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Abstract
Spectral graph theory connects graph structure to the eigenvalues of its adjacency and 
Laplacian matrices. In this project, we analyze how these eigenvalues evolve as the 
number of vertices increases across various graph families. We validate known formulas 
for path and cycle graphs, then extend our analysis to k-regular, complete, and k-partite 
graphs. Using regression techniques, we approximate spectral values and explore new 
families such as tailed graphs, where we observe that the maximum Laplacian eigenvalue 
grows linearly with the number of tails. Our findings offer tools for fast approximation 
and applications in network science and chemistry, while suggesting future directions for 
formal proofs and bounded-error estimates.

Introduction and Literature Review
Spectral Graph Theory
Spectral graph theory is the study of the structural properties of 
graphs through the eigenvalues and eigenvectors of matrices 
associated with them, most notably the adjacency matrix and 
the Laplacian matrix. These spectral characteristics encode 
deep information about graph connectivity, expansion, and 
symmetry. In this project, we investigate how their spectral 
properties evolve as the number of vertices increases. Our 
primary goals are to:
Our primary goals are to:
• Uncover relationships between the eigenvalues of adjacency 

and Laplacian matrices across various graph families,
• Analyze how these spectra evolve as the number of vertices 

increases, providing insight into the asymptotic behavior of 
large or growing graphs.

Figure 1: Example of Different Types of Graphs Explored[1]

Literature Review
We started our research by conducting a thorough literature 
review of the known relationships. Below are two graphs that we 
created illustrating the relationships 𝜆! 𝐿 = 2 + 2 cos "!

#
 for 

the Adjacency Matrix of a Path Graph and 𝜆! 𝐴 = 2 cos "!
#  where n 

is the number of vertices and k is the index of the eigenvalue[2]. 

    Figure 2: Eigenvalues of Adjacency      Figure 3: Eigenvalues of Laplacian

Useful Formulas
• Perron Frobenius Theorem for Symmetric Matrices[3]
• Let G be a connected undirected graph with eigenvalues μ1 ≥ μ2 

≥ ...μn
- The eigenvalue μ1 has a strictly positive eigenvector
- μ1 ≥ −μn
- μ1 > μ2

• Max Eigenvalue Lemma[3]
• The maximum eigenvalue is bounded by the average degree and 

maximum degree of all vertices (dave ≤ λmax ≤ dmax)

Conclusions and Next Steps
Our regression-based approach reveals consistent patterns in how 
graph structure influences spectral properties. By confirming known 
results and extending them to new families like tailed and k-partite 
graphs, we demonstrate that simple structural features can predict 
eigenvalue behavior with surprising accuracy. 

Applications
1. Fast Approximation
• Computing eigenvalues for large graphs can take O(n3) time, 

becoming extremely expensive for large graphs that model 
complex networks and datasets

• Our regression would allow for a fast approximate solution, 
potentially in constant O(1) time, to this problem

2. Epidemic Modelling[4]
• In certain models, the chance of an epidemic dying out in a 

network is bounded by )$ %!"#
meaning that a larger max 

eigenvalue is correlated with a higher risk of outbreak
• Thus we could model solutions to minimize the chances of a 

pandemic through removing nodes (vaccination), removing 
edges (quarantine communities), etc.

3. Molecular Graphs for Chemistry[5]
• In chemistry, molecules can be modelled as graphs where 

vertices represent atoms and edges represent the chemical 
bonds between them

• Eigenvalues correspond to molecular orbit, meaning the 
spectral gap between them can imply stability/instability

Next Steps
While our regression analysis provided us with estimations to the 
eigenvalues of these graphs, there is still a grey area on how effective 
our methods are. Firstly, we would hope to attempt to prove some of 
the relationships between the graphs and eigenvalues, such as seen in 
literature for cycle/path graphs. Finding an exact formula would be key 
to solving this problem. If unable to, we would then hope to understand 
how effective our analysis is in predicting these values by calculating an 
approximation factor to bound the effectiveness of our regression. This 
would be necessary so that anyone applying our approximate methods 
would be aware of possible errors in the calculation.
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Our Work
Max Eigenvalue of k-Regular Graphs
A k-regular graph is a graph where all vertices have degree k, implying that the average degree 
equals the max degree. Using the lemma that the max eigenvalue is bounded by average/max 
degree, we found that for any k-regular graph λmax = k. This can be applied further to the following 
families:

Cycle Graphs: All vertices have degree 2, implying a max eigenvalue of 2 for any size cycle.    

 Figure 4: Cycle Graphs of size 3 to 6[6]                            Figure 5: Eigenvalues of Cycles   

Complete graphs: For a complete graph of size n,  all vertices have degree n-1 implying a max 
eigenvalue of n-1

 Figure 6: Complete Graphs of size 1 to 5[7]                      Figure 7: Max Eigenvalues of Complete graphs

K-Partite Complete Graphs: If we have a complete k-partite graph where all k-components have size 
n, then all vertices have degree and max eigenvalue n*(k-1)

         Figure 8: 5-Partite Complete Graph[8]                      Figure 9: Max Eigenvalues of k-Partite Complete Graphs
        (k on x-axis, n on y-axis: results in a parabolic surface)

Tailed Graphs
To explore how local structural changes affect spectral properties, we examine path graphs with 
increasing numbers of tail vertices attached to one end. These "tail-extended" graphs preserve 
the linear backbone of the path but introduce degree-1 vertices that alter the boundary 
conditions. As more tails are added, we observe notable changes in the Eigenvalues of both the 
Adjacency and Laplacian Matrices. 

Figure 10: Eigenvalues of Laplacian Figure 11: Bounds for Laplacian  Figure 11: Linear
          for increasing tails.                as tails increase   Approximations

Figure 10 show the maximum eigenvalues of the Laplacian matrix as the number of vertices in 
the graph increases, color-coded by number of tails. We see that for each number of tails the 
maximum eigenvalue appears to approach an upper bound as the number of vertices increases. 
We plot this bound against number of tails in Figure 11 which demonstrates that the maximum 
eigenvalue seems to approach n+2 where n is the number of tails. Finally, in Figure 11 we 
estimate linear approximations for the maximum eigenvalue using number of tails as our 
independent variable for graphs  with the same number of total vertices.


