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Abstract

We give an explicit example of a K3 surface of degree 6 defined over the rational numbers with
geometric Picard number 1. Previous work has shown that this is the generic case for complete
intersections of K3 surfaces [3], but no explicit examples have been found in degree 6. Explicit
examples have been found for the degree 2 [1] and degree 4 cases [4], and we extended the technique
used to the case of K3 surfaces of degree 6.

Introduction
First, we define the geometric Picard number in a relatively general setting. Let X be a nonsingular
variety over a field k.

• A prime divisor on X is a closed integral subvariety Y of codimension 1.
• A (Weil) divisor is an element of the free abelian group Div X generated by the prime divisors.
• a principal divisor is an element of Div X given by

(f ) =
∑

vY (f ) · Y

for some rational function f on X , where vY (f ) denotes the order of vanishing of f along Y .
• Two divisors D and D′ are linearly equivalent if D − D′ is a principal divisor.
• The Picard group Pic(X) is the group of divisors on X modulo linear equivalence.
• The geometric Picard number of X is the rank of Pic(X), where X = X ×Spec(k) Spec k.

Next, we define K3 surfaces and recount some basic properties of their Picard groups.
• A K3 surface is a smooth, projective, geometrically integral surface X over a field k whose

canonical sheaf ωX on X is trivial and H1(X, OX) = 0.
• For a K3 surface X , Pic(X) ∼= Z⊕ρ(X) where 1 ≤ ρ(X) ≤ 22. Note that the geometric Picard

number of X is just the Picard number of X , so it satisfies the same bound [2, p. 397].
• The geometric Picard number of a K3 surface over Fp, is always even [2, Corollary 17.2.9]. Thus,

the minimum geometric Picard number of a K3 surface over a finite field is 2.
• Reducing a K3 surface X defined over Q mod p induces a specialization homomorphism

sp : Pic(X) → Pic(Xp) which is injective and compatible with the intersection products on X
and Xp [2, Proposition 2.10].

To find the explicit example of a sextic K3 surface with geometric Picard number 1, we start by picking
a sextic K3 surface Xp ⊂ P4 that contains a line for some prime p. We can project from this line, and
because the line is contained in the surface we show that the projection is a degree 2 cover Xp → P2,
allowing us to use a preexisting algorithm for computing the Weil polynomial of degree 2 K3 Surfaces.
We use the Weil polynomial to prove that rk(Pic(Xp)) ≤ 2. Next, we find a lift of Xp to Q, say X ,
which no longer contains the line L, and in fact does not contain any line. We prove that any lift of a
line must be a line, meaning that the divisor class L in Xp does not lift, so rk(Pic(X)) ≤ 1, which is
its minimum value, so rk(Pic(X)) = 1.

Realizing Xp as a Degree 2 Surface

We start with a sextic K3 surface Xp ⊂ P4 over Fp defined by the vanishing of homogenous degree
2 and 3 polynomials f2 and f3, respectively. Further, we require that Xp contains the line L, which
amounts to f2 and f3 being in the ideal of L.
To utilize the algorithms developed for degree 2 K3 surfaces, we need to view Xp as a degree 2 K3
surface. Projecting the surface Xp from the line L means mapping each point on Xp to the plane which
meets both L and that point. The planes through L are parameterized by P2, so this gives a rational
map to P2. Note that this map is not defined at L itself. To resolve the rational map, we blowup X at
L, getting a morphism f : Xp → P2.
We prove the following theorem, which implies that f is a degree 2 model for Xp.

Theorem 1. Let Xp ⊂ P4
Fp

be a sextic K3 surface given by the vanishing of homogenous degree
2 and degree 3 polynomials f2 and f3, respectively, and assume that Xp contains a line L. Then
the projection of X from L is a finite, flat degree 2 morphism Xp → P2

Fp
whose branch locus is

a sextic curve given by the vanishing of a single degree 6 polynomial f6.

Bounding the Picard Number of Xp using the Weil Polynomial

Let f be the Frobenius morphism on Xp, and let f∗ be its pullback on H2
et(Xp,Ql). We call the

characteristic polynomial of f∗ the Weil polynomial of Xp.
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Figure 1: Summary of Proof Strategy, all algorithms in Magma

We have that Pic(Xp) injects into H2
et(X,Ql)(1), and this injection respects the Galois action of

G(Fp/Fp), in particular the action of Frobenius [4].
By observing that all divisor classes are defined in some finite extension of Fp, we have that some
power of the Frobenius acts as the identity on Pic(Xp), so all eigenvalues of Frobenius on Pic(Xp) are
roots of unity. If we let f∗(1) be the induced automorphism on H2

et(X,Ql)(1), we then know that
rk Pic(Xp) is bounded above by the number of eigenvalues of f∗(1) that are roots of unity, counted
with multiplicity. Eigenvalues of f∗(1) differ from eigenvalues of f∗ by a factor of p, so we have the
following lemma:
Lemma 2 ([4, Corollary 2.3]). The rank of Pic(Xp) is bounded from above by the number of
eigenvalues λ of f∗ for which λ/p is a root of unity, counted with multiplicity.
We can use a preexisting algorithm in Magma to compute the Weil polynomial of Xp, so we randomly
generate the defining equations f2 and f3 until we get a surface Xp such that the Weil polynomial has
2 roots which are roots of unity. This guarantees that rk Pic(Xp) ≤ 2.

Verifying that X contains no lines over Q

Now that we have bounded the geometric Picard number of Xp, we need to find a lift to a sextic K3
surface X over Q which contains no lines over Q. To do this, we add 2 terms to f2 which are not in
the ideal of L but vanish mod p.
Next, we check that this lift contains no lines. Let V = Q5, and note that a line in P4

Q corresponds to
a plane in V . Thus, the lines in P4

Q are parameterized by the Grassmannian Gr(2, 5) of 2-dimensional
subspaces of 5-dimensional space.
We computed an explicit set of affine charts for Gr(2, 5) using Schubert cells. Because dim Gr(2, 5) = 6,
each chart is the span of two vectors v1 and v2 parameterized by y1, ..., y6. Let C be the homogenous
coordinate ring of P4 with homogenous coordinates x0, ..., x4, R = Q[y1, ..., y6], and S = R[u1, u2].
Thus, if f ∈ C, then f is in the ideal of the line spanned by v1, v2 ∈ V if and only if f (u1v1+u2v2) = 0
for all u1, u2 ∈ Q. If we expand the expressions f2(u1v1 + u2v2) and f3(u1v1 + u2v2), we can view
them as polynomials in u1 and u2. These polynomials are zero for all u1 and u2 if and only if all their
coefficients (taking u1 and u2 as unknowns and all other variables as constants) are all zero. The set
of y1, ..., y6 which satisfy these constraints are an algebraic variety in A6

Q because each coefficient is a
polynomial in y1, ..., y6.
In Magma, we can easily compute the ideal generated by all of these coefficients using a Gröbner basis
calculation and check that it is the unit ideal, meaning that there are no such y1, ..., y6 over Q or in
fact any algebraic extension of Q, in particular Q.

Geometric Picard Number of X

We prove the following lemma about the behavior of the Picard group under specialization:
Lemma 3. Given a K3 surface X ⊂ Pn

Q such that Xp contains a line L and there exists
D ∈ Pic(X) such that sp = L, then D is the class of a line.
Additionally, Elsenhans and Jahnel showed the following lemma:
Lemma 4 ([1, Corollary 3.7]). Let p ̸= 2 be a prime number and X be a scheme proper and flat
over Z. Suppose that the special fiber Xp is nonsingular. Then, the cokernel of the specialization
homomorphism sp : Pic(X) → Pic(XFp

) is torsion free.

With lemmas 3 and 4, we can prove the following theorem which allows us to conclude that X has
geometric Picard number 1:
Theorem 5. If X ⊂ Pn

Q is a K3 surface containing no lines over Q and the reduction Xp

contains a line and has geometric Picard number 2 for some prime p of good reduction, then X
has geometric Picard number 1.
Proof. Let H ∈ Pic(X) be the hyperplane section. Assume to get a contradiction that X has
geometric Picard number at least 2. If rk Pic(X) > 2, we have a contradiction because sp is an injective
homomorphism from Pic(X) to Pic(Xp), and rk Pic(Xp) = 2. Thus, rk Pic(X) = 2. Because sp is
injective, the image of sp has rank 2 as well, so the cokernel has rank 0. However, by Lemma 4 we know
that the cokernel is torsion free, so it must be 0, so sp is surjective. Let L be the line in Xp. Because
sp is surjective, we have a divisor class E ∈ Pic(X) such that sp(E) = L, but by Lemma 3 we have
that E is the class of a line, a contradiction.

Main Theorem

Theorem 6. Let X = V (f2, f3) ⊂ P4
Q where

f2 = x2
0 − 3x0x1 + 3x2

1 + 5x0x2 + 4x1x2 + 5x2
2 − x0x3 − 2x1x3 − 3x2x3 − 5x0x4 + 5x1x4

+ 47x2
3 + 47x2

4
f3 = 2x3

0 + 3x2
0x1 + 3x0x

2
1 + x3

1 − x0x1x2 − 3x2
1x2 + 4x0x

2
2 − 4x1x

2
2 + 5x3

2 + 4x2
0x3 + x0x1x3

+ 5x2
1x3 + 4x0x2x3 + 4x1x2x3 + −3x2

2x3 + 4x1x
2
3 − x2x

2
3 + 5x2

0x4 − 4x0x1x4 + 2x2
1x4

+ x0x2x4 + 4x1x2x4 − 2x2
2x4 + 4x0x3x4 − 3x2x3x4 − x0x

2
4 + −x1x

2
4 + 5x2x

2
4,

and x0, ..., x4 are the homogenous coordinates for P4
Q. Then X is a sextic K3 surface with

geometric Picard number 1.
Proof. Let p = 47, and note that the reduction of X mod p is defined by the same equations except for
the removal of the last two terms of f2. Note that at least one of x0, x1, or x2 divides every remaining
term, so Xp contains the line L = V (x0, x1, x2).
We computed that the Weil polynomial of Xp is

(x − 47)2(x20 + 35x19 + 1410x18 + 79524x17 − 311469x16 + 39037448x15 + 5504280168x14

− 86233722632x13 − 1013246240926x12 − 666716026529308x11 − 78339133117193690x10

− 1472775702603241372x9 − 4944318430168024606x8 − 929531864871588625928x7

+ 131063992946893996255848x6 + 2053335889501339274674952x5

− 36190045052461104716146029x4 + 20411185409588063059906360356x3

+ 799438095208865803179665780610x2 + 43835855553952808207685006970115x

+ 2766668711962335809450748011342401).
It is easy to check that the second factor contains no cyclotomic factors, so the Weil polynomial has
exactly 2 roots which are p times a root of unity. Thus, by Lemma 2, Xp has geometric Picard number
at most 2.
Finally, we can check using the method described above that X contains no lines, so X has geometric
Picard number 1 by Theorem 4.
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