type 2 fiber relative
proportions/sizes, due to their intrinsic fast-twitch position as lactate producers. The
effects may well reach to impact threshold(s) estimates and oxidation fuel sources , as
there is demonstrated zero-sum trade-off effect of aerobic vs anaerobic power – you can’t
have it all, necessarily (Van der Zwaard 2021, Seiler 2010).

Lactate Measurement

From ground-truthing with real lactate test data – blood lactate from portable analyzers (by
far most common) are potentially accurate to 0.12 mmol/L typical error (Lidar, 2023) but
usually the general trust is lower, at +-0.2 or 0.3, assuming a good unbiased and clean
sample (often a strong assumption) (Cerezuela-Espejo et al., 2018; Grassi et al., 1999). At
higher (and during exercise) values can be more variant and contaminated, from a practical
standpoint. Muscular lactate is measured by biopsy, with various procedures, either
resulting in a concentration per wet or dry weight (in kg) (Green et al., 1983; Bangsbo et al.,
1993). It is worth noting that muscular and blood lactate have different denominator units
(kg wet weight of muscle vs Liters of blood), each of which is affected by different
physiological factors, so this method has many limitations and assumptions.

Blood lactate values were taken with a Nova Biomedical Lactate Plus analyzer, which has
been found to have relatively small proportional and fixed bias compared to gold standard
reference analyzers, as well as being highly linear (Hart et al., 2013). Although within-blood
sample variation is highly negligible, between sample variation remains fairly significant,
and in practice ~1/10 readings is thrown out entirely due to lack of sample. From Hart’s
data the during-exercise standard deviation of the difference between Nova readings and
ground truth reference was up to 1.43 mmol/L. Sweat and other contaminants can ruin the
reading as well. At-rest readings are assumed to be more accurate, closer to an SD of 0.2-
0.3.

Muscle Lactate Dynamics

Muscle lactate behavior is adopted from Boillet and is connected to the usage of the
Glycolytic tank, both capillary AT and main section AG. The instantaneous value is:

[𝐿𝑎𝑐]𝑚 =
1

𝐶2
∗ (𝐷𝐴𝑇 + 𝐷𝐴𝐺) ∗

1

𝑚𝑎𝑠𝑠𝑚𝑢𝑠𝑐𝑙𝑒
 + 𝑅𝑀𝐿𝐴

Where the sum of D is the current depletion level, not rate, of AT and AG:

𝑙 ∗ 𝐴𝑇 ∗ 1000 + (𝑙 − θ) ∗ 𝐴𝐺 ∗ 1000 if 𝑙 > θ

And mass is the effective muscle mass for the task.

Blood Lactate Dynamics

There is limited available work on concurrent muscle and blood lactate under controlled
conditions similar to the present study, so a combination of empirical relationships,
analytical formulae, and known constraints are employed. Generally, similar to oxygen

kinetics at low intensities, the behavior is roughly first-order saturation, with a response lag
to muscular lactate (Caen et al., 2024; Green et al., 1983).

As a start, Chwalbinska-Moneta et al. (1989) did incremental cycling tests for applicable
endurance-type lactate estimation, arriving at muscle-blood 𝑅2 of 0.8369 with SE 0.676.
Gorostiaga (2014) also did similar work, finding an 𝑅2of > 0.8 for muscle and blood lactate,
but whose data was inapplicable due to highly intermittent exercise protocol and sparse
lactate recordings that were not time-synced or necessarily steady-state representative.

Figure 10A and B: Blood and muscle lactate concentration regression, with corresponding
residual plot, data from Chwalbinska-Moneta et al. (1989).

With 21 Degrees of Freedom, the residual plot yielded a T-statistic of 1.9236 for a p-value of
0.068 > 0.05, thus we fail to reject that the residuals are likely roughly homoscedastic,
without a significant linear trend.

Blood lactate is modeled as tending towards a semi-steady-state, as set by muscular
values from the regression, of the form:

[𝐿𝑎]𝑏 = 𝑎 ∗ [𝐿𝑎]𝑚 + 𝑏

To be grounded near a=0.55 and b=1.2, however a constraining factor is that some recent
research has placed resting blood and muscle lactate as ~1.5 and ~3 mmol/L and mmol/kg
w.w., respectively, as used and assumed by Boillet (Green et al. 1983, Bartoloni et al.,
2024).

If a resting blood lactate value is known for a subject, the intercept b is adjusted from the
above used regression to go through that value and the resting muscular lactate value as
well (otherwise assumed to be 3). The new intercept is thus, by rearrangement:

y = 0.5557x + 1.2578
R² = 0.8369

0

1

2

3

4

5

6

7

8

0 5 10 15

Bl
oo

d
La

ct
at

e
C

on
ce

nt
ra

tio
n

(m
m

ol
/L

)

Muscle Lactate Concentration
(mmol/kg w.w.)

y = 0.163x - 0.5591
R² = 0.163

-2

-1

0

1

2

0 2 4 6 8

Residuals

residuals Linear (residuals)

𝑏′ = [𝐿𝑎]𝑏
𝑟𝑒𝑠𝑡

𝑎 ∗ [𝐿𝑎]𝑚
𝑟𝑒𝑠𝑡

The reality is likely more complicated, as resting lactate values are often dependent on
muscle fiber type and overall fitness, but that is underdetermined by the current available
data and beyond the scope of this project.

Conditional blood lactate (that is, derived from muscle lactate) time constant of response
values were inferred by standardized testing procedure of regular blood lactate steady
states – minimum of 2.5 minutes up to the gold standard of 6 minutes at a given intensity to
allow for full metabolic stabilization. Following the typical saturating exponential form
assuming 3τ at the end of the stage (for 95% of steady-state value) results in

3τ = [150,360] 𝑠

 and thus 𝑇𝑏𝑙𝑜𝑜𝑑 = [50,120]𝑠. Clamping muscle lactate between physiological norms (ADD
source),

[𝐿𝑎]𝑚 ∈ [~1.5, ~30] = [λ𝑚𝑖𝑛, λ𝑚𝑎𝑥]

mmol/kg w.w., the iterative update rule gives a conditional blood lactate time constant
from:

τ (Blood Lactate|Muscle Lactate = [𝐿𝑎]𝑚) = τ𝑚𝑎𝑥 −
([𝐿𝑎]𝑚 − 𝜆𝑚𝑖𝑛)

(𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛)
(𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛)

From Boillet’s simulations (Fig 2B,D, and 5A), muscular lactate time constants were around
~24s for some representative cases, putting the time-constant:

𝜏(Blood Lactate|Muscle Lactate = [𝐿𝑎]𝑚) = τ𝑏𝑙𝑜𝑜𝑑 − τ𝑚𝑢𝑠𝑐𝑙𝑒 = ~26 − 96𝑠

Which can be changed later if time-course of lactate is unsatisfactory.

The update step occurs when muscle lactate exceeds resting muscle lactate (RMLA):

[𝐿𝑎]𝑏(𝑛𝑒𝑤) = [𝐿𝑎]𝑏(𝑜𝑙𝑑) + ((𝑎 ∗ [𝐿𝑎]𝑚 + 𝑏) − [𝐿𝑎]𝑏(𝑜𝑙𝑑))/τ(𝐵|𝑀) ∗ 𝑑𝑡

Which mirrors classic saturating exponential behavior at a discrete timestep ∆𝑡,too.

Full algorithm code in appendix.

Running Data: Modeling
Test data were initially examined before building digital twins for characteristic and
descriptive correlative analyses.

Description of Test Data

After removing derived test data (like % Calories from carbohydrates and fats, which are
computed directly from RER, or METS which is directly computed from VO2), we can get an
understanding of how the base measured variables are interrelated.

Figure 11: All-subject (n=52) average correlation matrix heatmap (for data from threshold
tests only)

Most ventilatory variables have a moderate to strong positive correlation, with the
exception of fat oxidation variables and VE/VCO2, which decrease as intensity rises (and
the other variables rise).

Figure 12: All-subject (n=55) average correlation matrix heatmap (for data from max tests
only)

Due to the intensity range spanned in a maximal test, we might expect some of these
correlations to be stronger than in the threshold test. To see if that is the case, the
difference correlation heatmap is computed across all subjects, and is shown below.

Figure 13: All-subject (n=52) average difference correlation matrix heatmap, showing
significant correlative differences between max and threshold test data

In the max tests, Speed and VE/VCO2 tended to be much more strongly negatively
correlated than in threshold tests, which seemed to be the case for a lot of variables paired
with VE/VCO2. It makes sense that VCO2, produced in excess during high intensities,
would be relatively higher during maximal exertion tests than in sub-maximal threshold
assessments.

Ventilatory Data Correction

Typical threshold and VO2max step test data looks something like this for RER, VO2, and
VCO2, as speed increases every couple of minutes:

Figure 14A, B, and C: Example subject test data - progressive increases in intensity lead to
higher ventilatory values for all three variables across the threshold (‘eco’) and especially
during the maximal protocol. Single subject representative data appended together from
the two tests – in reality, a ~10 minute full rest was given between test protocols.

Unfortunately, this was not the case for much of the data. RER for max tests often did not
exceed 1.0, much less the 1.1+ that is usually expected just before exhaustion, as a
criterion for attaining maximal effort. This was the case even for trained (high VO2max
athletes):

Figure 15: Running subject data, showing 84% of max tests that did not exceed 1.0 RER

Note that the slope term has a statistically insignificant p-value, thus it is unlikely that (lack
of) fitness (as measured by VO2max) is causal in any way to the RER errors – the idea that
unfit people are unable to push themselves hard enough and/or fit people producing not
enough lactate to cause significant buffering CO2 effects does not seem to explain the
homoscedastic appearing RER errors (Korkmaz Eryılmaz & Polat, 2021).

Furthermore, RER was often (especially in early stages of either eco and max tests) at
physiologically-impossible sub-0.7 RER values

Crouter et al. (2006) and others have detailed accuracy and reliability specifications for the
ventilatory data – which tends to be pretty precise and unbiased under most conditions for
the Parvo TrueOne 2400 metabolic cart used. Unfortunately, during the test data collection
period, readings were so errant (VO2max readings far exceeding realistic values, and RER
values that were far too low for maximal efforts) at one point and one of the gas hoses was
found to have extra condensation which likely affected the calibration process. Thus, there
is strong likelihood that there is some bias in the measurements, which will be corrected
for.

A correctly calibrated Parvo was found to have the following between-day accuracy
specifications against a criterion Douglas Bag control method (Crouter et al., 2006):

Table 2: Accuracy and reliability summary of Parvo metabolic cart for ventilatory data

Mean error 95% PI low 95% PI highCV (%) SD (est.)
VE (STPD l/min) -1.34 -11.91 9.22 7.3 5.283
VO2 (STPD l/min) -0.04 -0.28 0.19 4.7 0.118
VCO2 (STPD l/min) -0.03 -0.32 0.25 5.7 0.143

SD was estimated as the 95% PI range divided by 4, assuming normality for calibration
data. The raw data distribution of RER values was as follows:

Figure 16: RER histogram, showing large portion of values under physiologically impossible
0.7 threshold (dotted line).

Perhaps it is more apt to say these are steady-state improbable and not predicted by peer-
reviewed understanding, as early-exercise low RER is theoretically possible – due to
potential time delays in lactic power usage from the glycolytic system (as the
phosphocreatine system tends to cover rapidly any jumps in exertion) through the muscle,
to the blood, to get buffered, and then exhaled as CO2, while the VO2 response potentially
rises faster, leading to an artificially low (non-steady-state, and not fat-carb oxidation
related) RER (Korkmaz Eryılmaz & Polat, 2021; Van Der Zwaard et al., 2021).

That can be said for some, but not all of the RER data:

Figure 17: Eco (Threshold) test RER distribution over time.

Many of the RER erroneous values are outside the typical 1-minute window for potential
slow boot-up of the body.

Figure 18: Max (VO2max) test RER distribution over time.

There is a similar issue with the maximal test data. Paring out the lowest RER value helps
only a little bit, a more structural correction is needed:

Figure 19: Second-lowest RER value versus VO2max, for all subjects, to explore the idea
that a single outlier per subject could have been throwing off the data.

To minimally adjust the VO₂ and VCO₂ signals using global scaling factors, while enforcing
that all corrected RER values remain within a biologically credible range (0.7 ≤ RER ≤ 1.4),
we assume that the measurement errors in VO₂ and VCO₂ are systematic and
multiplicative in nature, such that the true values can be approximated by scaling the raw
measurements with constants α and β. Global scaling was chosen as the machine

calibration was the same for both tests, and thus any bias is likely to be consistent across
the testing period (<1hr).

VO2
corrected = α ⋅ VO2

raw,

VCO2
corrected = β ⋅ VCO2

raw

Thus the new corrected RER at each time point is defined as:

RERcorrected =
VCO2

corrected

VO2
corrected

To find optimal correction parameters α and β, we minimized a cost function composed of
three terms:

1. RER boundary violation penalties, encouraging all RER values to stay within [0.7,
1.4].

2. Regularization terms, penalizing deviation of α and β from 1, based on empirically
validated measurement standard deviations (σ₁ = 0.118 for VO₂, σ₂ = 0.143 for
VCO₂).

3. Hard constraint enforcement, where any RER falling below 0.7 incurred an
additional penalty scaled by a large constant (10⁶), ensuring that the minimum
corrected RER in a given dataset was ≥ 0.7.

The optimization problem was formulated as:

min
α,β

∑(max(0,0.7 − RERt
corr)2 + max(0,RERt

corr − 1.4)2)

𝑡

+ λ1(α − 1)2 + λ2(β − 1)2

+ Penaltyif min RER <0.7

Where: λ1 =
1

σ1
2 , λ2 =

1

σ2
2 , σ1 = 0.118 (VO2), σ2 = 0.143 (VCO2)

For each subject, both economy (eco) and maximal (max) test files were analyzed. After
loading and validating the data, the lowest raw RER value across both tests was identified.
If the entire dataset satisfied RER ≥ 0.7, no correction was applied and the raw data were
preserved. Otherwise, the test with the lowest RER was selected as the fitting dataset for
parameter estimation.

The optimal α and β values were then computed via bounded optimization
(scipy.optimize.minimize), constrained to plausible ranges (α ∈ [0.85, 1.0], β ∈ [1.0, 1.2]).
These scaling factors were subsequently applied uniformly to the full VO₂ and VCO₂ time
series across both tests, and stored and saved in the subject’s dataframe as _corrected.
Derived columns (like RER, and carb/fat oxidation metrics) are then recomputed.

Full code is in appendix.

The results of the adjustment on a sample individual are as follows:

Figure 20: Example of single-subject pre- and post- correction RER curves from eco
(threshold) and max (VO2max) tests – appended together for compactness(in reality,
roughly 5-10 minutes standing rest given in between).

Note that for the corrected RER values, they mostly fall outside of the 95% CI for the
original RER values, this is to be expected given the physiological implausibility (bias) of the
combination of VO2 and VCO2 values. On the other hand, the adjusted VO2 and VCO2
values often fall within the 95% CI, indicating the measurement miscalibration bias is
nearly potentially accounted for in randomness of measurement, and thus acceptable as a
reasonable correction to the bias.

A summary of the corrections applied to VO2, VCO2, and RER is below:

Figure 21A, B, and C: VO2, VCO2, and RER correction factors applied to subjects with
implausible RER values (either at max or at low end of threshold testing).

Now the RER values are physiologically possible and thus hopefully the VO2 and VCO2 are
more representative of their real underlying values.

Ventilatory ratio and Caloric and Substrate breakdowns (derived from VO2 and VCO2) were
recomputed with the corrected data (based on literature on chemical energtics – Lii et al.,
2024).

Ventilatory recalculations:

𝑉E/VCO2 =
𝑉𝐸

𝑉𝐶𝑂2

𝑉𝑂2,kg =
𝑉𝑂2 ⋅ 1000

Body Masskg

Substrate oxidation in grams/minute:

CHOmin = max(4.55 ⋅ 𝑉𝐶𝑂2 − 3.21 ⋅ 𝑉𝑂2,  0)

FATmin = max(1.695 ⋅ 𝑉𝑂2 − 1.701 ⋅ 𝑉𝐶𝑂2,  0)

Fraction of calories burned that came from carbohydrate oxidation:

CHO% = min (max (100 ⋅
𝑅𝐸𝑅 − 0.7

0.3
,  0) ,  100)

Instantaneous accumulation of kcal:

Ackcalinst = (3.9 ⋅ 𝑉𝑂2 + 1.1 ⋅ 𝑉𝐶𝑂2) ⋅ Δ𝑡

And cumulative kcal burned:

Ackcalcumulative = ∑ Ackcalinst,𝑖

𝑡

𝑖=0

Instantaneous kcal from carbohydrates and fats:

𝐾CHO = Ackcalinst ⋅
CHO\%

100

𝐾FAT = Ackcalinst ⋅ (1 −
CHO\%

100
)

These values, although not as useful for direct model fitting, can be helpful for athletes
planning fueling strategies for longer races – how much they might need to consume
depends on their caloric expenditure and what kinds of fuel sources it comes from (Caen et
al., 2024).

It is important to note that the above correction(s) does not remove the inherent noise in
the ventilation data – for example even 20, 30, and 60s averaging over VO2 breath-by-
breath sampling still results in high variance for the same steady-state workload, even after
filtering out the first minute of test data for each stage. Within-stage standard deviations
were typically 3-7% of the average VO2 (L/min) value after filtering and 20s-smoothing,
when averaged across stages, for each subject. This comes into play in model evaluation,
where some of the apparent gap between model and data may be related to the underlying
variance in the data (and measurement of it) itself.

If 𝑌 = true VO2 value (unknown) and 𝑌𝑝𝑟𝑒𝑑 = model prediction,

And 𝑌𝑜𝑏𝑠 = 𝑌 + 𝑒𝑜𝑏𝑠 where we assume 𝑒𝑜𝑏𝑠~𝑁(0, 𝜎𝑜𝑏𝑠
2)

Then the observed model error is:

𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑜𝑏𝑠 = (𝑌𝑝𝑟𝑒𝑑 − 𝑌) − 𝑒𝑜𝑏𝑠 = model error - data noise

Which means that

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑚𝑜𝑑𝑒𝑙 𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

Thus to get the model intrinsic error:

𝜎𝑚𝑜𝑑𝑒𝑙 = √𝜎𝑚𝑜𝑑𝑒𝑙,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2 − 𝜎𝑑𝑎𝑡𝑎𝑛𝑜𝑖𝑠𝑒

2

Grade-Adjusted Pace Model Refinement

Running power estimations would not be complete without consideration of the gradient,
or incline of the running surface – it takes more energy to run uphill, due to fighting gravity
and other smaller factors in changing running techniques. The VO2max protocols often use
a combination of speed increases and gradient to make sure that participants can run to
metabolic exhaustion, and that failure comes from energetic failure more than inability to
move one’s feet fast enough.

Purely energetic computations of a “Grade-Adjusted Pace” (GAP) often miss out on the
human realities of muscular limits and tendon properties at different velocities and
tensions, and are often calibrated at extreme (non-realistic for most runners except elite
trail runners) gradients (Minetti et al 2002). Here a combination of energetics and
population economy data are used.

The work rate done against gravity is 𝑊𝑔 = 𝑚𝑔𝑣 sin(a) where a is the slope angle of
inclination in radians. Since for typical treadmill gradients (<15%) tan(𝑎) ≈ sin(𝑎) and

𝐺𝑟𝑎𝑑𝑒 =
∆ℎ

∆𝑥
= tan(𝑎), 𝑊𝑔 = 𝑚𝑔𝑣 (

𝐺%

100
) where m is mass, g is the force of gravity, v is the

horizontal velocity in m/s and G% is the gradient (expressed as a percent).

This is combined with the varying energetic cost of flat ground running – against speed, that
is. Using Davis’s (Running Writings, 2023) extraction of Black et al. (2018) running economy
data for flat ground across recreational and elite runners, a GAP is calculated from Davis’
procedure:

1) Get metabolic cost of the flat ground speed
2) Get added metabolic cost of the hill gradient
3) Sum (1) and (2) to get total metabolic cost
4) Match (3) to equivalent flat ground speed that requires that cost

The outputs from this matching process were scraped across a range of speeds (6 to
13mph) and gradients (1 to 12%), and input into a second-degree polynomial in two
variables for a full smooth surface that could capture non-linearities, of the form:

𝑧𝑝𝑟𝑒𝑑(𝑥, 𝑦) = 𝐵𝑂 + 𝐵1𝑥 + 𝐵2𝑦 + 𝐵3𝑥2 + 𝐵4𝑥𝑦 + 𝐵5𝑦2

Where x is gradient, y is speed, and 𝑧𝑝𝑟𝑒𝑑is predicted gap speed. Mean Squared Error (MSE)
came out predictably (acceptably) small:

𝑀𝑆𝐸 =
1

𝑛
∑(𝑧𝑖 − 𝑧ℎ𝑎𝑡)2 = 0.00297𝑚𝑝ℎ

The final form came out to:

𝐺𝐴𝑃(𝑚𝑝ℎ) = 0.118 ⋅ 𝑥 + 0.60409 ⋅ 𝑦 + 0.00322 ⋅ 𝑥2 + 0.036 ⋅ 𝑥 ⋅ 𝑦 + 0.01838 ⋅ 𝑦2

+ 2.02215

Which was applied across all test subjects, to both eco and max tests (some eco tests
used a 1% gradient at higher speeds, to account for missing air resistance one might
encounter outside). See appendix for full code.

Energy Equivalent of Oxygen Extension

Boillet uses a fixed average value of C1 as detailed by Di Prampero in Energetics of
Muscular Exercise (ADD act SOURCE), at roughly 20.9 J/ml, which tends to be valid at low-
middle steady-state intensities (around RER=.775). The molecular stoichiometric and
thermodynamic relationship between the fat and carb balance (RER) in substrate oxidation
is consistent with current industry knowledge – burning carbs is more efficient than burning
fat.

For glycogen (carbs), the P/O2 is 6.2, and for FFA (fat) it is 5.6, thus the total substrate
oxidation efficiency is some combination of the two. This may seem like a small
adjustment but the effect is great (~11% change over the range) and may help explain
better both the individual test data and more broadly the recent high-carb fueling pushes in
endurance sports – allowing for races to be done at higher intensities as historically
carbohydrate storage was a main limiter, and thus athletes tended to rely more on fat
oxidation to preserve muscle glycogen.

The inferred relationship from Di Prampero is linear, and converted to J/ml from P/O2 is as
follows:

C1 = 19.47 + 7.13 ⋅ (RER − 0.7)

At an RER of >=1 (where all oxidative energy is assumed to be from carbohydrates), the
yield is 21.61 J/ml, while at RER =0.7 (all fat oxidation) the yield is 19.47J/ml.

Figure 22: Sample VCO2/VO2 – and RER derived metabolic breakdown – fat burn and
contribution to total energy supply indeed diminishes as intensity (black – speed)
increases. Carbohydrate contribution and oxidation do the opposite. C1 increases.

Varying Eta estimation

On the whole, studies seem to find a decently linear relationship between steady speed of
running on flat ground and the oxygen cost per kilogram (VO2 – in ml/kg/min), although
there is surprisingly limited data easily available to support this (Black et al., 2018). Within
the current running dataset of those who completed a threshold test, we see a similar
trend.

Figure 23: All-subject economy (threshold) test data – VO2 energy cost of running versus
the stage speed in mph.

On the whole there is good argument for linearity, but as we know from the central limit
theorem when independent observations (e.g., individual athletes' VO₂ responses to
running speed) are aggregated, the sampling distribution of their mean tends toward
normality—even if the underlying individual relationships are nonlinear or heteroscedastic.
This masks idiosyncrasies in each person's physiology. Similarly, the law of large numbers
ensures that individual variability gets "washed out" when analyzing group means, pushing
observed trends toward a smoother, often deceptively linear pattern. As a result,
population-level linearity does not imply that the relationship between VO₂/kg and speed is
linear within each subject. For physiological modeling and precision diagnostics, this
distinction is critical—especially if individual metabolic costs or running economy deviate
significantly from group behavior.

GAP Pace in mph, over the same VO2 power estimate from below/at LT1 that Boillet uses
for cycling efficiency, but recalculated at estimated steady state segments of the threshold
tests, is used to capture the difficulty of running at higher speeds -- muscle contraction
efficiency at the molecular and musculotendinous unit level is not necessarily constant
(Hansen et al., 2002; Wackwitz et al., 2025). We assume a linear model, given the
appearance of the data over the surveyed range.

Ventilation data are first filtered – Cleaning by outlier clipping by interquartile range (lower
and upper bounds set at 𝑞1 − 1.5 ∗ 𝑖𝑞𝑟 and 𝑞3 + 1.5 ∗ 𝑖𝑞𝑟, respectively.

Efficiency values from the running data collected were typically in the range of 5.5 - 9 mph
per kW of VO2 (metabolic power) at steady state.

Figure 24: Example subject data of mechanical (‘gross’) efficiency over speed from eco
(threshold test)

Note that the shown regression is fitted excluding some of the outlying points at y (Eta)
values of ~8 or more, which are usually from weird timing errors from recovery periods
between stages, or are from early in stages where the VO2 has not had time to saturate to
fulfill the power demand, and thus underestimate the VO2 required to go a speed,
overestimating the Eta efficiency.

Performance Pillars Influence Assessment

As a sanity check for the collected and corrected test data, standard exercise science
regressions are computed, to check the placement of the data in the known context (Van
Der Zwaard et al., 2021).

Figure 25: Efficiency of running at lowest stage versus maximal sustained stage in
threshold test, colored by highest VO2 (per/kg) reached in maximal test. Fewer subjects, as
not everyone had both eco and max test data.

Y-axis efficiency (higher GAP speed per kW of energy demand on the body at low intensity)
has a small but significant (at the 0.05 level) positive correlation with maximum eco
(threshold test) treadmill speed – faster/better runners tend to be slightly more efficient.
There is also a subjective trend of higher VO2max values at higher speeds as well.

Shown are three pillars of endurance performance, or at least proxies for them – functional
top speed, aerobic engine size (VO2max), and efficiency of movement (also sometimes
referred to as economy) (Behncke, 1993; Van Der Zwaard, 2021; Kim et al, 2021).

Figure 26: Correlation matrix of three pillar variables, seen as crucial to endurance
performance

To understand the importance of efficiency and VO2max towards endurance performance
in our dataset, we start with a simple multiple linear regression, of the form:

Max_ECO_Speed = β0 + β1 ⋅ Avg_GAPspdperkW + β2 ⋅ Max_VO2kg + ε

Using Ordinary Least Squares, we find from our data:

Figure 27: OLS Multiple Regression Results for endurance ‘pillar’ variables

With 𝑅2 = .729 , 72.9% of the variance in max functional speed is explained by efficiency
and VO2max, which is pretty strong. Both slope coefficients have p-values < .005,
suggesting significance of predictors, and the intercept is significant at the <.05 level as
well, despite a lack of physiological meaning.

For every ml/kg/min you increase your VO2max while holding efficiency constant, we see a
~.10 (+-.01) mph increase in maximal sustainable speed.

Evaluating the model applicability under the OLS assumptions:

The Durbin-Watson (DW) value of 2.113 (near 2) indicates no issue of autocorrelation,

calculated by: 𝐷𝑊 =
∑ (𝑒𝑡−𝑒𝑡−1)2𝑛

𝑡=2

∑ 𝑒𝑡
2𝑛

𝑡=1

The high Omnibus and Jarque-Bera (from: 𝐽𝐵 =
𝑛

6
(𝑆𝑘𝑒𝑤2 +

(𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠−3)2

4
))

values indicate residuals are likely normal and not skewed or expressing excess kurtosis.

Figure 28: A visual inspection confirms the random scatter of the residuals of the OLS
model above

As expected there is moderate collinearity given the Condition Number is 526 (>100),

computed as Condition Number = √
λmax

λmin
, from the eigenvalues of the design matrix, which

captures the relationships between the predictor variables.

These results fall in line with the expected and understood relationship between the
predictor variables (Morton et al., 1990; Seiler, 2010; Van Der Zwaard, 2021).

Running Threshold Detection

To find running thresholds from the incremental stage tests performed, a combination of
test-specific knowledge and ventilatory criteria was used (Cerezuela-Espejo et al.,2018;
Green et al., 1983; Poole et al., 2021). To best capture effort and physiological response at
a given intensity, the first minute of every stage was excluded, and the last two minutes of
each stage data were averaged to define the stage effort.

First, LT2 is found from the last couple stages (given knowledge from helping run many of
the tests and evaluating their data later) where the absolute ventilation ticks upward
significantly above a rolling linear regression from previous stages while VE/VCO2 and
VE/VO2 increase (any sustained increase, stage-to-stage).

LT1 is the found from the remaining stages, knowing also from lab experience that LT1 and
LT2 were highly unlikely to be neighboring stages, in combination with RER exceeding
typical maximum fat oxidation values (~0.8-0.825) and VE/VO2 increasing while VE/VCO2
did not. This followed the established criteria of Cerezuela-Espejo et al. (2018) and
established laboratory practices to the best approximation. In reality, other measures are
also evaluated in real-time by expert physiologists, including absolute VO2 and heart rate
and subjective measures such as RPE, so this simplification has its limitations.

Algorithm full code in appendix, including stage-map outputs.

Figure 29: Threshold stage assignment sanity check for LT2 > LT1 and potential outliers
from algorithmic decisions.

Unsurprisingly, subjects that had a higher VO2max had, on average, higher threshold
speeds:

Figure 30: LT (both) speeds versus VO2max of the subject, from their VO2max test.
Separate linear regressions are included for the two types of thresholds.

Both threshold aerobic power values tend to be positively correlated with increased
VO2max, though the scatter is substantial. Slopes are similar, interestingly. More
surprisingly, was the finding of relative VO2max usage at thresholds, compared to the
absolute VO2max potential of an athlete.

Figure 31A and B: relative (%) VO2 utilization at LT1 (A) and LT2 (B) versus VO2max of the
subject, as determined by algorithmic threshold detection. Both with significant negative
sloped linear regressions.

Based on prior research and general understanding of physiology (Van Der Zwaard et al.,
2021; Barstow et al., 2000; Vanhatalo et al., 2016), we might expect that the more
aerobically fit one is, the higher their threshold(s) might sit relative to their VO2max. What
we observe is the opposite – there is a tendency for those with low VO2max values to have
a high threshold (in terms of oxygen usage at an estimated threshold speed relative to their
maximal measure oxygen usage), and vice versa for those with high VO2max values.

Figure 32A and B: Absolute VO2 utilization at LT1 (A) and LT2 (B) versus VO2max of the
subject, as determined by algorithmic threshold detection. Both with significant positive
sloped linear regressions.

However, when considering non-percent VO2 usage at thresholds, the expected trend
appears – fitter individuals with higher VO2max values are able to use more oxygen at their
thresholds, ostensibly to run faster, as we saw earlier in Figure 25.

It is possible that the contrast seen here is an indication of a limitation of the study protocol
– it is test-industry knowledge that often the 2.5-3min intervals are not sufficient to
establish a perfect steady state for each stage in terms of metabolic and ventilatory
response, and thus there is a tendency to overestimate threshold values, especially for
people who are less fit – more of their energy is expected to come from anaerobic sources,
and the VO2 response time contant is larger (less quick) (Caen et al., 2024). This means for
a ~3min stage, the last 2-minute data may underreport the oxygen energy cost of running at
that pace, and thus the thresholds will often be set higher than that which is truly a steady
state, leading to high relative (as % of VO2max) threshold estimations.

There are other potential physiological limiters, especially with less-trained athletes, such
as non-central fatigue (muscular, coordination, motivation, etc) that may
disproportionately reduce their tested VO2max relative to fitter individuals with more
experience and physiological adaptation to high-intensity running (and exertion in general).

Metabolic Breakdown – Lidar (2023) Extensions

As introduced earlier, Lidar’s model extends traditional oxygen-based energy estimation by
breaking down total metabolic demand into multiple physiologically distinct components.
This enables integration with Boillet’s supply-side tank model by attributing Boillet's total
physiological power Pphysio to underlying energetic drivers such as functional work,
ventilatory effort, and accumulated metabolite load. The Lidar framework connects
seamlessly to observed VCO₂, VO₂, and VE values and allows for richer inference of
physiological burden beyond aerobic contribution alone.

Functional Work

The functional metabolic rate (MRf) reflects the baseline energetic cost of external
mechanical work (e.g., treadmill or cycling output). It is modeled as a linear function of
mechanical power output Pmec, rescaled by body mass and a population average from the
Lidar dataset:

𝑀𝑅𝑓 = (𝐴𝑓 + 𝐵𝑓 ⋅ 𝑃mec) ⋅
𝑚athlete

𝑚Lidar

To match units across modalities, the slope coefficient BfB_fBf is scaled by the exercise
efficiency (η)so that Pmec can be expressed in its observed form (e.g., running or cycling):

𝐵𝑓 = 𝐵𝑓 ⋅ 𝜂modality

Accumulated Metabolites

The accumulated metabolite demand (MRacc) captures energetic cost from lactate-
related and other byproduct clearance processes. It scales nonlinearly with a variable x4,
representing the fraction of the anaerobic reserve that has been depleted, and is
normalized to subject body mass:

𝑀𝑅acc = (𝐴acc ⋅ 𝐵acc ⋅ 𝑥4 ⋅ 1.03) ⋅
𝑚athlete

𝑚Lidar

This form is a simplified version of Lidar’s formula, given that the original linear-quadratic
distribution factor Bacc was so close to 1 (nearly completely linear). Aacc is a base
metabolic factor, and Bacc modulates the contribution of linear versus nonlinear

accumulation effects. The scalar 1.03 accounts for slight correction in calibration bias
based on Lidar’s experimental tuning.

Physiological Power

Boillet’s Pphysio is the fixed-eta, fixed-C1 total steady-state estimated metabolic demand
on the body, based on the input mechanical work demand (assuming it was <= the maximal
mechanical output power of the athlete based on their current G tank depletion). The
modification in this model is only that C1 is allowed to vary with substrate oxidation
changes.

Aerobic Rate

Lidar’s ‘MRae’ – the aerobic supply rate (tied closely to VO2). The physiological power
supplied by oxygen, defined explicitly from ventilatory data as:

𝑀𝑅𝑎𝑒 = (1.232 ∗ 𝑅𝑄 + 3.8149) ∗ 𝑉𝑂2 ∗ 4184/60

The above is adapted from McArdle et al. (2009). In Watts, with RER restricted to RQ [0.7,
1.0] as the relation is again to efficiency of substrate metabolism of fats vs carbs. VO2 in
L/min.

Individual testing with subject data revealed that RER didn’t add much to the prediction of
MRae, which was highly explainable on an per-individual basis by a linear regression with
VO2 (L/min) alone. Poor correlation between VO2 and RER indicated limitations of any
useful potential relationship during the test.

Figure 33: Metabolic rate (aerobic) versus (corrected) VO2 (L/min) across a singular subject
shows strong agreement.

For the digital twin construction, MRae is computed from simulated VO2 metabolic power
converted to L/min, which gets passed into an individualized regression (example shown
above). These show up on each twin’s parameter list as Mrae slope and int(ercept).

Over all subjects, this fitting process seemed to be generally sound and consistent, in
slope, intercept, and RMSE:

Figure 34A, B, and C: MRae equation parameters – slope (A), intercept (B), and RMSE (C)
across all subjects fitted.

Ventilatory Demand

Lidar’s ‘MRve’ – metabolic demand due to ventilation (the energy requirement of the
breathing muscles).

Lidar misstates the equation slightly, but the correct relationship that lines up with tuned
values and physiological data (on average, used as a starting point) is:

𝑀𝑅𝑣𝑒 = 182 ∗ (𝐵 (
𝑉𝐸

𝑉𝐸𝑚𝑎𝑥
) + (1 − 𝐵) (

𝑉𝐸

𝑉𝐸𝑚𝑎𝑥
)

2

)

Where 𝐵 = 0.93 is the linear/quadratic distribution factor, MRve is in watts, and VE and
VEmax are absolute minute- (current) and maximal ventilation values in L/min. Since total
ventilation is not directly known from the twin, we attempt to use VO2/VO2max as a proxy,
regressing both across all individuals, to make sure the relationship is identical and
consistent, and across all datapoints, to make sure the proxy is accurate.

A linear fit between VE/VEmax and VO2/VO2max was unsuccessful – unsatisfactory
individual 𝑅2 values below 0.9 and slopes that ranged from ~0.8 to 1.1. Overall 𝑅2 = 0.87:

Figure 35A and B: 𝑅2and Slope ranges for attempted linear model for fractional ventilation
and VO2.

After noting the general cubic trend, and changing the regression to a constrained least
squares to require the intercept to go through zero (there is no oxygen where there is no air,
and the opposite is assumed true for simplicity):

𝑉𝐸

𝑉𝐸𝑚𝑎𝑥
= 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 0 where 𝑥 =

𝑉𝑂2

𝑉𝑂2𝑚𝑎𝑥

Figure 36: Cubic (intercept-constrained) fit of VE fraction versus VO2 fraction

The resulting conversion from VO2 fraction (x) to VE fraction (y) is:

𝑦 = 1.2499𝑥³ + −1.5287𝑥² + 1.2687𝑥

with a RMSE of 0.0507.

Figure 37: 𝑅2 values across subjects with the new cubic fit.

Both overall 𝑅2 and individual 𝑅2 distribution was improved significantly with the cubic fit,
especially given the highly variable nature of ventilatory data.

Replication of Lidar Protocol:

Based on best estimates of subject weight and metabolic characteristics (since many were
only provided as averages across test subjects), we use the provided test power profile to
simulate the response of an example athlete (as in Lidar (2023) Figure 7):

Figure 38: Power breakdown for Lidar protocol showing intermittent demand and varying
aerobic and anaerobic contributions.

Figure 39: Tank and Lactate behavior for simulated protocol

Note: No Lidar comparison data, but the values seem physiologically plausible – high
muscle and blood lactate at failure stage at ~2000 seconds.

Figure 40: Metabolic breakdown during the aforementioned protocol replication, showing
proper MRacc, MRf, MRrest, and MRve behaviors.

Notice the time-course of the ventilation and accumulated metabolite demands, and the
aerobic supply attempting to match their increase. The occasional vertical spikes in MRae
(yellow) are a byproduct of the coarse time steps of the discrete differential equation solver
used, and although unsightly, do not take away from the steady-state estimates and overall
fit.

Model deviations from power output are shown below, for comparison of aerobic power to
estimated steady-state total power demand for the protocol imposed.

Figure 41: Aerobic power overshoot versus actual mechanical power demand for Lidar
replication protocol.

Note the general convergence, especially in earlier stages where an aerobic steady state is
reached (below or near LT1). The distinct large triangular regions that do present as
significant deviations from the model are during recovery (ie; lower power demand)
periods, as the VO2 and aerobic power drift back down, and are not considered
problematic, as they match the general course of real measured VO2 – as can be seen in
the “Measured MRae” curve of Lidar Figure 7A:

Figure 42: Lidar et al. (2023) Figure 7A – the deviation found by our model is the same for
Lidar in the recovery periods – MRae exceeds MRdem (the power demand) as the aerobic
engine winds down slowly.

The metabolic breakdown helps us understand some of the results of the Boillet-based
simulations, especially in maximal effort settings where fatigue and failure are likely.

Consider the following replication of Boillet’s Cyclist 1 simulation of steady power in the
severe domain to exhaustion, just above Critical Power (LT2):

Figure 43A, B, and C: Cyclist 1 (from Boillet) simulation at >LT2 (CP), showing lactate
dynamics (A), power breakdown (B), and Lidar metabolic breakdown (C), respectively.

Muscle lactate reaches the same rough point of nearing 20mmol/kg w.w. of muscle at
Boillet’s estimated exhaustion point of ~350seconds (43A). From plot 43B, the aerobic
power seems to fulfill the demand, potentially exceeding it, but we can see from 43C that
the ventilation and accumulation of metabolites has increased the initial total power
requirements such that the aerobic supply cannot keep up (only exceeding the functional
power demand), and thus the glycolytic anaerobic system continues to contribute, as seen
in the still-rising muscle and blood lactate values.

W’ Estimation from VO2max Test

Boillet used a 3-min all-out trial to fit the Critical Power (CP) and W’non-oxidative (W’)
variables, along with other downstream anaerobic traits. The idea is that the glycolytic
reserves are roughly fully depleted (the G tank is empty), thus due to a VO2max test’s
inherent to-failure maximal nature, we can approximate the theoretically fixed work that
can be done above the critical power threshold by using LT2 and computing the work
equivalent of the speed (Grade-Adjusted) and time done above it.

The confounding factor is that not all of this work done above threshold is non-oxidative,
despite it often being called such. Obviously some of the work is done by increased oxygen
consumption, as evidenced by LT2 being a fraction of VO2max. Thus the extra work above
threshold accounted for by increased VO2 is factored in by an integration with speed-
dependent eta and varying speed (along with increased ventilation power demands), and
then the remaining work is attributed to non-oxidative work, requiring more power as
metabolite accumulation occurs, and eventually leading to failure (Caen et al., 2024; Miller
et al., 2023; Jones et al., 2008).

Thus a new algorithm had to be developed to account for the division of energy sources,
with a discrete-time approximation of the integration.

W’ Algorithm

Retrieve CP (Critical Power) parameters from economy (threshold) test

𝐶𝑃 = LT2 Speed × 0.44704: convert mph to m/s

𝑉̇𝑂2,𝐶𝑃 = LT2 VO2 in L/min

Get time-series test data from max test

For each time step t, extract:

𝑣GAP(𝑡) = GAP speed (mph) × 0.44704

η(𝑡) = GAPspdperkW ×
0.44704

1000

𝑉̇𝑂2(𝑡) = measured or corrected VO2 in L/min

𝐶1(𝑡) = estimated oxygen energy equivalent [J/ml]

Δ𝑡(𝑡) = change in time in seconds

Adjust VO₂ for ventilatory and metabolite cost (from Lidar et al.)

Normalize VO2 to max:

𝑥(𝑡) =
𝑉̇𝑂2(𝑡)

max(𝑉̇𝑂2) 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡

Convert to estimated normalized ventilatory rate (as fraction of max):

ve_pct(𝑡) = 1.2499 ⋅ 𝑥(𝑡)3 − 1.5287 ⋅ 𝑥(𝑡)2 + 1.2687 ⋅ 𝑥(𝑡)

Convert to estimated ventilatory rate contribution:
MRve(𝑡) = 0.088 ⋅ [0.93 ⋅ ve_pct(𝑡) + 0.07 ⋅ ve_pct(𝑡)2]

Estimate accumulated metabolite contribution, based on Lidar average VE/Acc ratios:

MRacc(𝑡) = 0.36 ⋅ MRve(𝑡)

Adjusted oxygen cost is thus:

𝑉̇𝑂2,adj(𝑡) = 𝑉̇𝑂2(𝑡) ⋅ (1 − MRacc(𝑡) − MRve(𝑡))

Estimate excess oxygen cost above CP

𝑉̇𝑂2,excess(𝑡) = max(0, 𝑉̇𝑂2,adj(𝑡) − 𝑉̇𝑂2,𝐶𝑃)

Convert to energy rate:

𝑃excess(𝑡) = 𝑉̇𝑂2,excess(𝑡) ⋅ 1000 ⋅ 𝐶1(𝑡) ⋅
1

60

Convert to equivalent speed demand:

𝑣O2
(𝑡) =

𝑃excess(𝑡)

η(𝑡)

Get time points above CP

above_CP(𝑡) = max(0, 𝑣GAP(𝑡) − 𝐶𝑃)

Compute aerobic and non-aerobic work above CP

Total aerobic contribution above CP:

𝑊ox = ∑ (
𝑣O2

(𝑡) ⋅ Δ𝑡(𝑡)

η(𝑡)
)

𝑡

÷ 1000

Total non-oxidative contribution above CP:

𝑊non-ox = ∑ (
(above_CP(𝑡) − 𝑣O2

(𝑡)) ⋅ Δ𝑡(𝑡)

η(𝑡)
)

𝑡

÷ 1000

Both are returned for visualization, but only 𝑊non-ox is used for the estimation of 𝐴𝐺, which
has a straightforward computation identical to Boillet’s formulas, described in Parameter
Estimation earlier.

Full code for both W’ and 𝐴𝐺 estimation is in the appendix.

W’ Distribution Description

An example W’ visualization derived from the above algorithm for work done above CP is
shown:

Figure 44A and B: GAP speed and W’ component contributions to limited-work region over
critical power, showing instantaenous power delivery distribution (A), and cumulative
power source contribution (B).

Note the partial coverage of the supra-threshold work by aerobic increase – Gross VO2
increase is dampened to the eventual, smaller W’_ox contribution by the ~8% and ~4%
(near VO2max, where VE is also high) that go towards covering ventilation power demands
and clearing accumulated metabolites, respectively, instead of towards supplying running
power.

Overall, for all subjects, the W’ distributions were as follows:

Figure 45A, B, C and 46A, B, C: Absolute (45) and weight-normalized (46) W’ total (A),
W’non-ox (B), and W’ox (C) distributions for the subset of subjects with both threshold and
maximal test data, colored by sex.

Note that values of or near zero are likely due to threshold values (LT2 specifically) being
estimated too high, either in the test protocol, or in the algorithmic determination, and can
be considered limitations of the model.

Figure 47A, B, C and 48A, B, C: Correlational assessments bet Absolute (45) and weight-
normalized (46) W’ total (A), W’non-ox (B), and W’ox (C) and absolute VO2max (L/min – 47)
and weight-normalized VO2max (ml/kg/min – 48) for the subset of subjects with both
threshold and maximal test data, colored by sex.

From the above, VO2max generally correlates to more work able to be done above
threshold. This could also be a product of the negative correlation between VO2max and
threshold expressed as a percent of maximal VO2 – fitter people tend to have more “space”
or capacity, above threshold, according to our data. These trends are weak and there isn’t a
ton of data to suggest any strong direct causation here, especially given the derived nature
of the W’ variables. Women tend to have lower absolute W’ values across the board.

In terms of relative (per-kilogram of body mass), there weren’t any super significant trends
either - the correlations are weak at best, but there are some potential trends – higher

VO2max goes with higher oxidative potential over threshold, both absolute and per-kilo.
The p=0.10 negative correlation we see between W’non-ox and VO2max could potentially
warrant more study – to what extent is the lower W’non-ox caused by VO2 coverage of the
demand versus just lacking anaerobic power? On a per-kilogram basis, women and men
are less distinguishable in terms of estimated W’ values.

None of the W’ variables had significant relationships directly with speed at second
threshold:

Figure 49A, B, C: W’ total (A), W’ox (B), and W’non-ox (C) versus LT2 speed, with linear
regressions fitted.

Notable that threshold speed has no significant correlation with W’. This emphasizes the
divide between energetics and physical mechanical output, and emphasizes the need for a
complete model – the anaerobic and top-end aerobic side of an athlete seems to have little
bearing on the (mainly aerobically determined) second lactate threshold.

Results

Individual Amateur Runner Digital Twin
 Using a case example of a digital twin for a moderately trained runner, with
additional blood lactate data to validate the metabolite time-course.

Subject was chosen for expert-validated ventilatory and lactate thresholds and
completeness of data – documented in real-time and cross-checked later.

Subject details

Weight: 73.6 kg, Age: 21 years old, VO2max: 76 ml/kg/min

VT1 at 7.7 mph, VT2 at 9.5 mph (Stage 3, 7)

LT1 at 8 mph, LT2 at 9.5 mph (Stage 4, 7)

%VO2max at LT1 = alpha = 0.600 = 60.0%

%VO2max at LT2 = beta = 0.747 = 74.7%

Boillet model fitting

Table 3: Resulting subject parameter values from the twin auto-fitting processes described
in Methods

Parameter Value Units
Aacc 114.0 W
PC_max 25.0 Mmol/kg w.w.
phi 0.300
MO 2.040 kJ/s
eta(run) 6.931 GAP spd (mph) / kW
mraeslope 351.947
mraeint -31.120
wgt 73.636 Kg
etaslope -0.253
etaint 8.820
MG 10.567 kJ/s
MR 4.227 kJ/s
maxRER 1.029
AT 26.281 kJ
AP 39.856 kJ
AG 471.220 kJ
lamb 0.445

theta 0.420
Wprimenonox 80.232 kJ
Wprimeox 46.589 kJ
Wprime 126.820 kJ
alpha 0.600 % of VO2max
beta 0.747 % of VO2max
musclemass 36.818 kg

Figure 50: Non-oxidative tank capacity (total kiloJoules) breakdown for subject, showing
relative sizes – the main glycolytic tank dominates in total energy storage.

Threshold and Max Tests

A digital twin created as per above was subjected to the threshold and maximal protocols
of their own fitting data, and real measured blood lactate and measured VO2 were used for
evaluation of the model fit, in addition to visual corroboration of expected model dynamics.

Measured VO2 was converted to MRae physiological power for direct comparison with
modeled MRae. Since VO2/VO2max and VE/VEmax are so closely related, as found in the
Energy Equivalents section, the model’s performance on VO2 will be a good estimation of
the VE predictive strength as well.

Figure 51: Muscle and Blood lactate (and tank dynamics) for simulated (lines) and real test
data (dots – only Blood lactate) over the time course of the threshold and VO2max tests.

The model tends to slightly overestimate lactate at low and medium intensities. Perhaps
this is a function of muscle lactate, or the population-style fit of blood lactate that is
crudely applied to an individual’s lactate clearance dynamics (well-trained athletes may
have better removal of lactate than the average person) – more sophisticated models are
likely a good point of future modeling.

Figure 52: Power breakdown for subject over threshold and VO2max tests.

Again, ignore the yellow aerobic power spikes, they are after each work interval, where the
applied physical work (speed) is reduced dramatically while the VO2 is still high and hasn’t
come down yet, so the model thinks you are being really efficient (at low speed) and
artificially spikes the power. This is a limitation of the computational logic, unfortunately.

Figure 53: Metabolic supply and demand rates for subject over threshold and VO2max
tests.

Figure 54: Extracted modeled and real (estimated) MRae from Figure 53, for accuracy
comparison – both qualitative and quantitative. Visually the agreement seems decent.

Figure 55: Modeled minus measured MRae (error) across threshold and VO2max tests

Visually, the model overestimates at low intensities (but perhaps at longer durations the
body would find the same steady state (Caen et al., 2024). At higher intensities there is
some underestimation, although not for the vo2max test, which is interesting. This is
potentially due to the MRae model not accounting for extra ventilation and accumulated
metabolite power required at the higher intensities as explicitly. Further models may
incorporate some sort of tuning to this extent. It is also possibly a result of the GAP
algorithm overestimating speed adjustments for steeper gradients (which it seems to do, at
least relative to other internet pace calculators). In this case, a more conservative GAP
might result in an underestimated MRae at VO2max as well, similar to the later stages of
the threshold test, for an overall underestimation of physiological aerobic power at
intensities above LT1. Between stages (30s standing rest for lactate sampling) the model
tended to overestimate the VO2 recovery down towards baseline levels more than was
measured, mostly at lower intensities.

Several fit statistics were computed for the threshold-max data, including Mean Absolute
Error, Root Mean Squared Error, Bias (Mean Error), Mean Absolute Percentage Error, and 𝑅2:

MAE =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

= 96.91 𝑊

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑖=1

= 131.4 𝑊

Bias =
1

𝑛
∑(𝑦𝑖̂ − 𝑦𝑖)

𝑛

𝑖=1

= 32.4 𝑊

MAPE =
100

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖
|

𝑛

𝑖=1

= 10.4%

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

= 0.87

Notable is that RMSE (131.4W) is 38.1% lower than Boillet’s Critical Power testing model
RMSE on the 3-min all-out ground-truth protocol, when converted to equivalent
physiological power.

Within-stage real VO2 (and thus MRae) variation was on the lower end of the 3-7% standard
deviation percent of average, at 3.39%. Still, after converting 10.4% MAPE to RMSE (%) with
the rough estimation that errors are normally distributed and symmetrical:

RMSE % ≈ 1.25 MAPE

The remaining model error after controlling for data noise is still significant, at around 10%,
but perhaps acceptable, given the early nature and quantity of estimations made on a
relatively un-tuned model.

Steady-state trials

MLSS is the gold standard for maximal aerobic steady state, which is important for
performance estimation for longer (>15min) duration maximal efforts – what intensity
(speed or power) can be maintained? Usually this takes multi (3-7) day re-testing of 20-30
minutes that is costly, exhausting, and interrupts a lot of normal training and must be
carefully controlled (Caen et al., 2024). Usually blood lactate levels are measured to
determine (lack of) upward drift at each intensity tested.

Using the digital twin, constant efforts can be simulated at potential intensities instantly, to
evaluate the potential lactate levels and other metabolic factors. Although early on some
estimations put MLSS as commensurate with what LT2 tries to measure, more recent MLSS
studies have found that it falls between LT1 and LT2 (both in intensity and lactate), sort of
as a midpoint. Whether this is due to overestimation of LT2 from short-duration step
protocols is debated but the general consensus is that MLSS is slightly lower. (Caen et al.,
2022; Cerezuela-Espejo et al., 2018).

At simulated steady power (speeds: 7.5, 8.5, 9.5, 11.5 mph) for 20min:

Figure 56A, B, C, D: Muscle and Blood lactate simulated curves for 20 minutes constant
power at <LT1 (7.5mph, A-top left), >LT1 (8.5, B-bottom left), =LT2 (9.5, C-top right), >
LT2(11.5, D-bottom right).

Note likely failure (or near) for the supra-LT2 test. Blood lactate values nearing maximal
potential physiological values, as well as muscular lactate values.

The clear drawback here is that even above MLSS, at LT2, there is still a steady state
reached (albeit at high lactate and nearer the end of the 20 minutes). In reality, a
combination of reduced efficiency due to muscular fatigue and perhaps heat stress, along
with accumulated metabolite demand and ventilation, might cause drift at LT2 over
time(Caen et al., 2022; Zuccarelli et al., 2018; Bellinger et al., 2020). Another limitation of
the model, and perhaps of the current body of knowledge on fatigue and durability, which is
a rapidly emerging field of sports science.

53 Runner Cohort Digital Twin Summary
Overall, 53 subjects had both eco and max data. A few were discarded in the model fitting
process for weird (often short) stage data and protocols, and a few were excluded for
possessing an estimated W’ that was negative.

For those with W’ in valid ranges, but still ending up with negative AG (as sometimes was
the case with early model testing, and for a few individuals), AG was set to a conservative
200 kJ, which tended to produce decent agreement. No further “hyper-parameter” tuning or
correction was done.

Test data was appended together (eco + 10min rest + max) and aligned, and test speeds
were converted to GAP speeds and processed to a full 1-hz power sequence input for the
digital twin. Twin parameters were estimated from test data, and fed into the twin
simulation as well. Similar to the individual twin evaluation, VO2 and VCO2 time course
were compared to ground-truth ventilatory measurements.

See code in appendix for full data pipeline.

Results of parameter fitting and selection on subjects:

Table 4: Average Across-Subjects Parameter Summary

 Mean ± SD

PC_max 25.000 ± 0.000 (left as constant)

phi 0.300 ± 0.000 (fixed by Boillet)

MO 1.590 ± 0.363 (VO2max, in kJ/s)

eta(run) 8.184 ± 1.788 (GAP mph/(kW))

mrae_slope 356.507 ± 5.806

mrae_int -44.743 ± 18.514

weight 71.670 ± 13.546 kg

eta_slope -0.258 ± 0.175

eta_int 10.084 ± 2.651

MG 10.285 ± 1.944 kJ/s

MR 4.114 ± 0.778 kJ/s

AT 23.062 ± 5.364 kJ

AP 38.791 ± 7.332 kJ

AG 182.125 ± 222.323 kJ (before correction(s))

lambda 0.391 ± 0.079

max_RER 1.048 ± 0.090

theta 0.476 ± 0.069

Wprime_nonox 50.157 ± 21.884 kJ

Wprime_ox 14.073 ± 22.104 kJ

Wprime_total 64.230 ± 29.332 kJ

alpha 0.680 ± 0.098 % of VO2max

beta 0.828 ± 0.102 % of VO2max

muscle_mass 35.835 ± 6.773 kg

Overall estimated alpha and beta values fall into accepted literature values for LT1 and LT2
as percents of VO2max (~68% and ~83%, respectively) (Kim et al., 2021; Cerezuela-Espejo
et al., 2018). Maximal RER also falls into expected range of >1.0 at near-maximal efforts.

Parameter correlations across subjects were notable for a few pairings:

Figure 57: Parameter correlation heatmap for all subjects fitted successfully with digital
twins

Correlations of 1.00 clearly indicate where direct relations exist in the estimation process,
such as for muscle_mass and AP, MR, MG, etc. PC_max and phi were fixed values in the
fitting process.

Higher theta, beta, and alpha were strongly positively correlated, as expected given their
importance in determining the aerobic power (indirectly, by determining the delay of the
onset of anaerobic power), and were negatively correlated with lambda, which tended to
be lower (smaller) as the aerobic factors increased. Notably eta_int (the intercept term of
the efficiency regression) tended to be negatively associated with anaerobic markers such
as MG, MR, AT, and AP, as well as muscle mass – lighter and more aerobic athletes tended
to be more efficient. The moderate positive association between MO and Wprime_total was
also notable – higher VO2max goes along with higher work able to be done above

threshold, although the oxidative component of that W’ had a smaller correlation. The
moderate negative correlation between eta(run) and MO seems to confirm some studies’
findings that fitter athletes tend to be less efficient (or that less efficient athletes
compensate by being fitter) (Mogensen et al., 2006; Lopez, 2023).

Athlete Subtype Classification

To see if the created digital twins could be separated into classes, just as we might
categorize different types of athletes with a combination of subjective and objective traits
(ie: fast, endurant, powerful, graceful), the model parameters were cast into Principle
Component Analysis (PCA) to try to reduce the dimensionality to something more
understandable than 15+ varying parameters.

Although not a majority of features have high correlations, the new orthogonal axes that
PCA projects the data onto capture the maximum variance across the subjects’ features,
by decomposing the covariance matrix, and keeping the (2, in this case) largest eigenvalues
and corresponding eigenvectors V, that define the projection:

𝒁 = 𝑿𝑽𝒌

Where k=2, and X is 𝑛 𝑥 𝑝 and is the mean-subtracted original parameter-subject matrix (n
subjects, 𝑝 params each).

Figure 58: Principal Component Analysis projection onto PC1 and PC2, of the subjects’
parameter values, colored by AG value.

Upon examining the underlying parameter data, it seemed that AG (anaerobic glycolytic
capacity) was explaining a lot of the spread across PC1, so the color gradient was added to
confirm. Since the negative AG values are pre-correction and likely represent an error
somewhere in the model fitting process, this variance is sort of fake and model-induced,
but nonetheless the sprint capacity of an athlete is undeniably a defining factor (Wackwitz

et al., 2025). The cumulative variance plot adds to the confirmation that much of the
athlete parameter variance is explained by this PC1:

Figure 59: Cumulative explained variance by first five principal components

Nearly all (near 100%) of total variance in athlete parameters is explained by the first PC.

Overall model predictive results:

VO2 (L/min) was chosen as the primary metric for model evaluation, being at the core of
both ventilation and aerobic power, and capturing much of the essence of perceived
endurance effort – it has intuition for many (Zhang et al., 2021; Van Der Zwaard et al .,
2021). It also allows for 1:1 comparison with the Lidar model, who used MRae (the
metabolic equivalent). Modeled versus measured VO2 average errata are summarized
below. Typical VO2 values depend on weight, fitness, and intensity, but range between 2-5
L/min for most. Within-stage steady-state variation of VO2 was on the order of 3-7%, which
did not significantly change the model errata, like in the individual digital twin case study in
the previous section.

To examine whether the model had a tendency to estimate certain intensities or types of
tests better than others (as potentially indicated by the individual case study of the
previous section), model VO2, VCO2, and MRae outputs were split into 3 sections: A (first
half of the threshold test), B (second half of the threshold test), and Max (VO2max test
portion). Separate error metrics were computed in addition to the grouped overall errors.

Table 5: Mean +- SD of overall across-subjects VO2 model minus measured error statistics

 Overall A-1st Half Eco B-2nd Half Eco VO2Max

MAE 0.278 ± 0.116 0.235 ± 0.091 0.261 ± 0.156 0.363 ± 0.139

MSE 0.154 ± 0.132 0.113 ± 0.107 0.145 ± 0.187 0.223 ± 0.165

RMSE 0.365 ± 0.143 0.311 ± 0.128 0.334 ± 0.184 0.444 ± 0.162

Bias 0.219 ± 0.133 0.209 ± 0.099 0.176 ± 0.200 0.299 ± 0.206

MAPE 11.905 ± 7.219 12.448 ± 9.937 11.571 ± 15.450 12.018 ± 4.670

R² 0.664 ± 0.236 0.605 ± 0.163 0.481 ± 0.576 0.441 ± 0.541

VCO2, although also modeled, was one more estimation removed from reality (requiring an
RER estimation in the model) and thus was less relied upon, especially given the difficulty
of estimating RER.

Overall VO2 standard deviation of the RMSE was ~39.2%, indicating moderate reliability in
line with Lidar’s 38.5% for their similarly intermittent test protocol (P3), though they found
lower MAPE at around ~9%.

The VCO2 errors are quite similar to those of VO2, if a bit higher:

Table 6: VCO₂ Error Metrics Summary

 Mean ± SD

MAE 0.350 ± 0.190

MSE 0.263 ± 0.323

RMSE 0.459 ± 0.228

Bias 0.184 ± 0.239

MAPE (%) 14.784 ± 9.328

R² 0.535 ± 0.582

For the above VO2 model errors, pairwise T-Tests were computed for likely significant mean
differences, and ranked in order of increasing p-value (full table in appendix):

Table 7: T-Test Significant Mean Results for VO2 model error differences between test
segments

Metric Comparison p-value Significance

 MAE Overall vs Max 0.0000 ***

 MAE A vs Max 0.0000 ***

 MAE B vs Max 0.0000 ***

 MSE Overall vs Max 0.0000 ***

 RMSE Overall vs Max 0.0000 ***

 MSE B vs Max 0.0000 ***

 MSE A vs Max 0.0000 ***

 RMSE A vs Max 0.0000 ***

 RMSE B vs Max 0.0000 ***

 R² Overall vs Max 0.0000 ***

 MAE Overall vs A 0.0001 ***

 RMSE Overall vs A 0.0002 ***

 Bias Overall vs Max 0.0006 ***

 Bias A vs Max 0.0008 ***

 Bias B vs Max 0.0011 **

 R² Overall vs B 0.0016 **

 MSE Overall vs A 0.0052 **

 RMSE Overall vs B 0.0088 **

 Bias Overall vs B 0.0109 *

 R² A vs Max 0.0324 *

 MAE Overall vs B 0.0727 *

 R² Overall vs A 0.0928 *

Notable the VO2max segment was significantly different than overall in terms of MAE, MSE,
RMSE and Bias, as were individual A- and B-Threshold sections, which were also lower. 𝑅2
trended slightly downwards between modeled and real VO2 as the test (and intensity of the
test) progressed, although the low value is important to consider alongside the MAPE,
which hovered around ~11%.

Figure 60A, B, C, D, E, F: Graphical representation of modeling errors across test segments
for VO2 modeled versus measured data (previous page).

These results can seem less than encouraging without a visual understanding of the typical
measurement variations and overall trends of the model.

Some of the overall positive bias between the model and real VO2 data – ie: overestimation
may be due to the fact that measured VO2max was often a briefly-hit value, perhaps errant
and often not sustained, especially for less-trained subjects. Thus basing the elite-cyclist
model may have overestimated the ability to meet power demands aerobically for the
running subjects in question as a whole.

Tank Simulation Animation
A fun outcome of this study is a real-time animation of the dynamics modeled, to further
develop intuition and rapidly test ideas and parameter choice impacts. Currently set up as
a locally-deployable script to run from a folder in a browser with Streamlit, it should be up
and running on github shortly. Code in appendix.

Figure 61: Mini-dashboard showing a few potential parameters to live-tune the digital twin

Figure 62A and B: Screenshot of live-output tank, lactate, power breakdown data streams

Figure 63: Tank animation from a Constant power test at above Critical Power,
demonstrating desired asymptotic behavior of Glycolytic (G) tank. Simulations above used
Cyclist 1 (from Boillet) parameter data.

The potential for this to live-simulate races and team-events is enticing, to be able to see
effects in real-time and gain strong intuition as well as predictive power for better
performance.

Discussion
This study presents a comprehensive digital twin framework capable of simulating
physiological responses to endurance exercise using interpretable, data-driven models. By
extending Boillet’s three-tank theory of energy partitioning, the system introduces multiple
novel components: dynamic mechanical and oxygen efficiency estimates, embedded
lactate kinetics, and power scaling from grade-adjusted pace (GAP). The digital twin
bridges a key gap between muscle-level theory and real-world treadmill gas exchange data,
producing a time-resolved, multi-system portrait of endurance energetics.

One of the primary modeling innovations lies in the incorporation of dynamic efficiency
terms. Rather than assuming fixed mechanical efficiency (η), the model allows this
parameter to vary as a function of speed and fatigue, reflecting real-world shifts in
substrate usage and muscular economy. Similarly, oxygen-metabolic efficiency (C₁),
representing the volume of oxygen required per joule of metabolic work, is updated
continuously during simulation, guided by inferred RER dynamics. Together, these variable
efficiencies allow the model to reproduce the nonlinearities that define real exercise
metabolism.

Another strength of the framework is its ability to reconstruct physiological thresholds
without requiring invasive measurements. Using changes in VE/VO₂, VE/VCO₂, and RER
slope, the model identified LT1 and LT2 inflection points with minimal manual intervention.
This enables subject-specific calibration and facilitates high-throughput parameter
estimation from treadmill tests alone. Across the cohort of 53 runners, the estimated LT1
and LT2 percentages of VO₂max (mean α = 68%, β = 83%) aligned with values from the
broader literature (Kim et al., 2021; Cerezuela-Espejo et al., 2018).

To validate internal dynamics, the model was tested against VO₂ and blood lactate profiles
for a well-characterized amateur runner with expert-validated thresholds. The twin
accurately captured the rise and plateau of lactate under increasing workloads, with minor
overestimations at lower intensities likely due to population-level assumptions about
lactate clearance. Importantly, model VO₂ outputs closely followed measured values, with
average MAPE of ~11% and RMSE of 0.365 ± 0.143 L/min across all subjects. These values
fall within the error margins reported by Lidar (2023) for comparable treadmill protocols
and represent a strong result given the model's complexity and minimal tuning.

Notably, the model supports physiologically grounded estimation of W′—the total
anaerobic work capacity—and its oxidative versus glycolytic components. For instance, the
case study subject exhibited a W′ of 126.8 kJ, partitioned into 80.2 kJ non-oxidative and
46.6 kJ oxidative components. Such distinctions, grounded in empirical VO₂max test data

and muscle–blood lactate regressions, enable more granular fatigue modeling than
conventional critical power frameworks.

The model also supports inference from incomplete or noisy data, a frequent challenge in
both field sport and clinical settings. Using only weight, VO₂max, and GAP-estimated
speeds, it is possible to simulate dynamic VO₂, lactate accumulation, and ventilation
profiles with plausible internal consistency. In this way, the digital twin can flag implausible
threshold claims, reveal RER artifacts, or estimate fatigue under hypothetical pacing
strategies. This positions the model as a powerful inverse inference engine, transforming
sparse data into interpretable physiological narratives.

Still, several limitations remain. The discretized Euler solver produced some transient
artifacts, especially during rapid transitions and short bouts (<20s), where numerical
instability could yield brief overshoots. The lactate kinetics were also simplified, with a
single saturation lag term governing clearance from muscle to blood, instead of more
realistic known dynamics of production and clearance volumes (Bartoloni et al., 2024).
More physiologically accurate models might incorporate perfusion, bicarbonate buffering,
or liver metabolism. Furthermore, subject-specific values for muscle mass, PCr content,
and tank widths were inferred from population means, potentially obscuring finer individual
variability. Finally, no heart rate, thermal, or perceived exertion loops were integrated,
leaving important feedback mechanisms unmodeled.

Despite these caveats, the digital twin robustly captured the essential dynamics of
endurance exercise across a heterogeneous cohort in a new sport and provides a flexible
base for future physiological modeling with lots of room for improvement.

Conclusion
This thesis introduced and validated a physiologically grounded digital twin of human
endurance, linking Boillet’s muscular tank dynamics with treadmill-derived ventilatory data
from 53 runners. Through layered extensions—dynamic efficiency modeling, lactate
kinetics, and empirical VO₂–VCO₂ coupling—the simulation system was able to reproduce
not only key thresholds but also full time-course dynamics of fatigue, oxygen deficit, and
energetic breakdown. More than a curve-fitting algorithm, the model serves as a
hypothesis-generating tool and interpretive framework. It makes explicit the biophysical
costs of exceeding LT2, shows how fat versus carbohydrate use shapes VO₂ demands, and
highlights why even subtle changes in efficiency can alter fatigue onset. For instance,
above-threshold efforts simulated at 11.5 mph showed non-recoverable lactate

accumulation and muscle tank depletion, illustrating the risk of pacing errors in high-
stakes events. Across the cohort, observed VO₂ modeling errors were consistent with
known measurement noise, suggesting the model faithfully reflects underlying physiology.

Looking ahead, the framework developed here provides a launching point for several
impactful extensions. First, by treating the digital twin as an inverse problem, it becomes
feasible to estimate VO₂max or lactate thresholds from submaximal effort data alone—
especially valuable in clinical or large-cohort settings where maximal testing is impractical.
Similarly, refining lactate and CO₂ clearance modeling through dynamic VCO₂ signals or
individualized time constants would improve the realism of fatigue onset and recovery
predictions. The model’s structure is amenable to expansion: integration of heart rate,
thermal strain, or perceived exertion feedback loops could yield a fuller picture of
performance regulation under real-world stressors.

From a statistical perspective, the model is well-suited for probabilistic extensions.
Bayesian estimation or Kalman filtering could be introduced to fit noisy metabolic cart data
more robustly and to recover subject-specific parameters in the presence of uncertainty.
This would support automated tuning of tank widths or efficiencies, enabling more general
application across populations. In practical domains, the model could underpin race
strategy simulators, personalized coaching tools, or diagnostic platforms for monitoring
ventilatory limitations or metabolic disorders without the need for invasive testing.

Ultimately, this work reflects a broader aspiration: to shift the prevailing lens of exercise
science away from isolated, one-dimensional studies and toward systems-level models
that capture the interdependence of physiological processes. Rather than treating
threshold values, lactate responses, or oxygen kinetics as discrete outcomes, the digital
twin framework encourages us to view them as emergent properties of an integrated
system. In doing so, it invites a more cohesive and mechanistic understanding of
endurance performance—one that respects both the complexity of human physiology and
the constraints of real-world data. The hope is that we don’t just predict, but understand.

Acknowledgements
Thank you to Dave Uher for answering endless questions about physiological testing

Thank you to Professor Mucha for the mentorship, support, and enthusiasm

Thank you to Alice Boillet for helping me understand the 3-tank model

Special thanks to all my friends and family for encouraging me and putting up with my
endless ponderings about thresholds and VO2max testing.

References
Ahlquist, L. E., Jr, D. R. B., Sufit, R., Nagle, F. J., & Thomas, D. P. (n.d.). The effect of pedaling
frequency on glycogen depletion rates in type I and type II quadriceps muscle fibers during
submaximal cycling exercise.

Altenburg, T. M., Degens, H., Van Mechelen, W., Sargeant, A. J., & De Haan, A. (2007).
Recruitment of single muscle fibers during submaximal cycling exercise. Journal of Applied
Physiology, 103(5), 1752–1756. https://doi.org/10.1152/japplphysiol.00496.2007

Artiga Gonzalez, A., Bertschinger, R., Brosda, F., Dahmen, T., Thumm, P., & Saupe, D.
(2019). Kinetic analysis of oxygen dynamics under a variable work rate. Human Movement
Science, 66, 645–658. https://doi.org/10.1016/j.humov.2017.08.020

Baguet, A., Everaert, I., Hespel, P., Petrovic, M., Achten, E., & Derave, W. (2011). A New
Method for Non-Invasive Estimation of Human Muscle Fiber Type Composition. PLoS ONE,
6(7), e21956. https://doi.org/10.1371/journal.pone.0021956

Bangsbo, J., Johansen, L., Graham, T., & Saltin, B. (1993). Lactate and H+ effluxes from
human skeletal muscles during intense, dynamic exercise. The Journal of Physiology,
462(1), 115–133. https://doi.org/10.1113/jphysiol.1993.sp019546

Barstow, T. J., Jones, A. M., Nguyen, P. H., & Casaburi, R. (1996). Influence of muscle fiber
type and pedal frequency on oxygen uptake kinetics of heavy exercise. Journal of Applied
Physiology, 81(4), 1642–1650. https://doi.org/10.1152/jappl.1996.81.4.1642

Barstow, T. J., Jones, A. M., Nguyen, P. H., & Casaburi, R. (2000a). Influence of Muscle Fibre
Type and Fitness on the Oxygen Uptake/Power Output Slope During Incremental Exercise in
Humans. Experimental Physiology, 85(1), 109–116. https://doi.org/10.1111/j.1469-
445X.2000.01942.x

https://doi.org/10.1152/japplphysiol.00496.2007
https://doi.org/10.1016/j.humov.2017.08.020
https://doi.org/10.1371/journal.pone.0021956
https://doi.org/10.1113/jphysiol.1993.sp019546
https://doi.org/10.1152/jappl.1996.81.4.1642
https://doi.org/10.1111/j.1469-445X.2000.01942.x
https://doi.org/10.1111/j.1469-445X.2000.01942.x

Barstow, T. J., Jones, A. M., Nguyen, P. H., & Casaburi, R. (2000b). Influence of Muscle Fibre
Type and Fitness on the Oxygen Uptake/Power Output Slope During Incremental Exercise in
Humans. Experimental Physiology, 85(1), 109–116. https://doi.org/10.1111/j.1469-
445X.2000.01942.x

Bartoloni, B., Mannelli, M., Gamberi, T., & Fiaschi, T. (2024). The Multiple Roles of Lactate in
the Skeletal Muscle. Cells, 13(14), 1177. https://doi.org/10.3390/cells13141177

Behncke, H. (1993). A mathematical model for the force and energetics in competitive
running. Journal of Mathematical Biology, 31(8), 853–878.
https://doi.org/10.1007/BF00168050

Bellinger, P., Desbrow, B., Derave, W., Lievens, E., Irwin, C., Sabapathy, S., Kennedy, B.,
Craven, J., Pennell, E., Rice, H., & Minahan, C. (2020). Muscle fiber typology is associated
with the incidence of overreaching in response to overload training. Journal of Applied
Physiology, 129(4), 823–836. https://doi.org/10.1152/japplphysiol.00314.2020

Beltman, J. G. M., Sargeant, A. J., Van Mechelen, W., & De Haan, A. (2004). Voluntary
activation level and muscle fiber recruitment of human quadriceps during lengthening
contractions. Journal of Applied Physiology, 97(2), 619–626.
https://doi.org/10.1152/japplphysiol.01202.2003

Bex, T. (n.d.). NMR-BASED APPLICATIONS IN ELITE SPORTS PERFORMANCE.

Bex, T., Baguet, A., Achten, E., Aerts, P., De Clercq, D., & Derave, W. (2017). Cyclic
movement frequency is associated with muscle typology in athletes. Scandinavian Journal
of Medicine & Science in Sports, 27(2), 223–229. https://doi.org/10.1111/sms.12648

Billat, V. L., Mille-Hamard, Petit, & Koralsztein. (1999). The Role of Cadence on the V˙O2
Slow Component in Cycling and Running in Triathletes. International Journal of Sports
Medicine, 20(7), 429–437. https://doi.org/10.1055/s-1999-8825

Black, M. I., Fulford, J., Debenedictis, L., Wylie, L. J., Williams, E., Armstrong, N., & Jones, A.
M. (2018). Is There an Optimal Speed for Economical Running? International Journal of
Sports Physiology and Performance, 13(1), 75–81. https://doi.org/10.1123/ijspp.2017-0015

Boillet, A., Messonnier, L. A., & Cohen, C. (2024). Individualized physiology-based digital
twin model for sports performance prediction: A reinterpretation of the Margaria–Morton
model. Scientific Reports, 14(1), 5470. https://doi.org/10.1038/s41598-024-56042-0

Brooks, G. A., Arevalo, J. A., Osmond, A. D., Leija, R. G., Curl, C. C., & Tovar, A. P. (2022).
Lactate in contemporary biology: A phoenix risen. The Journal of Physiology, 600(5), 1229–
1251. https://doi.org/10.1113/JP280955

https://doi.org/10.1111/j.1469-445X.2000.01942.x
https://doi.org/10.1111/j.1469-445X.2000.01942.x
https://doi.org/10.3390/cells13141177
https://doi.org/10.1007/BF00168050
https://doi.org/10.1152/japplphysiol.00314.2020
https://doi.org/10.1152/japplphysiol.01202.2003
https://doi.org/10.1111/sms.12648
https://doi.org/10.1055/s-1999-8825
https://doi.org/10.1123/ijspp.2017-0015
https://doi.org/10.1038/s41598-024-56042-0
https://doi.org/10.1113/JP280955

Caen, K., Bourgois, J. G., Stassijns, E., & Boone, J. (2022). A longitudinal study on the
interchangeable use of whole-body and local exercise thresholds in cycling. European
Journal of Applied Physiology, 122(7), 1657–1670. https://doi.org/10.1007/s00421-022-
04942-2

Caen, K., Poole, D. C., Vanhatalo, A., & Jones, A. M. (2024). Critical Power and Maximal
Lactate Steady State in Cycling: “Watts” the Difference? Sports Medicine, 54(10), 2497–
2513. https://doi.org/10.1007/s40279-024-02075-4

Cerezuela-Espejo, V., Courel-Ibáñez, J., Morán-Navarro, R., Martínez-Cava, A., & Pallarés, J.
G. (2018). The Relationship Between Lactate and Ventilatory Thresholds in Runners:
Validity and Reliability of Exercise Test Performance Parameters. Frontiers in Physiology, 9,
1320. https://doi.org/10.3389/fphys.2018.01320

Chavarren, J. (n.d.-a). Cycling ef®ciency and pedalling frequency in road cyclists.

Chavarren, J. (n.d.-b). Cycling ef®ciency and pedalling frequency in road cyclists.

Chwalbinska-Moneta, J., Robergs, R. A., Costill, D. L., & Fink, W. J. (n.d.-a). Threshold for
muscle lactate accumulation during progressive exercise.

Chwalbinska-Moneta, J., Robergs, R. A., Costill, D. L., & Fink, W. J. (n.d.-b). Threshold for
muscle lactate accumulation during progressive exercise.

Conde Alonso, S., Gajanand, T., Ramos, J. S., Antonietti, J.-P., & Borrani, F. (2020). The
metabolic profiles of different fiber type populations under the emergence of the slow
component of oxygen uptake. The Journal of Physiological Sciences, 70(1), 27.
https://doi.org/10.1186/s12576-020-00754-1

Cross, T. J., Winters, C., Sheel, A. W., & Sabapathy, S. (2014). Respiratory Muscle Power and
the Slow Component of O2 Uptake. Medicine & Science in Sports & Exercise, 46(9), 1797–
1807. https://doi.org/10.1249/MSS.0000000000000306

Crouter, S. E., Antczak, A., Hudak, J. R., DellaValle, D. M., & Haas, J. D. (2006). Accuracy and
reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems.
European Journal of Applied Physiology, 98(2), 139–151. https://doi.org/10.1007/s00421-
006-0255-0

Da Eira Silva, V., Painelli, V. D. S., Shinjo, S. K., Ribeiro Pereira, W., Cilli, E. M., Sale, C.,
Gualano, B., Otaduy, M. C., & Artioli, G. G. (2020). Magnetic Resonance Spectroscopy as a
Non-invasive Method to Quantify Muscle Carnosine in Humans: A Comprehensive Validity
Assessment. Scientific Reports, 10(1), 4908. https://doi.org/10.1038/s41598-020-61587-x

https://doi.org/10.1007/s00421-022-04942-2
https://doi.org/10.1007/s00421-022-04942-2
https://doi.org/10.1007/s40279-024-02075-4
https://doi.org/10.3389/fphys.2018.01320
https://doi.org/10.1186/s12576-020-00754-1
https://doi.org/10.1249/MSS.0000000000000306
https://doi.org/10.1007/s00421-006-0255-0
https://doi.org/10.1007/s00421-006-0255-0
https://doi.org/10.1038/s41598-020-61587-x

Da Silva, J. C. L., Tarassova, O., Ekblom, M. M., Andersson, E., Rönquist, G., & Arndt, A.
(2016). Quadriceps and hamstring muscle activity during cycling as measured with
intramuscular electromyography. European Journal of Applied Physiology, 116(9), 1807–
1817. https://doi.org/10.1007/s00421-016-3428-5

Dotan, R., Mitchell, C., Cohen, R., Klentrou, P., Gabriel, D., & Falk, B. (2012). Child—Adult
Differences in Muscle Activation—A Review. Pediatric Exercise Science, 24(1), 2–21.
https://doi.org/10.1123/pes.24.1.2

[Ergebnisse der Physiologie №89] Erich Heinz (auth.)—Reviews of Physiology, Biochemistry
and Pharmacology, Volume 89 (1981, Springer) [10.1007_BFb0035262]—Libgen.li.pdf.
(n.d.).

Fischer, J., Hävecker, F., Ji, S., Wahl, P., & Keller, S. (2025). Modeling lactate threshold in
cycling—Influence of sex, maximal oxygen uptake, and cost of cycling in young athletes.
European Journal of Applied Physiology. https://doi.org/10.1007/s00421-025-05744-y

Foss, �Ivind, & Hall�n, J. (2004). The most economical cadence increases with increasing
workload. European Journal of Applied Physiology, 92(4–5).
https://doi.org/10.1007/s00421-004-1175-5

Foss, �Ivind, & Hall�n, J. (2005). Cadence and performance in elite cyclists. European
Journal of Applied Physiology, 93(4), 453–462. https://doi.org/10.1007/s00421-004-1226-y

Gaitanos, G. C., Williams, C., Boobis, L. H., & Brooks, S. (1993). Human muscle
metabolism during intermittent maximal exercise. Journal of Applied Physiology, 75(2),
712–719. https://doi.org/10.1152/jappl.1993.75.2.712

Gouzi, F., Maury, J., Molinari, N., Pomiès, P., Mercier, J., Préfaut, C., & Hayot, M. (2013).
Reference values for vastus lateralis fiber size and type in healthy subjects over 40 years
old: A systematic review and metaanalysis. Journal of Applied Physiology, 115(3), 346–354.
https://doi.org/10.1152/japplphysiol.01352.2012

Grassi, B., Quaresima, V., Marconi, C., Ferrari, M., & Cerretelli, P. (1999). Blood lactate
accumulation and muscle deoxygenation during incremental exercise. Journal of Applied
Physiology, 87(1), 348–355. https://doi.org/10.1152/jappl.1999.87.1.348

Green, H. J., Hughson, R. L., Orr, G. W., & Ranney, D. A. (1983). Anaerobic threshold, blood
lactate, and muscle metabolites in progressive exercise. Journal of Applied Physiology,
54(4), 1032–1038. https://doi.org/10.1152/jappl.1983.54.4.1032

https://doi.org/10.1007/s00421-016-3428-5
https://doi.org/10.1123/pes.24.1.2
https://doi.org/10.1007/s00421-025-05744-y
https://doi.org/10.1007/s00421-004-1175-5
https://doi.org/10.1007/s00421-004-1226-y
https://doi.org/10.1152/jappl.1993.75.2.712
https://doi.org/10.1152/japplphysiol.01352.2012
https://doi.org/10.1152/jappl.1999.87.1.348
https://doi.org/10.1152/jappl.1983.54.4.1032

Gregory, C. M., & Bickel, C. S. (2005). Recruitment Patterns in Human Skeletal Muscle
During Electrical Stimulation. Physical Therapy, 85(4), 358–364.
https://doi.org/10.1093/ptj/85.4.358

Hansen, E. A., Andersen, J. L., Nielsen, J. S., & Sjøgaard, G. (2002). Muscle fibre type,
efficiency, and mechanical optima affect freely chosen pedal rate during cycling. Acta
Physiologica Scandinavica, 176(3), 185–194. https://doi.org/10.1046/j.1365-
201X.2002.01032.x

Hart, S., Drevets, K., Alford, M., Salacinski, A., & Hunt, B. E. (2013). A method-comparison
study regarding the validity and reliability of the Lactate Plus analyzer. BMJ Open, 3(2),
e001899. https://doi.org/10.1136/bmjopen-2012-001899

Hautier, C. A., Linossier, M. T., Belli, A., Lacour, J. R., & Arsac, L. M. (1996). Optimal velocity
for maximal power production in non-isokinetic cycling is related to muscle fibre type
composition. European Journal of Applied Physiology and Occupational Physiology, 74(1–
2), 114–118. https://doi.org/10.1007/BF00376503

Henneman, E., Somjen, G., & Carpenter, D. O. (1965). FUNCTIONAL SIGNIFICANCE OF
CELL SIZE IN SPINAL MOTONEURONS. Journal of Neurophysiology, 28(3), 560–580.
https://doi.org/10.1152/jn.1965.28.3.560

Hopker, J. G., Coleman, D. A., Gregson, H. C., Jobson, S. A., Von Der Haar, T., Wiles, J., &
Passfield, L. (2013). The influence of training status, age, and muscle fiber type on cycling
efficiency and endurance performance. Journal of Applied Physiology, 115(5), 723–729.
https://doi.org/10.1152/japplphysiol.00361.2013

Hopker, J., Passfield, L., Coleman, D., Jobson, S., Edwards, L., & Carter, H. (2009). The
Effects of Training on Gross Efficiency in Cycling: A Review. International Journal of Sports
Medicine, 30(12), 845–850. https://doi.org/10.1055/s-0029-1237712

Hughson, R. L., Sherrill, D. L., & Swanson, G. D. (1988). Kinetics of VO2 with impulse and
step exercise in humans. Journal of Applied Physiology, 64(1), 451–459.
https://doi.org/10.1152/jappl.1988.64.1.451

Iaia, F. M., Perez-Gomez, J., Thomassen, M., Nordsborg, N. B., Hellsten, Y., & Bangsbo, J.
(2011). Relationship between performance at different exercise intensities and skeletal
muscle characteristics. Journal of Applied Physiology, 110(6), 1555–1563.
https://doi.org/10.1152/japplphysiol.00420.2010

Iii, F. M., Hines, B., Martin, C., McCain, A., Tedder, E., & Calle, Y. L. (2024). VO2 Master
Analyzer versus Parvo Medics TrueOne 2400 Canopy System for assessing Resting
Metabolic Rate and Oxygen Consumption.

https://doi.org/10.1093/ptj/85.4.358
https://doi.org/10.1046/j.1365-201X.2002.01032.x
https://doi.org/10.1046/j.1365-201X.2002.01032.x
https://doi.org/10.1136/bmjopen-2012-001899
https://doi.org/10.1007/BF00376503
https://doi.org/10.1152/jn.1965.28.3.560
https://doi.org/10.1152/japplphysiol.00361.2013
https://doi.org/10.1055/s-0029-1237712
https://doi.org/10.1152/jappl.1988.64.1.451
https://doi.org/10.1152/japplphysiol.00420.2010

Jenkins, N. D. M., Miramonti, A. A., Hill, E. C., Smith, C. M., Cochrane-Snyman, K. C.,
Housh, T. J., & Cramer, J. T. (2017). Greater Neural Adaptations following High- vs. Low-Load
Resistance Training. Frontiers in Physiology, 8, 331.
https://doi.org/10.3389/fphys.2017.00331

Jenkins, N. D. M., Miramonti, A. A., Hill, E. C., Smith, C. M., Cochrane-Snyman, K. C.,
Housh, T. J., & Cramer, J. T. (2021). Mechanomyographic Amplitude Is Sensitive to Load-
Dependent Neuromuscular Adaptations in Response to Resistance Training. Journal of
Strength and Conditioning Research, 35(11), 3265–3269.
https://doi.org/10.1519/JSC.0000000000003276

Jenkins, N. D. M., Rogers, Emily. M., Banks, N. F., Muddle, T. W. D., & Colquhoun, R. J.
(2021). Increases in motor unit action potential amplitudes are related to muscle
hypertrophy following eight weeks of high-intensity exercise training in females. European
Journal of Sport Science, 21(10), 1403–1413.
https://doi.org/10.1080/17461391.2020.1836262

Jones, A. M., Grassi, B., Christensen, P. M., Krustrup, P., Bangsbo, J., & Poole, D. C. (2011).
Slow Component of V˙O2 Kinetics: Mechanistic Bases and Practical Applications.
Medicine & Science in Sports & Exercise, 43(11), 2046–2062.
https://doi.org/10.1249/MSS.0b013e31821fcfc1

Jones, A. M., Wilkerson, D. P., DiMenna, F., Fulford, J., & Poole, D. C. (2008). Muscle
metabolic responses to exercise above and below the “critical power” assessed using31 P-
MRS. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,
294(2), R585–R593. https://doi.org/10.1152/ajpregu.00731.2007

Kim, T. H., Han, J. K., Lee, J. Y., & Choi, Y. C. (2021). The Effect of Polarized Training on the
Athletic Performance of Male and Female Cross-Country Skiers during the General
Preparation Period. Healthcare, 9(7), 851. https://doi.org/10.3390/healthcare9070851

Korkmaz Eryılmaz, S., & Polat, M. (2021). Correlation of maximal respiratory exchange ratio
with anaerobic power and maximal oxygen uptake in anaerobic trained athletes. Pedagogy
of Physical Culture and Sports, 25(4), 261–266.
https://doi.org/10.15561/26649837.2021.0408

Krustrup, P., S�derlund, K., Mohr, M., Gonz�lez-Alonso, J., & Bangsbo, J. (2004).
Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-
extensor exercise in humans. Pfl�gers Archiv - European Journal of Physiology, 449(1), 56–
65. https://doi.org/10.1007/s00424-004-1304-3

https://doi.org/10.3389/fphys.2017.00331
https://doi.org/10.1519/JSC.0000000000003276
https://doi.org/10.1080/17461391.2020.1836262
https://doi.org/10.1249/MSS.0b013e31821fcfc1
https://doi.org/10.1152/ajpregu.00731.2007
https://doi.org/10.3390/healthcare9070851
https://doi.org/10.15561/26649837.2021.0408
https://doi.org/10.1007/s00424-004-1304-3

Lidar, J., Ainegren, M., & Sundström, D. (2023). Development and validation of dynamic
bioenergetic model for intermittent ergometer cycling. European Journal of Applied
Physiology, 123(12), 2755–2770. https://doi.org/10.1007/s00421-023-05256-7

Lievens, E., Bellinger, P., Van Vossel, K., Vancompernolle, J., Bex, T., Minahan, C., & Derave,
W. (2021). Muscle Typology of World-Class Cyclists across Various Disciplines and Events.
Medicine & Science in Sports & Exercise, 53(4), 816–824.
https://doi.org/10.1249/MSS.0000000000002518

Lievens, E., Klass, M., Bex, T., & Derave, W. (2020). Muscle fiber typology substantially
influences time to recover from high-intensity exercise. Journal of Applied Physiology,
128(3), 648–659. https://doi.org/10.1152/japplphysiol.00636.2019

Lievens, E., Van Vossel, K., Van De Casteele, F., Krššák, M., Murdoch, J. B., Befroy, D. E., &
Derave, W. (2021). CORP: Quantification of human skeletal muscle carnosine
concentration by proton magnetic resonance spectroscopy. Journal of Applied Physiology,
131(1), 250–264. https://doi.org/10.1152/japplphysiol.00056.2021

Lopez, J. (2023). Differences and possible determinants of cycling gross efficiency in male
elite, amateur and female cyclists. LITHUANIAN SPORTS UNIVERSITY.

Medbo, J. I., Mohn, A. C., Tabata, I., Bahr, R., Vaage, O., & Sejersted, O. M. (1988). Anaerobic
capacity determined by maximal accumulated O2 deficit. Journal of Applied Physiology,
64(1), 50–60. https://doi.org/10.1152/jappl.1988.64.1.50

Miller, P., Perez, N., & Farrell, J. W. (2023). Acute Oxygen Consumption Response to Fast
Start High-Intensity Intermittent Exercise. Sports, 11(12), 238.
https://doi.org/10.3390/sports11120238

Minetti, A. E., Moia, C., Roi, G. S., Susta, D., & Ferretti, G. (2002). Energy cost of walking and
running at extreme uphill and downhill slopes. Journal of Applied Physiology, 93(3), 1039–
1046. https://doi.org/10.1152/japplphysiol.01177.2001

Mogensen, M., Bagger, M., Pedersen, P. K., Fernström, M., & Sahlin, K. (2006). Cycling
efficiency in humans is related to low UCP3 content and to type I fibres but not to
mitochondrial efficiency. The Journal of Physiology, 571(3), 669–681.
https://doi.org/10.1113/jphysiol.2005.101691

Morton, R. H. (1986). A three component model of human bioenergetics. Journal of
Mathematical Biology, 24(4), 451–466. https://doi.org/10.1007/BF01236892

https://doi.org/10.1007/s00421-023-05256-7
https://doi.org/10.1249/MSS.0000000000002518
https://doi.org/10.1152/japplphysiol.00636.2019
https://doi.org/10.1152/japplphysiol.00056.2021
https://doi.org/10.1152/jappl.1988.64.1.50
https://doi.org/10.3390/sports11120238
https://doi.org/10.1152/japplphysiol.01177.2001
https://doi.org/10.1113/jphysiol.2005.101691
https://doi.org/10.1007/BF01236892

Morton, R. H., Fitz-Clarke, J. R., & Banister, E. W. (1990). Modeling human performance in
running. Journal of Applied Physiology, 69(3), 1171–1177.
https://doi.org/10.1152/jappl.1990.69.3.1171

Nolte, S., Quittmann, O. J., & Meden, V. (2022). Simulation of Steady-State Energy
Metabolism in Cycling and Running. https://doi.org/10.51224/SRXIV.110

Nuzzo, J. L. (2023a). Narrative Review of Sex Differences in Muscle Strength, Endurance,
Activation, Size, Fiber Type, and Strength Training Participation Rates, Preferences,
Motivations, Injuries, and Neuromuscular Adaptations. Journal of Strength and
Conditioning Research, 37(2), 494–536. https://doi.org/10.1519/JSC.0000000000004329

Nuzzo, J. L. (2023b). Supplement to: Narrative Review of Sex Differences in Muscle
Strength, Endurance, Activation, Size, Fiber Type, and Strength Training Participation Rates,
Preferences, Motivations, Injuries, and Neuromuscular Adaptations. Journal of Strength
and Conditioning Research, 37(2), 494–536.
https://doi.org/10.1519/JSC.0000000000004329

Nuzzo, J. L. (2024). Sex differences in skeletal muscle fiber types: A meta-analysis. Clinical
Anatomy, 37(1), 81–91. https://doi.org/10.1002/ca.24091

Oskolkov, N., Santel, M., Parikh, H. M., Ekström, O., Camp, G. J., Miyamoto-Mikami, E.,
Ström, K., Mir, B. A., Kryvokhyzha, D., Lehtovirta, M., Kobayashi, H., Kakigi, R., Naito, H.,
Eriksson, K.-F., Nystedt, B., Fuku, N., Treutlein, B., Pääbo, S., & Hansson, O. (2022). High-
throughput muscle fiber typing from RNA sequencing data. Skeletal Muscle, 12(1), 16.
https://doi.org/10.1186/s13395-022-00299-4

Poole, D. C., Rossiter, H. B., Brooks, G. A., & Gladden, L. B. (2021). The anaerobic threshold:
50+ years of controversy. The Journal of Physiology, 599(3), 737–767.
https://doi.org/10.1113/JP279963

Rohatgi, A. (2021). WebPlotDigitizer (Version 4.5) [Computer software].
https://automeris.io/

Running Writings. (2023). Grade-Adjusted Pace Calculator.
https://apps.runningwritings.com/gap-calculator/

San-Millán, I. (2023). The Key Role of Mitochondrial Function in Health and Disease.
Antioxidants, 12(4), 782. https://doi.org/10.3390/antiox12040782

Saunders, M. J., Evans, E. M., Arngrimsson, S. A., Allison, J. D., Warren, G. L., & Cureton, A.
K. J. (2000). Muscle activation and the slow component rise in oxygen uptake during

https://doi.org/10.1152/jappl.1990.69.3.1171
https://doi.org/10.51224/SRXIV.110
https://doi.org/10.1519/JSC.0000000000004329
https://doi.org/10.1519/JSC.0000000000004329
https://doi.org/10.1002/ca.24091
https://doi.org/10.1186/s13395-022-00299-4
https://doi.org/10.1113/JP279963
https://automeris.io/
https://apps.runningwritings.com/gap-calculator/
https://doi.org/10.3390/antiox12040782

cycling: Medicine and Science in Sports and Exercise, 32(12), 2040–2045.
https://doi.org/10.1097/00005768-200012000-00012

Schiaffino, S., & Reggiani, C. (2011). Fiber Types in Mammalian Skeletal Muscles.
Physiological Reviews, 91(4), 1447–1531. https://doi.org/10.1152/physrev.00031.2010

Seiler, S. (2010). What is Best Practice for Training Intensity and Duration Distribution in
Endurance Athletes? International Journal of Sports Physiology and Performance, 5(3),
276–291. https://doi.org/10.1123/ijspp.5.3.276

Semenova, E. A., Khabibova, S. A., Borisov, O. V., Generozov, E. V., & Ahmetov, I. I. (2019).
The Variability of DNA Structure and Muscle-Fiber Composition. Human Physiology, 45(2),
225–232. https://doi.org/10.1134/S0362119719010122

Sreedhara, V. S. M., Mocko, G. M., & Hutchison, R. E. (2019). A survey of mathematical
models of human performance using power and energy. Sports Medicine - Open, 5(1), 54.
https://doi.org/10.1186/s40798-019-0230-z

Stegmann, H., Kindermann, W., & Schnabel, A. (1981). Lactate Kinetics and Individual
Anaerobic Threshold*. International Journal of Sports Medicine, 02(03), 160–165.
https://doi.org/10.1055/s-2008-1034604

Stöggl, T., & Sperlich, B. (2014). Polarized training has greater impact on key endurance
variables than threshold, high intensity, or high volume training. Frontiers in Physiology, 5.
https://doi.org/10.3389/fphys.2014.00033

Swinnen, W., Lievens, E., Hoogkamer, W., De Groote, F., Derave, W., & Vanwanseele, B.
(2024). Inter-Individual Variability in Muscle Fiber–Type Distribution Affects Running
Economy but Not Running Gait at Submaximal Running Speeds. Scandinavian Journal of
Medicine & Science in Sports, 34(11), e14748. https://doi.org/10.1111/sms.14748

Tehrani, F., Teymourian, H., Wuerstle, B., Kavner, J., Patel, R., Furmidge, A., Aghavali, R.,
Hosseini-Toudeshki, H., Brown, C., Zhang, F., Mahato, K., Li, Z., Barfidokht, A., Yin, L.,
Warren, P., Huang, N., Patel, Z., Mercier, P. P., & Wang, J. (2022). An integrated wearable
microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid.
Nature Biomedical Engineering, 6(11), 1214–1224. https://doi.org/10.1038/s41551-022-
00887-1

Tesch*, P., Sharp, D., & Daniels, W. (1981). Influence of Fiber Type Composition and
Capillary Density on Onset of Blood Lactate Accumulation. International Journal of Sports
Medicine, 02(04), 252–255. https://doi.org/10.1055/s-2008-1034619

https://doi.org/10.1097/00005768-200012000-00012
https://doi.org/10.1152/physrev.00031.2010
https://doi.org/10.1123/ijspp.5.3.276
https://doi.org/10.1134/S0362119719010122
https://doi.org/10.1186/s40798-019-0230-z
https://doi.org/10.1055/s-2008-1034604
https://doi.org/10.3389/fphys.2014.00033
https://doi.org/10.1111/sms.14748
https://doi.org/10.1038/s41551-022-00887-1
https://doi.org/10.1038/s41551-022-00887-1
https://doi.org/10.1055/s-2008-1034619

Van De Casteele, F., Van Thienen, R., Horwath, O., Apró, W., Van Der Stede, T., Moberg, M.,
Lievens, E., & Derave, W. (2024). Does one biopsy cut it? Revisiting human muscle fiber
type composition variability using repeated biopsies in the vastus lateralis and
gastrocnemius medialis. Journal of Applied Physiology, 137(5), 1341–1353.
https://doi.org/10.1152/japplphysiol.00394.2024

Van Der Zwaard, S., Brocherie, F., & Jaspers, R. T. (2021). Under the Hood: Skeletal Muscle
Determinants of Endurance Performance. Frontiers in Sports and Active Living, 3, 719434.
https://doi.org/10.3389/fspor.2021.719434

Van Vossel, K., Hardeel, J., Van De Casteele, F., De Jager, S., Lievens, E., Boone, J., &
Derave, W. (2023). Muscle typology influences the number of repetitions to failure during
resistance training. European Journal of Sport Science, 23(10), 2021–2030.
https://doi.org/10.1080/17461391.2023.2207077

Vanhatalo, A., Black, M. I., DiMenna, F. J., Blackwell, J. R., Schmidt, J. F., Thompson, C.,
Wylie, L. J., Mohr, M., Bangsbo, J., Krustrup, P., & Jones, A. M. (2016). The mechanistic bases
of the power–time relationship: Muscle metabolic responses and relationships to muscle
fibre type. The Journal of Physiology, 594(15), 4407–4423. https://doi.org/10.1113/JP271879

Venturini, E., & Giallauria, F. (2022). Factors Influencing Running Performance During a
Marathon: Breaking the 2-h Barrier. Frontiers in Cardiovascular Medicine, 9, 856875.
https://doi.org/10.3389/fcvm.2022.856875

Vikne, H., Gundersen, K., Liestøl, K., Mælen, J., & Vøllestad, N. (2012). Intermuscular
relationship of human muscle fiber type proportions: Slow leg muscles predict slow neck
muscles. Muscle & Nerve, 45(4), 527–535. https://doi.org/10.1002/mus.22315

Wackwitz, T., Minahan, C., Lievens, E., Kennedy, B., Derave, W., & Bellinger, P. (2025).
Muscle-Fiber Typology Is Associated With Sprint-Cycling Characteristics in World-Class
and Elite Track Cyclists. International Journal of Sports Physiology and Performance, 20(1),
142–148. https://doi.org/10.1123/ijspp.2024-0089

Widrick, J. J., Trappe, S. W., Costill, D. L., & Fitts, R. H. (1996). Force-velocity and force-
power properties of single muscle fibers from elite master runners and sedentary men.
American Journal of Physiology-Cell Physiology, 271(2), C676–C683.
https://doi.org/10.1152/ajpcell.1996.271.2.C676

Zhang, J., Iannetta, D., Alzeeby, M., MacInnis, M. J., & Aboodarda, S. J. (2021). Exercising
muscle mass influences neuromuscular, cardiorespiratory, and perceptual responses
during and following ramp-incremental cycling to task failure. American Journal of

https://doi.org/10.1152/japplphysiol.00394.2024
https://doi.org/10.3389/fspor.2021.719434
https://doi.org/10.1080/17461391.2023.2207077
https://doi.org/10.1113/JP271879
https://doi.org/10.3389/fcvm.2022.856875
https://doi.org/10.1002/mus.22315
https://doi.org/10.1123/ijspp.2024-0089
https://doi.org/10.1152/ajpcell.1996.271.2.C676

Physiology-Regulatory, Integrative and Comparative Physiology, 321(2), R238–R249.
https://doi.org/10.1152/ajpregu.00286.2020

Zuccarelli, L., Porcelli, S., Rasica, L., Marzorati, M., & Grassi, B. (2018). Comparison
between Slow Components of HR and V˙O2 Kinetics: Functional Significance. Medicine &
Science in Sports & Exercise, 50(8), 1649–1657.
https://doi.org/10.1249/MSS.0000000000001612

Appendix

Overall VO2 Model Error Table:
Metric Comparison p-value Significance

 MAE Overall vs Max 0.0000 ***

 MAE A vs Max 0.0000 ***

 MAE B vs Max 0.0000 ***

 MSE Overall vs Max 0.0000 ***

 RMSE Overall vs Max 0.0000 ***

 MSE B vs Max 0.0000 ***

 MSE A vs Max 0.0000 ***

 RMSE A vs Max 0.0000 ***

 RMSE B vs Max 0.0000 ***

 R² Overall vs Max 0.0000 ***

 MAE Overall vs A 0.0001 ***

 RMSE Overall vs A 0.0002 ***

 Bias Overall vs Max 0.0006 ***

 Bias A vs Max 0.0008 ***

 Bias B vs Max 0.0011 **

 R² Overall vs B 0.0016 **

 MSE Overall vs A 0.0052 **

 RMSE Overall vs B 0.0088 **

 Bias Overall vs B 0.0109 *

 R² A vs Max 0.0324 *

 MAE Overall vs B 0.0727 *

 R² Overall vs A 0.0928 *

 R² A vs B 0.1413

 MAE A vs B 0.1622

 Bias A vs B 0.1952

 MSE A vs B 0.2007

 RMSE A vs B 0.3344

 R² B vs Max 0.3494

 Bias Overall vs A 0.4141

 MSE Overall vs B 0.4736

 MAPE Overall vs A 0.6827

 MAPE A vs B 0.7366

 MAPE A vs Max 0.7723

 MAPE Overall vs B 0.8104

 MAPE B vs Max 0.8296

 MAPE Overall vs Max 0.8983

https://doi.org/10.1152/ajpregu.00286.2020
https://doi.org/10.1249/MSS.0000000000001612

RER=VCO2/VO2 Correction Algorithm Code
def apply_vo2_vco2_correction(vo2_eco=None, vco2_eco=None, vo2_max=None,
vco2_max=None,

 sd_vo2=0.118, sd_vco2=0.143,

 rer_floor=0.7, rer_ceiling=1.4):

 lambda1 = 1 / sd_vo2**2

 lambda2 = 1 / sd_vco2**2

 hard_penalty = 1e6 # Large penalty if min(RER) < 0.7

 def correction_cost(params, vo2, vco2):

 alpha, beta = params

 vo2_corr = alpha * vo2

 vco2_corr = beta * vco2

 rer_corr = vco2_corr / vo2_corr

 penalty_low = np.sum((np.maximum(0, rer_floor - rer_corr))**2)

 penalty_high = np.sum((np.maximum(0, rer_corr - rer_ceiling))**2)

 reg = lambda1 * (alpha - 1)**2 + lambda2 * (beta - 1)**2

 hard_constraint_penalty = 0

 if np.min(rer_corr) < rer_floor:

 hard_constraint_penalty = hard_penalty * (rer_floor - np.min(rer_corr))**2

 return penalty_low + penalty_high + reg + hard_constraint_penalty

 # Optimization

 if vo2_eco is not None and vco2_eco is not None:

 result = minimize(

 correction_cost, x0=[1.0, 1.0],

 args=(vo2_eco, vco2_eco),

 bounds=[(0.85, 1.0), (1.0, 1.2)]

)

 elif vo2_max is not None and vco2_max is not None:

 result = minimize(

 correction_cost, x0=[1.0, 1.0],

 args=(vo2_max, vco2_max),

 bounds=[(0.85, 1.0), (1.0, 1.2)]

)

 else:

 return None, None, None, None

 alpha, beta = result.x

 def correct(vo2, vco2):

 vo2_corr = alpha * vo2

 vco2_corr = beta * vco2

 rer_corr = vco2_corr / vo2_corr

 rer_raw = vco2 / vo2

 return pd.DataFrame({

 "VO2_raw": vo2,

 "VCO2_raw": vco2,

 "RER_raw": rer_raw,

 "VO2_corr": vo2_corr,

 "VCO2_corr": vco2_corr,

 "RER_corr": rer_corr

 })

 df_eco = correct(vo2_eco, vco2_eco) if vo2_eco is not None else None

 if df_eco is not None:

 df_eco["Test"] = "eco"

 df_max = correct(vo2_max, vco2_max) if vo2_max is not None else None

 if df_max is not None:

 df_max["Test"] = "max"

 return df_eco, df_max, alpha, beta

=== File grouping and processing ===

no_rer_adj = []

rer_adj_og = []

adjusted_data = {}

raw_data = {} # store unadjusted (no correction needed) test data

all_files = [f for f in os.listdir(folder) if f.endswith(".xlsx")]

grouped = {}

Group by subject prefix

for fname in all_files:

 parts = fname.lower().split("_")

 base = "_".join(parts[:2]) # Keep first and last name

 grouped.setdefault(base, []).append(fname)

for subj, files in grouped.items():

 eco_file = next((f for f in files if "eco" in f.lower()), None)

 max_file = next((f for f in files if "max" in f.lower()), None)

 vo2_eco = vco2_eco = time_eco = rer_eco = None

 vo2_max = vco2_max = time_max = rer_max = None

 try:

 if eco_file:

 eco_df = pd.read_excel(os.path.join(folder, eco_file))

 eco_df.columns = column_names[:len(eco_df.columns)]

 eco_df = eco_df[["Time_min", "VO2_Lmin", "VCO2_Lmin", "RER"]]

 eco_df["Time_min"] = pd.to_numeric(eco_df["Time_min"], errors="coerce")

 eco_df["RER"] = pd.to_numeric(eco_df["RER"], errors="coerce")

 eco_df = eco_df.dropna()

 vo2_eco = eco_df["VO2_Lmin"].values

 vco2_eco = eco_df["VCO2_Lmin"].values

 time_eco = pd.to_numeric(eco_df["Time_min"], errors="coerce").values

 rer_eco = eco_df["RER"].values

 if max_file:

 max_df = pd.read_excel(os.path.join(folder, max_file))

 max_df.columns = column_names[:len(max_df.columns)]

 max_df = max_df[["Time_min", "VO2_Lmin", "VCO2_Lmin", "RER"]]

 max_df["Time_min"] = pd.to_numeric(max_df["Time_min"], errors="coerce")

 max_df["RER"] = pd.to_numeric(max_df["RER"], errors="coerce")

 max_df = max_df.dropna()

 vo2_max = max_df["VO2_Lmin"].values

 vco2_max = max_df["VCO2_Lmin"].values

 time_max = pd.to_numeric(max_df["Time_min"], errors="coerce").values

 rer_max = max_df["RER"].values

 except Exception as e:

 continue

 try:

 # Determine which dataset has the lower RER

 min_rer_eco = np.min(rer_eco) if rer_eco is not None else np.inf

 min_rer_max = np.min(rer_max) if rer_max is not None else np.inf

 min_rer_total = min(min_rer_eco, min_rer_max)

 if min_rer_total >= 0.7:

 if eco_file: no_rer_adj.append(eco_file)

 if max_file: no_rer_adj.append(max_file)

 # Store the raw data

 def format_unadjusted(df):

 return pd.DataFrame({

 "VO2_raw": df["VO2_Lmin"],

 "VCO2_raw": df["VCO2_Lmin"],

 "RER_raw": df["RER"],

 })

 raw_data[subj] = {

 "eco": format_unadjusted(eco_df) if eco_file else None,

 "max": format_unadjusted(max_df) if max_file else None

 }

 continue

 # Choose which to fit based on lowest RER

 if min_rer_eco <= min_rer_max and vo2_eco is not None:

 fit_vo2, fit_vco2 = vo2_eco, vco2_eco

 elif vo2_max is not None:

 fit_vo2, fit_vco2 = vo2_max, vco2_max

 else:

 fit_vo2 = fit_vco2 = None

 if fit_vo2 is None or fit_vco2 is None:

 continue # skip this subject if both are missing or invalid

 # Redefine objective with fit_vo2/vco2

 def correction_cost(params):

 alpha, beta = params

 vo2_corr = alpha * fit_vo2

 vco2_corr = beta * fit_vco2

 rer_corr = vco2_corr / vo2_corr

 penalty_low = np.sum((np.maximum(0, 0.7 - rer_corr))**2)

 penalty_high = np.sum((np.maximum(0, rer_corr - 1.4))**2)

 reg = (1 / 0.118**2) * (alpha - 1)**2 + (1 / 0.143**2) * (beta - 1)**2

 hard_penalty = 1e6 * max(0, 0.7 - np.min(rer_corr))**2

 return penalty_low + penalty_high + reg + hard_penalty

 # Run optimization

 result = minimize(correction_cost, x0=[1.0, 1.0], bounds=[(0.85, 1.0), (1.0, 1.2)])

 alpha, beta = result.x

 # Apply α, β correction to both datasets

 def correct(vo2, vco2):

 vo2_corr = alpha * vo2

 vco2_corr = beta * vco2

 rer_corr = vco2_corr / vo2_corr

 rer_raw = vco2 / vo2

 return pd.DataFrame({

 "VO2_raw": vo2,

 "VCO2_raw": vco2,

 "RER_raw": rer_raw,

 "VO2_corr": vo2_corr,

 "VCO2_corr": vco2_corr,

 "RER_corr": rer_corr

 })

 df_eco_corr = correct(vo2_eco, vco2_eco) if vo2_eco is not None else None

 if df_eco_corr is not None:

 df_eco_corr["Test"] = "eco"

 df_max_corr = correct(vo2_max, vco2_max) if vo2_max is not None else None

 if df_max_corr is not None:

 df_max_corr["Test"] = "max"

 if eco_file: rer_adj_og.append(eco_file)

 if max_file: rer_adj_og.append(max_file)

 adjusted_data[subj] = {

 "eco": df_eco_corr, "max": df_max_corr,

 "alpha": alpha, "beta": beta,

 "files": {"eco": eco_file, "max": max_file}

 }

 print(f"Adjusted {subj}: α = {alpha:.4f}, β = {beta:.4f}")

 except Exception as e:

 continue

=== Display result summaries ===

print("=== No RER Adjustment Needed ===")

print(pd.DataFrame(no_rer_adj, columns=["Filename"]))

print("\n=== Files Adjusted for RER ===")

print(pd.DataFrame(rer_adj_og, columns=["Filename"]))

Derived Substrate Oxidation Recalculation Code
After VCO2 and/or VO2 adjustments, these subject data columns require recomputation

column_names = [

 "Time_min", "VO2_Lmin", "VO2/kg_Lmin", "METS", "VCO2_Lmin", "VE_Lmin", "RER",

 "VE/VCO2", "Vt_L", "pCHO", "VE/VO2", "HR_bpm", "Speed_mph", "Gradient",

 "AcKcal", "CHOmin", "FATmin", "KCHO", "KFAT", "KPRO"

]

def safe_get(df, row, col):

 try:

 return pd.to_numeric(df.iloc[row, col], errors="coerce")

 except:

 return np.nan

def find_matching_file(subj, test_type, all_files):

 subj_lower = subj.lower()

 test_lower = test_type.lower()

 for f in all_files:

 if subj_lower in f.lower() and test_lower in f.lower():

 return f

 return None

def recalculate_derived_columns(df,weight_kg, vo2_col="VO2_corr",
vco2_col="VCO2_corr", rer_col="RER_corr"):

 df = df.copy()

 df["VE_VCO2"] = df["VE_Lmin"] / df[vco2_col]

 df["VO2/kg"] = df[vo2_col]*1000 / weight_kg

 df["CHOmin"] = (4.55 * df[vco2_col] - 3.21 * df[vo2_col]).clip(lower=0)

 df['FATmin'] = (1.695*df[vo2_col]-1.701*df[vco2_col]).clip(lower=0)

 df["pCHO"] = (100 * (df[rer_col] - 0.7) / 0.3).clip(lower=0, upper=100)

 time = df["Time_min"].values

 time_deltas = np.zeros_like(time)

 time_deltas[0] = time[0]

 time_deltas[1:] = time[1:] - time[:-1]

 time_deltas = np.where(time_deltas == 0, 1e-6, time_deltas)

 df["Ackcal_inst"] = (3.9 * df[vo2_col] + 1.1 * df[vco2_col]) / (1 / time_deltas)

 df["AcKcal"] = np.cumsum(df["Ackcal_inst"])

 #df['Ktot_rollsum'] = 1.00413 * df["AcKcal"] -.09

 df['KCHO'] = df["Ackcal_inst"] * df["pCHO"]/100

 df['KFAT'] = df['Ackcal_inst'] * (1 - df["pCHO"]/100)

 #df["KCHO"] = ((5383 * df["CHOmin"]).clip(lower=0))/24/60/2

 #df["pCHO"] = df["pCHO"].clip(lower=0.01, upper=99.99)

 #df["KcalInst"] = (df["KCHO"] / df["pCHO"])/24/60/2

 #df["KFAT"] = (df["KCHO"] * (1 - df["pCHO"] / 100) / (df["pCHO"] / 100))/24/60/2

 #df["FATmin"] = 0.000073409 * df["KFAT"]*24*60*2 - 0.000000022

 #df["Ktot"] = df["KCHO"] + df["KFAT"]

 return df

def load_clean_test_data(file_path):

 """Load and return cleaned test data and metadata from a given Excel file path."""

 df = pd.read_excel(file_path, sheet_name=0)

 # Identify start of test data using dashed separator

 start_candidates = df.apply(lambda row: row.astype(str).str.contains("-{5,}").any(),
axis=1)

 start_row_idx = start_candidates[start_candidates].index[0] + 1

 # Identify end of data (first fully blank row after start)

 data_rows = df.iloc[start_row_idx:]

 empty_row_indices = data_rows.index[data_rows.isna().all(axis=1)]

 end_row_idx = empty_row_indices[0] if not empty_row_indices.empty else
data_rows.index[-1] + 1

 test_data_df = df.iloc[start_row_idx:end_row_idx].reset_index(drop=True)

 # Assign standard column names

 num_cols = test_data_df.shape[1]

 test_data_df.columns = column_names[:num_cols]

 # Extract metadata

 def safe_get(row, col):

 try:

 return pd.to_numeric(df.iloc[row, col], errors="coerce")

 except:

 return np.nan

 if 'eco' in file_path.lower():

 test_type = 'threshold'

 elif 'max' in file_path.lower():

 test_type = 'max'

 else:

 test_type = 'unknown'

 metadata = {

 "Name": df.iloc[4, 1] if len(df.columns) > 1 else None,

 "Weight_kg": safe_get(6, 8),

 "Test Type": test_type

 }

 return test_data_df, metadata

Threshold Identification Algorithm Code
#MAIN

import pandas as pd

import numpy as np

from scipy.stats import linregress

def identify_lt1_lt2(last_first, adjusted_data, raw_data):

 subj_key = last_first.lower()

 # Load ECO test data

 if subj_key in adjusted_data and adjusted_data[subj_key]['eco'] is not None:

 df = adjusted_data[subj_key]['eco'].copy()

 filetype = 'adjusted'

 elif subj_key in raw_data and raw_data[subj_key]['eco'] is not None:

 df = raw_data[subj_key]['eco'].copy()

 filetype = 'raw'

 else:

 print(f"No ECO test data found for subject '{last_first}'.")

 return None

 # Identify stages based on rounded speed

 df["Stage"] = df["Speed_mph"].round(2)

 stages = df.groupby("Stage").filter(lambda x: len(x) >= 4).groupby("Stage")

 sorted_stages = sorted(stages.groups.keys())

 stage_indices = {s: i for i, s in enumerate(sorted_stages)}

 stage_list = list(stages)

 print(stage_indices)

 def last_2min(df_stage):

 return df_stage[df_stage["Time_min"] >= df_stage["Time_min"].max() - 2]

 # Extract last 2 min averages for each stage

 stage_metrics = {}

 idx=1

 for s, grp in stage_list:

 last2 = last_2min(grp)

 stage_metrics[s] = {

 "VE_VO2": last2["VE/VO2"].mean(),

 "VE_VCO2": last2["VE/VCO2"].mean(),

 "VE_Lmin": last2["VE_Lmin"].mean(),

 "RER": last2["RER_corr"].mean() if "RER_corr" in last2.columns else
last2["RER_raw"].mean(),

 "VO2": last2["VO2_corr"].mean() if "VO2_corr" in last2.columns else
last2["VO2_raw"].mean(),

 "VO2/kg": last2["VO2_kg_corr"].mean() if "VO2_kg_corr" in last2.columns else
last2["VO2_kg_raw"].mean(),

 "GAPspdperkW": last2["GAPspdperkW"].mean() if "GAPspdperkW" in last2.columns
else np.nan

 } #

 if idx ==1:

 if filetype == 'adjusted':

 adjusted_data[subj]['eco'].attrs['GAPspdperkws1l2minavg'] =
last2["GAPspdperkW"].mean() if "GAPspdperkW" in last2.columns else np.nan

 elif filetype == 'raw':

 raw_data[subj]['eco'].attrs['GAPspdperkws1l2minavg'] =
last2["GAPspdperkW"].mean() if "GAPspdperkW" in last2.columns else np.nan

 idx+=1

 # ----------- LT2 -----------

 candidate_lt2 = sorted_stages[-3:] if len(sorted_stages) >= 6 else sorted_stages[-2:]

 lt2 = None

 lt2_type = None

 for s in candidate_lt2:

 if stage_indices[s] <=2: #NOT 1st or 2nd or 3rd stage, likely.

 continue

 prev_s = sorted_stages[stage_indices[s] - 1]

 if stage_metrics[s]["VE_VO2"] > stage_metrics[prev_s]["VE_VO2"] and \

 stage_metrics[s]["VE_VCO2"] > stage_metrics[prev_s]["VE_VCO2"]:

 x = [k for k in sorted_stages[:stage_indices[s]]]

 y = [stage_metrics[k]["VE_Lmin"] for k in x]

 slope, intercept, _, _, stderr = linregress(x, y)

 pred_ve = slope * s + intercept

 print('predve:',pred_ve,'se',stderr)

 print('actve:',stage_metrics[s]["VE_Lmin"])

 if stage_metrics[s]["VE_Lmin"] > pred_ve + stderr:

 lt2 = {"Speed": s, "VO2":
stage_metrics[s]["VO2"],'VO2/kg':stage_metrics[s]['VO2/kg']}

 lt2_type = "pred"

 break

 if not lt2:

 fallback_s = candidate_lt2[-2] if len(candidate_lt2) == 3 else candidate_lt2[-1]

 lt2 = {"Speed": fallback_s, "VO2":
stage_metrics[fallback_s]["VO2"],'VO2/kg':stage_metrics[fallback_s]['VO2/kg']}

 lt2_type = "fallback"

 print(f" LT2 fallback used at stage {fallback_s}")

 # ----------- LT1 -----------

 lt2_index = stage_indices[lt2["Speed"]]

 lt1 = None

 lt1_type = None

 for i in range(1, min(4, lt2_index - 1)):

 s = sorted_stages[i]

 prev_s = sorted_stages[i - 1]

 if s >= lt2["Speed"]:

 continue

 if stage_metrics[s]["VE_VO2"] > stage_metrics[prev_s]["VE_VO2"] and \

 stage_metrics[s]["VE_VCO2"] <= stage_metrics[prev_s]["VE_VCO2"] and \

 stage_metrics[s]["RER"] >= 0.825:

 lt1 = {"Speed": s, "VO2": stage_metrics[s]["VO2"],'VO2/kg':stage_metrics[s]['VO2/kg']}

 lt1_type = "pred"

 break

 if not lt1:

 if lt2_index == 3:

 s = sorted_stages[1]

 lt1 = {"Speed": s, "VO2": stage_metrics[s]["VO2"],'VO2/kg':stage_metrics[s]['VO2/kg']}

 lt1_type = "fallback2"

 print(" LT1 fallback: using stage 2 due to LT2 proximity at stage3")

 else:

 s1 = sorted_stages[1]

 s2 = sorted_stages[2]

 avg_speed = (s1 + s2) / 2

 avg_vo2 = (stage_metrics[s1]["VO2"] + stage_metrics[s2]["VO2"]) / 2

 avg_vo2_kg = (stage_metrics[s1]["VO2/kg"] + stage_metrics[s2]["VO2/kg"]) / 2

 lt1 = {"Speed": avg_speed, "VO2": avg_vo2,'VO2/kg': avg_vo2_kg} #FIX1

 lt1_type = "fallback2.5"

 print(" LT1 fallback: average of stages 2 and 3 used")

 return lt1, lt2, lt1_type, lt2_type, stage_indices

W’ Estimation Code
def estimate_W_nonox(subj, merged_data, gap_col="GAPspd"):

 """

 Estimate W′_non-ox using GAP speed and time-varying C1est from the max test,

 with CP derived from the LT2 speed stored in eco.attrs["thresholds"].

 Parameters:

 subj (str): Subject ID

 merged_data (dict): Dictionary with subject data including 'max' and 'eco'

 gap_col (str): Column in max test containing GAP speed in mph

 Returns:

 float: W′_non-ox in Joules

 """

 if subj not in merged_data:

 raise ValueError(f"{subj} not found in merged_data.")

 # Get CP (LT2 speed) from eco test metadata

 eco_df = merged_data[subj].get("eco")

 if not isinstance(eco_df, pd.DataFrame):

 raise ValueError(f"'eco' test is not a DataFrame for {subj}.")

 lt2 = eco_df.attrs.get("thresholds", {}).get("LT2", None)

 if lt2 is None or "LT_Speed" not in lt2:

 raise ValueError(f"LT2 threshold missing for {subj} in eco.attrs.")

 CP_speed = lt2["LT_Speed"] #in mph

 CP_mps = CP_speed * 0.44704 # convert to m/s

 CP_vo2 = lt2["LT_VO2"] # in L/min

 # Pull GAP speed and C1est from max test

 max_df = merged_data[subj].get("max")

 if not isinstance(max_df, pd.DataFrame):

 raise ValueError(f"'max' test is not a DataFrame for {subj}.")

 required_cols = [gap_col, "GAPspdperkW", "Time_min", "C1est"]

 if not all(col in max_df.columns for col in required_cols):

 raise ValueError(f"Missing required columns in max test for {subj}.")

 gap = max_df[gap_col].values * 0.44704 # in m/s

 n1 = max_df["GAPspdperkW"].values * .44704 * (1/1000) #Eta in mph/kW: n = mph/ (J/s) -
> m/s / J/s = m/J # in J/(m/s)

 time_min = max_df["Time_min"].values

 vo2 = max_df["VO2_corr"].values if "VO2_corr" in max_df.columns else
max_df["VO2_raw"].values

 C1est = max_df["C1est"].values

 dt = np.diff(time_min, prepend=time_min[1]) * 60 # in seconds

 #ventilation and accum metabol correction, est from Lidar:

 vo2pct = vo2/max(vo2)

 vepct = 1.2499*(vo2pct**3) - 1.5287*(vo2pct**2) + 1.2687*vo2pct #cubic reg.

 Bve = .93

 vepct = 0.088*(Bve*(vepct) + (1-Bve)*((vepct)**2)) # MRve estimate (percent)

 accpct = .36 * vepct #MRacc est. rough since dont have x4

 vo2_adj = vo2 * (1-accpct-vepct)

 vo2_excess = vo2_adj - CP_vo2

 vo2_excess[vo2_excess < 0] = 0

 vo2_excess_conv = vo2_excess*1000 * C1est * (1/60) * n1

 above_cp = gap - CP_mps

 above_cp[above_cp < 0] = 0 # keep only values above CP

 #print(above_cp,vo2_excess_conv)

 #W_nonox = np.nansum(((above_cp) * dt) / n1) /1000

 W_ox = np.nansum(((vo2_excess_conv) * dt) / n1) /1000

 #print(W_nonox,W_ox)

 W_nonox = np.nansum(((above_cp - vo2_excess_conv) * dt) / n1) /1000 #put it from J to kJ

 #print(n1)

 # --- NEW: Extract C1est at VO2max index ---

 if "VO2_corr" in max_df.columns or "VO2_raw" in max_df.columns:

 vo2 = max_df["VO2_corr"].values if "VO2_corr" in max_df.columns else
max_df["VO2_raw"].values

 vo2max_idx = np.argmax(vo2)

 C1est_max = (max_df["C1est"].values)[vo2max_idx]

 merged_data[subj]['max'].attrs['C1est_max'] = C1est_max

 merged_data[subj]['max'].attrs['MO_kjs'] = C1est_max * np.max(vo2) * (1/60)

 else:

 print('erC1',str(subj))

 return W_nonox, W_ox

AG Estimation Code
def estimate_AG(subj, merged_data, mp_factor=0.08577,PC_max=20,
muscle_fraction=0.5,phi=.3):

 import numpy as np

 import matplotlib.pyplot as plt

 try:

 max_df = merged_data[subj]["max"]

 eco = merged_data[subj]["eco"]

 VO2max_kg = max_df.attrs["VO2max_kg"] # ml/kg/min

 weight_kg = max_df.attrs["weight_kg"]

 VO2max_Lmin = VO2max_kg * weight_kg / 1000

 Wprime = max_df.attrs["Wprime_nonox"]

 # Threshold VO2 values

 alpha = eco.attrs["thresholds"]["LT1"]["LT_VO2"] / VO2max_Lmin

 beta = eco.attrs["thresholds"]["LT2"]["LT_VO2"] / VO2max_Lmin

 # Constants

 phi = phi

 theta = alpha * (1 - phi)

 MP = mp_factor * weight_kg * 1000 # W

 MO = merged_data[subj]['max'].attrs['MO_kjs'] #KJ/sec

 MO_MP = MO*1000 / MP

 # λ

 lambda_val = 1 - (theta * ((1 / alpha) - MO_MP)) / ((1 / beta) - MO_MP)

 # l @ Pcrit

 numerator = 1 - lambda_val

 denominator = (MO_MP * ((1 - theta - lambda_val) / (1 - phi))) + 1

 l_pcrit = numerator / denominator

 # --- Physiological Estimation of AP and AT ---

 muscle_mass = muscle_fraction * weight_kg

 # AT = [La]_LT1 / theta × m_muscle × C2

 AT = (3 / theta) * muscle_mass * 100 # 100 J/mmol

 # AP = [PC]_max × m_muscle × C3

 AP = PC_max * muscle_mass * 43.3 # 43.3 J/mmol

 # AG

 AG = (Wprime*1000 - AP * l_pcrit - AT * theta) / (l_pcrit - theta)

 AP = AP/1000

 AG = AG/1000

 AT=AT/1000

 MO=MO

 MP=MP/1000

 # --- Plot AG breakdown ---

 plt.figure(figsize=(8, 5))

 components = [AT * theta, AP * 1, AG * (1-theta - lambda_val)]

 labels = ["G Capillary", "P Tank", "G Main"]

 plt.bar(labels, components, color=["blue", "green", "purple"])

 plt.title(f"{subj} – AG Component Breakdown")

 plt.ylabel("Joules")

 plt.grid(True)

 plt.tight_layout()

 plt.show()

 return {

 "AG": round(AG,2),

 "Wprime": round(Wprime,3),

 "MO": round(MO,2),

 "MP": round(MP,2),

 "theta": round(theta,4),

 "beta": round(beta,3),

 'alpha': round(alpha,3),

 "lambda": round(lambda_val,4),

 'muscle_mass': round(muscle_mass,3),

 "l_pcrit": round(l_pcrit,3),

 "AT": round(AT,3),

 "AP": round(AP,3),

 "phi": phi

 }

 except Exception as e:

 print(f" {subj}: {e}")

 return None

Grade Adjusted Pace Code
import numpy as np

from sklearn.preprocessing import PolynomialFeatures

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

#(x, y) -> z

numbers = np.arange(1, 13)

repeated_numbers = np.repeat(numbers, 14)

#print(repeated_numbers)

numbers2 = np.arange(6, 13, 0.5)

repeated_numbers2 = np.tile(numbers2, 12)

#print(repeated_numbers2)

x = repeated_numbers
#np.array([1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7])
#gradients

y = repeated_numbers2 #np.array([6, 6.5, 7, 7.5, 8, 8.5,6, 6.5, 7, 7.5, 8, 8.5,6, 6.5, 7, 7.5, 8,
8.5,6, 6.5, 7, 7.5, 8, 8.5,6, 6.5, 7, 7.5, 8, 8.5,6, 6.5, 7, 7.5, 8, 8.5,]) #mph

z = np.array([6.5,

7,

7.5,

7.9,

8.4,

8.9,

9.4,

9.9,

10.5,

11,

11.5,

12,

12.5,

13,

7,

7.4,

7.9,

8.3,

8.8,

9.3,

9.9,

10.4,

10.9,

11.4,

12,

12.5,

13,

13.6,

7.4,

7.8,

8.3,

8.7,

9.2,

9.8,

10.3,

10.8,

11.4,

11.9,

12.5,

13,

13.6,

14.1,

7.8,

8.2,

8.7,

9.2,

9.7,

10.2,

10.8,

11.3,

11.9,

12.5,

13,

13.6,

14.1,

14.7,

8.2,

8.6,

9.1,

9.6,

10.1,

10.7,

11.2,

11.8,

12.4,

13,

13.6,

14.1,

14.7,

15.3,

8.6,

9,

9.5,

10,

10.5,

11.1,

11.7,

12.3,

12.9,

13.5,

14.1,

14.7,

15.3,

15.9,

8.9,

9.4,

9.9,

10.4,

11,

11.6,

12.2,

12.8,

13.4,

14,

14.7,

15.3,

15.9,

16.5,

9.3,

9.8,

10.3,

10.8,

11.4,

12,

12.7,

13.3,

14,

14.6,

15.2,

15.9,

16.5,

17.1,

9.7,

10.2,

10.7,

11.3,

11.9,

12.5,

13.2,

13.8,

14.5,

15.2,

15.8,

16.5,

17.1,

17.8,

10,

10.6,

11.1,

11.7,

12.4,

13,

13.7,

14.4,

15,

15.7,

16.4,

17.1,

17.7,

18.4,

10.4,

11,

11.5,

12.2,

12.8,

13.5,

14.2,

14.9,

15.6,

16.3,

17,

17.7,

18.4,

19,

10.8,

11.4,

12,

12.6,

13.3,

14,

14.7,

15.4,

16.2,

16.9,

17.6,

18.3,

19,

19.7

])

Combine x and y into a single array of features

X = np.column_stack((x, y))

degree = 2

poly = PolynomialFeatures(degree)

X_poly = poly.fit_transform(X)

model = LinearRegression()

model.fit(X_poly, z)

z_pred = model.predict(X_poly)

mse = mean_squared_error(z, z_pred)

print(f"Mean Squared Error: {mse}")

print("Coefficients:")

print(model.coef_)

print("Intercept:")

print(model.intercept_)

Example of predicting a new value

x_new = np.array([7])

y_new = np.array([8.5])

X_new = np.column_stack((x_new, y_new))

X_new_poly = poly.transform(X_new)

z_new_pred = model.predict(X_new_poly)

print(f"Predicted z for (x, y) = (7%, 8.5mph): {z_new_pred[0]}")

print("equiv flat MPH = "+str(round(model.coef_[1],5))+"(%)+
"+str(round(model.coef_[2],5))+"(mph)+ "+str(round(model.coef_[3],5))+"(%^2)+
"+str(round(model.coef_[4],5))+"(% * mph)+ "+str(round(model.coef_[5],5))+"(mph^2) +
"+str(round(model.intercept_,5)))

print("equiv Grade Adjusted Pace (GAP) (min/mile) = (60 / equiv flat MPH)")

Muscle-Blood Lactate Function Code
lactate tank testing setup

def lab_ss(lam,RBLA=1.5,RMLA=1.5):

 """ Steady-state blood lactate [Lab] using empirical regression. """

 labslope = .5551

 labint = 1.2226

 if RBLA != 1.5:

 newint = RBLA - labslope*RMLA

 return labslope * lam + newint

 else:

 return labslope * lam + labint

def compute_tau(lab, lam, RMLA=1.5, Mlacmax=30.0, min_tau=26, max_tau=96):

 """Linearly scaled tau from max_tau (low lam) to min_tau (high lam)."""

 # Clamp lam within [RMLA, Mlacmax] to avoid extrapolation

 lam_clamped = np.clip(lam, RMLA, Mlacmax)

 # Normalize between 0 and 1

 lam_norm = (lam_clamped - RMLA) / (Mlacmax - RMLA)

 # Inverse linear interpolation (high lactate = faster tau)

 tau = max_tau - lam_norm * (max_tau - min_tau)

 return tau

def update_lab(lab, lam, dt, RMLA=1.5, Mlacmax=30.0, RBLA=1.5):

 tau = compute_tau(lab, lam, RMLA=RMLA, Mlacmax=Mlacmax)

 if lam <= RMLA:

 lab_new = RBLA

 else:

 lab_new = lab + (lab_ss(lam,RBLA,RMLA) - lab) / tau * dt

 return lab_new

Discrete Digital Twin Simulation Function Code
def dtsim6b(MG=9.15, MO=1.34, MP=4.48, MR=3.66, phi=.3, lamb=.38, AT=11.27,

 AP=27.79, AG=320.3, theta=.43, PCmax=20, nums=None, cad=None, tor=None,

 t1pct=None, t2pct=None, showfig=True, savefigs=True, lactau=30, RBLA=1.5,

 C1=20.9, C2=100, C3=43.3, RMLA=1.5,

 xpmec=0, xh=0, xl=0, xdldt=0, xlacb=2, xpcconc=20, xhddot=0,

 eta_bike=.24551,eta_run=6, sport="bike",Mlacmax=18,

 MRaeint=-40,MRaeslope=356,atw=61, etaslope= -.25, etaint=8.8, prev_pmec=None,

 Aacc=114, maxRER=1.1):

 global t_fail, t_fail_maxpwr, t_failcurVmax

 t_fail = t_fail_maxpwr = t_failcurVmax = 0

 C1 = C1 # 20.9 # J/ml energy/ml of oxygen, Fixed for now

 C2 = C2 # 100 # J/mmol joules/accum lac in muscle

 C3 = C3 # 43.3 # J/mmol of PC stores

 atw = atw # kg total body mass

 RBLA=RBLA

 prev_pmec=prev_pmec

 if sport == 'bike':

 eta = eta_bike #0.24551 #Wmec/Wphys base value for Cyclist(1?) from Boillet

 else:

 # eta = eta_run/1000 #GAP speed(mph) per VO2 wattage (KILO Watts-> Watts). around
6-9 mph / kW

 eta = (etaslope * xpmec + etaint)/1000 # GAPmph / W

 m_muscle = 1000 * AP / (C3 * PCmax) # print('m_musc',m_muscle)

 Pmecmax = MP * eta * 1000 # W = J/s max theo fresh mech pwr

 if t1pct == None and t2pct == None:

 t1pct = 50

 t2pct = 50

 # print('shlapped t1,t2 %@50ea')

 if t1pct == None:

 t1pct = 100 - t2pct

 if t2pct == None:

 t2pct = 100 - t1pct

 xh = xh

 xl = xl

 xg = 1 - xl #q

 xdldt = xdldt

 curPmecmax = MP*eta*1000

 if xl > theta:

 curPmecmax = min(curPmecmax * ((1-lamb-(xl*.8))/(1-lamb-theta)),MP*eta*1000)

 else:

 curPmecmax = curPmecmax * ((1-lamb-theta)/(1-lamb-theta))

 if xpmec > curPmecmax:

 xpmec = curPmecmax

 xpphys = xpmec / eta / 1000 #in kJ/s

 xlacb = xlacb

 if xpmec != 0:

 zMaxPmecAerobic = MO * 1000 * eta

 else:

 if prev_pmec is not None:

 zMaxPmecAerobic = MO *1000* (etaslope * prev_pmec + etaint)/1000

 else:

 zMaxPmecAerobic = MO * 1000 * eta

 xpctpmecmax = xpmec * 100 / Pmecmax

 if xl > theta:

 if xdldt >= 0:

 a_cur = (AP * AG / MG) * (1 - lamb)

 b_cur = (((MO * (1 - lamb)) / (MG * (1 - phi))) + 1) * AG + AP

 else:

 a_cur = (AP * AG / MR) * (1 - lamb)

 b_cur = (((MO * (1 - lamb)) / (MR * (1 - phi))) + 1) * AG + AP

 q = 0.3 # q_list[i] = q

 else:

 if xdldt >= 0:

 a_cur = (AP * AT / MG) * (1 - lamb)

 b_cur = (((MO * (1 - lamb)) / (MG * (1 - phi))) + 1) * AT + AP

 else:

 a_cur = (AP * AT / MR) * (1 - lamb)

 b_cur = (((MO * (1 - lamb)) / (MR * (1 - phi))) + 1) * AT + AP

 q = 0.1 # q_list[i] = q

 c_cur = MO / (1 - phi)

 #lac_m_scalor1 = 1

 #lac_m_scalor2 = 1

 if xl <= theta:

 Lac_m = (1 / C2) * xl * 1000 * AT #* lac_m_scalor1

 else:

 #print('AGnow') #ZYZZ

 Lac_m = (1 / C2) * ((xl - theta) * AG * 1000 + theta * AT * 1000) #- RMLA*m_muscle #*
lac_m_scalor2 - RMLA # +.4*m_muscle#HOLY TODO FIX DIRTY

 # Lac_m = (1 / C2) * xl * 1000 * AT * lac_m_scalor1 if xl <= theta else (1 / C2) * (

 # (xl - theta) * AG * 1000 + theta * AT * 1000) * lac_m_scalor2 - RMLA #
+.4*m_muscle#HOLY TODO FIX DIRTY

 Lac_m /= m_muscle

 Lac_m += RMLA # 1.5 baseline musc lac

 Lac_b = update_lab(xlacb, Lac_m, 1, RMLA, Mlacmax,RBLA=RBLA)

 next_lacb = Lac_b # done RETURN

 l_ddot = (xpphys - b_cur * xdldt - c_cur * xl) / a_cur

 h_dot = xdldt + ((1 - lamb) * (AG if xl > theta else AT) / (MG if xdldt >= 0 else MR)) * l_ddot

 # h_dot = l_dot*AG/AP + ((1 - lamb) * (AG if l > theta else AT) / (MG if l_dot >= 0 else MR)) *
l_ddot

 # h_dot = P_phys_values[i] - AG*l_dot/AP - MO*(h_list[i]/(1-theta))

 #arb_h_dot_cutoff = 0.25 # FIX TODO ARB #ZEZ

 #h_dot = max(min(h_dot, arb_h_dot_cutoff), -arb_h_dot_cutoff) #ZEZ

 VP = AP * h_dot

 l_new = xl + xdldt # / 2 #new

 # if l_new > 1-lamb: #q

 # l_new = 1-lamb

 if xl > theta:

 VG = AG * xdldt

 q = 5

 elif xl < theta:

 if l_new > theta: # SEMI ARB wtf is 1.5

 VG = (l_new-xl)*AT #+ (l_new-theta)*(AG-AT)*.25 #(theta - xl) * AT #* 1.5 # + (l_new-
theta)*AG*1 ##+ (l_new-theta)*AG*1

 # print('toG', i, 'VGunsc', VG)

 q = 10

 VP = VP #* .5

 # print('Vg', VG, 'VP', VP)

 else:

 VG = AT * xdldt

 q = 0

 scalor = 1000 / C1

 VP = VP * scalor # 1000/C3 # * .975

 VG = VG * scalor # 1000/C2 # * 1.025

 VO2_derived = (xpphys * scalor - VP - VG)

 #print(VO2_derived)

 P_VO2 = VO2_derived * C1 * 64 *eta* (1 / 60) #*eta # pmec eff from vo2

 if P_VO2 >= zMaxPmecAerobic:

 P_VO2 = zMaxPmecAerobic

 #print('VO2max-d out')

 if P_VO2 < 0:

 P_VO2 =0

 VO2_Lmin = P_VO2*60*(1/C1)*(1/1000)*(1/eta) #physiological L/min of VO2

 #lidar attempts (wrong time course tbh:

 #totalVO2 = (xpphys*1000)*60*(1/C1)*(1/1000) +.00000001 # for testing

 #print('totvo2: '+str(round(totalVO2,2)))

 #RQ = (((118 + P_VO2/eta) / (4184/60) / totalVO2) - 3.8149) /1.232 # from lidar2023

 #TODO: check that VO2_derived is in L/min

 # swapped xpphys*1000 for P_VO2 eqn1 of Lidar2023...unsure tbh

 # 118W + PVO2 bc bmr is part of MRae

 G_kJ_left = 0

 #G_rel_curr = (xg - lamb) / (1 - lamb)

 if xl > theta:

 G_kJ_left = AG*(1-theta-lamb) - (xl-theta)*AG

 elif xl <= theta:

 G_kJ_left = (1-theta-lamb)*AG + theta*AT - xl*AT

 #LIDAR2023

 lidarwgt=74 #kg, sd 6

 MRrest = 143*atw/lidarwgt

 G_kJ_full = AG * (1-theta-lamb) + AT * theta #AG * ((1 - theta - lamb) / (1 - lamb)) + AT *
((theta) / (1 - lamb)) #xl=0@full

 x4 = 1- (G_kJ_left/G_kJ_full)

 # if x4>1: #q

 # print(x4,'x4',G_kJ_left/G_kJ_full,'Gfrac',xl,'L')

 Aacc=Aacc

 Bacc=.97

 MRacc = ((Aacc*Bacc*x4*1.03)/lidarwgt)*atw

 accfrac = MRacc / (((Aacc*Bacc*1*1.03)/lidarwgt)*atw)

 # if accfrac > 1: #q

 # print(accfrac,"accfrac over 1")

 # accfrac = 1

 maxRER = maxRER*Bacc -.01 #adjustment for x4 scaling #q

 rer_range = maxRER - .7

 RER = np.clip(((accfrac)*rer_range) + .7 ,.7,maxRER+.16)#ZYZZ

 VCO2_Lmin = VO2_Lmin * RER

 Af=158 #sd20, r50-250

 Bf=.7267 #2.96 #sd.09 r2.2-3.5

 MRf = ((Af + Bf*(xpmec/eta))/lidarwgt)*atw if xpmec != 0 else 0 #scaled to per lidarkg,
rescaled.

 Bve = .93 #L-Q distribution

 VO2_VO2max = P_VO2/zMaxPmecAerobic

 VE_VEmax = 1.2499*(VO2_VO2max**3) - 1.5287*(VO2_VO2max**2) +
1.2687*(VO2_VO2max)

 MRve = 182 * (Bve*(VE_VEmax) + (1-Bve)*((VE_VEmax)**2)) *atw/lidarwgt

 #*atw*atw/lidarwgt/61

 MRae = min((MRaeslope * (VO2_Lmin) + MRaeint),MO * 1000) #ZYZZ + MRacc? + MRve?
partial?

 xh += h_dot #

 next_h = xh # done return

 cur_dhdt = h_dot # unused

 l_new = xl + xdldt #q # done return

 l_dot_new = xdldt + l_ddot # done return

 # xl = l_new

 # xdldt = l_dot_new

 # next_l = l_new

 next_g = 1 - l_new # implied, can return if needed

 next_hddot = h_dot - xhddot # -h_ddot_list[i] #done return

 PC_conc = ((1 - xh) * AP * 1000) / (C3 * m_muscle)

 PC_pwr = (xpcconc - PC_conc) * m_muscle * C3 * eta

 if PC_pwr < 0:

 #print(PC_pwr, "PCpwr belo zero") #q

 PC_pwr = 0

 #TODO: was nec bc went negative... maybe later fix? see lidar 2023-maybe need negative
for recovery?

 an_pwr = xpmec - P_VO2 - PC_pwr

 if an_pwr <0:

 #print(an_pwr,"anpwr belo zero") #qq

 an_pwr = 0

 # Ptank_list = 1 - h_list #duh

 zANpwr = xpmec - P_VO2

 oxypwrtext = 'cur Po2: ' + str(round(P_VO2, 1)) + 'w'

 vo2curtext = 'relVO2cur: ' + str(round(VO2_derived * 1000 / C1, 1)) + ' ml/kg/min'

 # TODO FIX not sure ab VO2_derived[i] - needs to b current VO2 pwr in kJ/s?

 # NOTE: not in loop:

 zPCrit = eta * ((1 - lamb) / ((1 - phi) + (MO / MP) * (1 - theta - lamb))) * MO * 1000

 zVO2max = round((MO * 1000) / C1) # ml/kg/min?? not sure

 zCPpctofVO2max = 100 * MO * (1 - lamb) # not sure

 zPatLT1 = 1000 * eta * MO * (theta / (1 - phi))

 zPatCP = eta * ((1 - lamb) / ((1 - phi) + (MO / MP) * (1 - theta - lamb))) * MO * 1000

 zBeta = (1 - lamb) / ((1 - phi) + (MO / MP) * (1 - theta - lamb))

 prev_pmec = xpmec

 #
0 1 2 3 4 5 6 #7 8 9 10 11 12 13 14
 15 16 17 18 19 20

 # return l_list, h_list, VO2_derived, VO2permin_l, h, Lac_m_list, PC_conc_list,
PC_pwr_list, dhdt_list, P_mec_values, P_VO2_list, m_muscle, dldt_list, VP_list, VG_list,
q2_list, tor, cad, Pmecmax, pct_pmecmax_list, Lac_b_list

 # 0 , 1 , 2, 3, 4, 5, 6, 7 8

 return l_new, l_dot_new, next_hddot, next_h, next_lacb, PC_conc, PC_pwr, an_pwr,
P_VO2, Lac_m, MRacc,MRf, xpphys*1000, MRae, MRve, MRrest, prev_pmec, RER,
VCO2_Lmin,VO2_Lmin

Constant-Power Batch Simulation Code
--- Batch Simulation Function ---

def run_dtsim_batch(power=250, cadence=90, duration=300, theta=0.43, mo=1.34,

 sport='bike',MG=9.15,MP=4.48,MR=3.66, AT=11.27, AP=27.79,

 AG=320.3,PCmax=20,RBLA=1.5,C1=20.9,C2=100,C3=43.3,RMLA=1.5,

 Mlacmax=18,lamb=.38,eta_run=6, eta_bike=.24551,

 MRaeint=-40, MRaeslope=356,atw=61, etaslope= -.25, etaint=8.8,

 prev_pmec=None,Aacc=114,maxRER=1.1):

 torque = (power * 60) / (2 * np.pi * cadence)

 xh = xl = xdldt = xhddot = 0

 xlacb = xlacm = 1.5

 xpcconc = 20

 time_list = []

 pmec_list, pglc_list, pvo2_list, pcpwr_list = [], [], [], []

 lacb_list, lacm_list = [], []

 h_list, l_list = [], []

 MRacc_list, MRf_list, Pphys_list, MRae_list,MRve_list, MRrest_list = [], [], [], [],[],[]

 prev_pmec_list = []

 # prev_vo2_list = []

 RER_list = []

 VCO2_Lmin_list = []

 VO2_Lmin_list = []

 #, RER, VCO2_Lmin,VO2_Lmin

 for t in range(duration):

 l_new, l_dot_new, next_hddot, next_h, next_lacb, PC_conc, PC_pwr, an_pwr, P_VO2,
Lac_m, MRacc, MRf, Pphys, MRae, MRve, MRrest,prev_pmec, RER, VCO2_Lmin,VO2_Lmin
= dtsim6b(

 xpmec=power,

 xh=xh,

 xl=xl,

 xdldt=xdldt,

 xlacb=xlacb,

 xpcconc=xpcconc,

 xhddot=xhddot,

 MO=mo,

 theta=theta,

 tor=torque,

 cad=cadence, sport=sport,MG=MG,MP=MP,MR=MR,AT=AT,AP=AP,AG=AG,

 PCmax=PCmax,RBLA=RBLA,C1=C1,C2=C2,C3=C3,RMLA=RMLA,lamb=lamb,

 eta_run=eta_run,Mlacmax=Mlacmax, MRaeint=MRaeint, MRaeslope=MRaeslope,

 atw=atw, eta_bike=eta_bike, etaslope= etaslope,
etaint=etaint,prev_pmec=prev_pmec,Aacc=Aacc,maxRER=maxRER)

 xlacb, xh, xl, xdldt, xpcconc, xhddot = next_lacb, next_h, l_new, l_dot_new, PC_conc,
next_hddot

 time_list.append(t)

 pmec_list.append(power)

 pglc_list.append(an_pwr)

 pvo2_list.append(P_VO2)

 pcpwr_list.append(PC_pwr)

 lacb_list.append(next_lacb)

 lacm_list.append(Lac_m)

 h_list.append(xh)

 l_list.append(l_new)

 MRacc_list.append(MRacc)

 MRf_list.append(MRf)

 MRae_list.append(MRae)

 MRve_list.append(MRve)

 MRrest_list.append(MRrest)

 Pphys_list.append(Pphys)

 RER_list.append(RER)

 VCO2_Lmin_list.append(VCO2_Lmin)

 VO2_Lmin_list.append(VO2_Lmin)

 prev_pmec_list.append(prev_pmec)

 # --- Plotting ---

 # Plot 1: Tanks & Lactate

 plt.figure(figsize=(12, 5))

 plt.plot(time_list, 1 - np.array(h_list), label='P Phosphagen')

 plt.plot(time_list, 1 - np.array(l_list), label='G Glycolytic')

 plt.plot(time_list, lacb_list, label='lacb Blood Lactate')

 plt.plot(time_list, lacm_list, label='lacm Muscle Lactate')

 plt.title('Tanks & Lactate')

 plt.xlabel('Time (s)')

 plt.ylabel('Level / [Lactate] (mmol/L or mmol/kg_w.w.)')

 plt.legend()

 plt.grid(True)

 plt.show()

 # Plot 2: Power Breakdown

 plt.figure(figsize=(12, 5))

 #plt.figure(figsize=(7, 7))

 plt.plot(time_list, pglc_list, label='Glycolytic Power')

 plt.plot(time_list, pvo2_list, label='Aerobic Power')

 plt.plot(time_list, pmec_list, label='Demanded Pmec')

 plt.plot(time_list, prev_pmec_list, label='Actual Pmec')

 plt.plot(time_list, pcpwr_list, label='PCr Power')

 plt.title('Power Breakdown')

 plt.xlabel('Time (s)')

 plt.ylabel('Power Output (W)')

 plt.legend()

 plt.grid(True)

 plt.show()

 time = np.array(time_list)

 MRrest = np.array(MRrest_list)

 MRf = np.array(MRf_list)

 MRve = np.array(MRve_list)

 MRacc = np.array(MRacc_list)

 MRae = np.array(MRae_list)

 Pphys = np.array(Pphys_list)

 # Stack layers on top of MRrest baseline

 MRf_total = MRrest + MRf

 MRf_ve = MRf_total + MRve

 MRf_ve_acc = MRf_ve + MRacc

 # --- Plot ---

 plt.figure(figsize=(12, 5))

 # Base resting MR: from 0 to MRrest

 plt.fill_between(time, 0, MRrest, color='lightgrey', alpha=0.6, label='Resting MR (MRrest)')

 # Shade MRf: from MRrest → MRf+MRrest

 plt.fill_between(time, MRrest, MRf_total, color='lightgreen', alpha=0.4,

 hatch='//', edgecolor='green', linewidth=0.0, label='Functional (MRf)')

 # Shade MRve: from MRf+MRrest → MRf+MRve+MRrest

 plt.fill_between(time, MRf_total, MRf_ve, color='purple', alpha=0.4, label='Ventilation
(MRve)')

 # Shade MRacc: from MRf+MRve+MRrest → +MRacc

 plt.fill_between(time, MRf_ve, MRf_ve_acc, color='black', alpha=0.3, label='Accum.
metabolites (MRacc)')

 # MRae as solid yellow, plotted last

 plt.plot(time, MRae, '-', color='gold', linewidth=2, label='MRae - aerobic supply',
zorder=10)

 # Optional outlines (dashed)

 plt.plot(time, MRf_total, '--', color='green', linewidth=1)

 plt.plot(time, MRf_ve, '--', color='purple', linewidth=1)

 plt.plot(time, MRf_ve_acc, '--', color='black', linewidth=1)

 plt.plot(time, Pphys, '--', color='gray', label='Pphys - Boillet')

 # Final plot settings

 plt.title('Metabolic Supply/Demand Rates (Stacked on MRrest)')

 plt.xlabel('Time (s)')

 plt.ylabel('Metabolic Rate (J/s)')

 plt.grid(True)

 plt.legend()

 plt.show()

Real-Time Twin Localhost Simulation Code
Uses dtsim() iterative function (not included here) to do live animation in local browser

import streamlit as st
import plotly.graph_objects as go
import numpy as np
import time
from dtsim6c import dtsim6b

st.set_page_config(layout="wide")

st.title(" ♂ DTsim6b - a6b")

import math

--- Persistent defaults
if "power_val" not in st.session_state:
 st.session_state.power_val = 100.0
if "torque_val" not in st.session_state:
 st.session_state.torque_val = 30.0
if "cadence_val" not in st.session_state:
 st.session_state.cadence_val = 90.0

--- Exclusive lock selector

lock_state = st.radio(" Lock one to auto-calculate:", ["Power", "Torque", "Cadence"],
index=0, horizontal=True)

--- Layout
colA, colB, colC, colD = st.columns(4)
colE, colF = st.columns(2)

--- Editable inputs (only 2 are editable at a time)
if lock_state != "Power":
 with colA:
 st.session_state.power_val = st.number_input("Power (W)",
value=st.session_state.power_val, step=5.0, key="power_input")
if lock_state != "Torque":
 with colB:
 st.session_state.torque_val = st.number_input("Torque (Nm)",
value=st.session_state.torque_val, step=1.0, key="torque_input")
if lock_state != "Cadence":
 with colC:

 st.session_state.cadence_val = st.number_input("Cadence (RPM)",
value=st.session_state.cadence_val, step=1.0, key="cadence_input")

--- Computed field (disabled input)
with (colA if lock_state == "Power" else colB if lock_state == "Torque" else colC):
 if lock_state == "Power":
 if st.session_state.cadence_val > 0:
 power_calc = (2 * math.pi * st.session_state.torque_val *
st.session_state.cadence_val) / 60
 else:
 power_calc = 0
 st.number_input("Power (W)", value=round(power_calc, 2), disabled=True,
key="computed_power")
 st.session_state.power_val = power_calc

 elif lock_state == "Torque":
 if st.session_state.cadence_val > 0:
 torque_calc = (st.session_state.power_val * 60) / (2 * math.pi *
st.session_state.cadence_val)
 else:
 torque_calc = 0
 st.number_input("Torque (Nm)", value=round(torque_calc, 2), disabled=True,
key="computed_torque")
 st.session_state.torque_val = torque_calc

 elif lock_state == "Cadence":
 if st.session_state.torque_val > 0:
 cadence_calc = (st.session_state.power_val * 60) / (2 * math.pi *
st.session_state.torque_val)
 else:
 cadence_calc = 0
 st.number_input("Cadence (RPM)", value=round(cadence_calc, 2), disabled=True,
key="computed_cadence")
 st.session_state.cadence_val = cadence_calc

--- Remaining inputs
with colD:
 update_interval = st.number_input("Update Intvl (s)", min_value=0.0, max_value=2.0,

value=1.0, step=0.2, format="%.1f", key='update_input')
with colE:
 mo = st.number_input("MO (W overhead?)", min_value=0.0, max_value=500.0,
value=1.34, step=.02, key='mo_input')
with colF:
 theta = st.number_input("θ (rad or deg)", min_value=0.0, max_value=360.0, value=0.43,
step=.02, key='theta_input')

col1, col2 = st.columns([2, 1])

if 'running' not in st.session_state:
 st.session_state.running = -1

if col2.button("(RE)Start Simulation"): # Init/reset
 st.session_state.running = 1
 for key in ['pmec_list', 'pglc_list', 'pvo2_list', 'pcpwr_list', 'lacb_list', 'lacm_list',
 'h_list', 'l_list', 'time_list','MRacc_list','MRf_list','Pphys_list']:
 st.session_state[key] = []
 st.session_state.update(dict(
 xlacb=1.5, xlacm=1.5, xh=0, xl=0, xpmec=0,
 xdldt=0, xpcconc=20, xhddot=0, t=0
))

if col2.button("Stop and Clear Simulation"):
 st.session_state.running = -1

if col2.button("Pause and Save Simulation"):
 st.session_state.running = 2 # triggers one-frame draw

if col2.button("Resume Simulation"):
 st.session_state.running = 1

power_container = st.empty() # Plot containers
tank_container = st.empty()
metabolic_container = st.empty()

if st.session_state.running == 1: # LIVE SIMULATION LOOP
 last_plot_time = time.time()

 while st.session_state.running == 1:
 power_now = st.session_state.power_val
 l_new, l_dot_new, next_hddot, next_h, next_lacb, PC_conc, PC_pwr, an_pwr, P_VO2,
Lac_m, MRacc, MRf, Pphys = dtsim6b(
 xpmec=power_now,
 xh=st.session_state.xh,
 xl=st.session_state.xl,
 xdldt=st.session_state.xdldt,
 xlacb=st.session_state.xlacb,
 xpcconc=st.session_state.xpcconc,
 xhddot=st.session_state.xhddot,
 MO=st.session_state.mo_input,
 theta=st.session_state.theta_input,
 tor=st.session_state.torque_input,
 cad=st.session_state.cadence_input
)

 st.session_state.xlacb = next_lacb
 st.session_state.xh = next_h
 st.session_state.xl = l_new
 st.session_state.xdldt = l_dot_new
 st.session_state.xpcconc = PC_conc
 st.session_state.xhddot = next_hddot

 # Store history
 st.session_state.pmec_list.append(power_now)
 st.session_state.pglc_list.append(an_pwr)
 st.session_state.pvo2_list.append(P_VO2)
 st.session_state.pcpwr_list.append(PC_pwr)
 st.session_state.lacb_list.append(next_lacb)
 st.session_state.lacm_list.append(Lac_m)
 st.session_state.h_list.append(next_h)
 st.session_state.l_list.append(l_new)
 st.session_state.time_list.append(st.session_state.t)
 st.session_state.MRacc_list.append(MRacc)
 st.session_state.MRf_list.append(MRf)
 st.session_state.Pphys_list.append(Pphys)
 st.session_state.t += 1

 if time.time() - last_plot_time > 1: #og 2 sec betw upd
 last_plot_time = time.time() # Update Plotly charts

 fig1 = go.Figure()
 # Left y-axis: Tank levels
 fig1.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=1 - np.array(st.session_state.h_list),
 name="P Phosphagen",
 yaxis='y1'
))
 fig1.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=1 - np.array(st.session_state.l_list),
 name="G Glycolytic",
 yaxis='y1'
))

 # Right y-axis: Lactate
 fig1.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.lacb_list,
 name="lacb Blood Lactate",
 yaxis='y2'
))
 fig1.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.lacm_list,
 name="lacm Muscle Lactate",
 yaxis='y2'
))

 # Layout with dual y-axes
 fig1.update_layout(
 title="Tanks & Lactate",
 xaxis_title="Time (s)",
 yaxis=dict(title="Tank Fill Level", side='left'),

 yaxis2=dict(title="[Lactate] (mmol/L)", overlaying='y', side='right'),
 legend=dict(x=0, y=1.1, orientation="h")
)

 tank_container.plotly_chart(fig1, use_container_width=True)

 fig2 = go.Figure()

 # Left y-axis: Power outputs
 fig2.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.pglc_list,
 name="Glycolytic Power",
 yaxis='y1'
))
 fig2.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.pvo2_list,
 name="Aerobic Power",
 yaxis='y1'
))
 fig2.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.pmec_list,
 name="Output Pmec",
 yaxis='y1'
))
 fig2.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.pcpwr_list,
 name="PCr Power",
 yaxis='y1'
))

 fig2.update_layout(
 title="Power Breakdown & Metabolic Rates",
 xaxis_title="Time (s)",
 yaxis=dict(title="Power Output (W)", side="left"),

 yaxis2=dict(title="Metabolic Rate (J/s)", overlaying="y", side="right"),
 legend=dict(x=0, y=1.1, orientation="h")
)

 power_container.plotly_chart(fig2, use_container_width=True)

 fig3 = go.Figure()

 # Right y-axis: MRacc and MRf
 fig3.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.MRacc_list,
 name="MRacc - accum. metabolites",
 yaxis='y1',
 line=dict(dash='dot')
))
 fig3.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.MRf_list,
 name="MRf - functional",
 yaxis='y1',
 line=dict(dash='dash')
))
 fig3.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.Pphys_list,
 name="Pphys Boillet",
 yaxis='y1',
 line=dict(dash='dash')
))

 fig3.update_layout(
 title="Metabolic Supply/Demand Rates",
 xaxis_title="Time (s)",
 yaxis=dict(title="Power Output (W)", side="left"),
 yaxis2=dict(title="Metabolic Rate (J/s)", overlaying="y", side="right"),
 legend=dict(x=0, y=1.1, orientation="h")

)

 metabolic_container.plotly_chart(fig3, use_container_width=True)

 # time.sleep(1 - st.session_state.time_slider)
 if update_interval > 0:
 time.sleep(update_interval)

SINGLE-FRAME DRAW WHEN PAUSED
elif st.session_state.running == 2:
 fig1 = go.Figure()

 # Left y-axis: Tank levels
 fig1.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=1 - np.array(st.session_state.h_list),
 name="P Phosphagen",
 yaxis='y1'
))
 fig1.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=1 - np.array(st.session_state.l_list),
 name="G Glycolytic",
 yaxis='y1'
))

 # Right y-axis: Lactate
 fig1.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.lacb_list,
 name="lacb Blood Lactate",
 yaxis='y2'
))
 fig1.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.lacm_list,
 name="lacm Muscle Lactate",
 yaxis='y2'

))

 # Layout with dual y-axes
 fig1.update_layout(
 title="Tanks & Lactate",
 xaxis_title="Time (s)",
 yaxis=dict(title="Tank Fill Level", side='left'),
 yaxis2=dict(title="[Lactate] (mmol/L)", overlaying='y', side='right'),
 legend=dict(x=0, y=1.1, orientation="h")
)

 tank_container.plotly_chart(fig1, use_container_width=True)

 fig2 = go.Figure()

 # Left y-axis: Power outputs
 fig2.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.pglc_list,
 name="P Glyco",
 yaxis='y1'
))
 fig2.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.pvo2_list,
 name="Aerobic (O₂)",
 yaxis='y1'
))
 fig2.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.pmec_list,
 name="Output P",
 yaxis='y1'
))
 fig2.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.pcpwr_list,
 name="PCr Power",

 yaxis='y1'
))

 fig2.update_layout(
 title="Power Breakdown & Metabolic Rates",
 xaxis_title="Time (s)",
 yaxis=dict(title="Power Output (W)", side="left"),
 yaxis2=dict(title="Metabolic Rate (J/s)", overlaying="y", side="right"),
 legend=dict(x=0, y=1.1, orientation="h")
)

 power_container.plotly_chart(fig2, use_container_width=True)

 fig3 = go.Figure()

 # Right y-axis: MRacc and MRf
 fig3.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.MRacc_list,
 name="MRacc - accum. metabolites",
 yaxis='y1',
 line=dict(dash='dot')
))
 fig3.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.MRf_list,
 name="MRf - functional",
 yaxis='y1',
 line=dict(dash='dash')
))
 fig3.add_trace(go.Scatter(
 x=st.session_state.time_list,
 y=st.session_state.Pphys_list,
 name="Pphys Boillet",
 yaxis='y1',
 line=dict(dash='dash')
))

 fig3.update_layout(
 title="Metabolic Supply/Demand Rates",
 xaxis_title="Time (s)",
 yaxis=dict(title="Power Output (W)", side="left"),
 yaxis2=dict(title="Metabolic Rate (J/s)", overlaying="y", side="right"),
 legend=dict(x=0, y=1.1, orientation="h")
)

 metabolic_container.plotly_chart(fig3, use_container_width=True)

