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                                   Abstract
This project investigates a stylized financial tug-of-war model, where two trading 
agents compete in a zero-sum stochastic game to steer an asset’s price toward 
their preferred absorbing boundary (high or low) via strategic buy/sell actions. Using 
dynamic programming and Nash equilibrium analysis, we derive analytical 
benchmarks for optimal play. We then implement a reinforcement learning (RL) 
approach Q-learning with ε-greedy exploration where agents learn through 
repeated self-play or against fixed-strategy opponents. Learned policies are 
compared to optimal strategies derived via value iteration. Results show RL agents 
gradually converge to equilibrium behaviors, with early-phase deviations due to 
limited state exposure. Eventually, agents mirror optimal boundary-pulling strategies 
and achieve 95–100% payoff efficiency in most states. When facing suboptimal 
opponents, RL agents exploit inefficiencies, surpassing Nash baseline payoffs. We 
highlight implications for real-world markets, where traders adapt under bounded 
rationality and incomplete information, often diverging from theoretical equilibria. 

Background
Introduction
Financial markets often resemble competitive games, with traders using strategies 
to push asset prices in favorable directions. We model such a scenario as a 
two-player zero-sum stochastic game in which the “state” is a discrete price level 
and two adversarial trading agents exert opposing influences on price movements. 
This tug-of-war metaphor captures how buyers and sellers compete: if bullish 
trades dominate, the price is pulled upward, whereas dominant selling pressure 
pulls it downward. Eventually, the price may hit an upper or lower bound (reflecting 
extreme outcomes like a price target or stop-loss), at which point one agent “wins” 
and the game ends. This formalization offers a clean and tractable lens through 
which to examine strategic price dynamics in simplified market settings. The game 
is discrete in both time and state, with transitions between price levels determined 
probabilistically by the players’ simultaneous actions. These actions, which 
metaphorically represent net buying or selling pressure, result in random walk 
dynamics with a directional bias depending on whether agents act in unison or in 
opposition. Importantly, this setup allows us to investigate not only how rational 
agents should behave, but also how boundedly rational agents do behave when 
they must learn effective strategies through experience.

Significance
This game-theoretic setup allows us to apply dynamic programming and 
reinforcement learning to analyze strategic behavior. Under perfect rationality, 
agents solve the Bellman equation to determine the value function V(s), which 
represents the expected payoff from state s when both players act optimally. The 
general equation is:

Here, a1  and a2  are the actions of Players 1 and 2, and the expectation is over the 
next state s′. This saddle-point form reflects the zero-sum nature of the game.

Furthermore, our specific model is,

In parallel, we implement Q-learning for reinforcement learning agents that lack 
prior knowledge of the game's dynamics. By training agents through repeated play, 
either against fixed opponents or via self-play, we assess how closely their learned 
behavior aligns with the optimal strategies derived from the Bellman equation

Results

Using dynamic programming, we derived the analytical benchmark for the 
symmetric tug-of-war model, where two agents compete to pull an asset’s price 
toward their respective absorbing boundary. By solving the difference equations 
via value iteration, we obtained the equilibrium value function V(s)=s/N , which 
represents the probability that Player A wins from state s under optimal play; 
correspondingly, Player B wins with probability N−s/N  The optimal (Nash 
equilibrium) policy is for Player A to always choose Up (U) and Player B to 
always choose Down (D) in every non-terminal state. Any deviation from this 
strategy such as Player A choosing D or Player B choosing U immediately favors 
the opponent, who can continue pulling in their direction to gain a probabilistic 
advantage. This dynamic results in an unbiased martingale process, where the 
price fluctuates until one of the absorbing boundaries is reached. While we 
acknowledge that asymmetric versions of the game (e.g., when stalemate 
transitions are biased with p≠0.5 may require mixed strategies, our analysis 
focuses on the symmetric case to provide a rigorous baseline for evaluating 
reinforcement learning (RL) agent behavior. The equilibrium value V(s) serves 
as a performance benchmark: any RL policy achieving a higher win probability 
must be exploiting a suboptimal opponent; lower values indicate that the learned 
policy has not fully converged to optimal play.

             
                     Discussion and Conclusion
Our study explores the interplay between theoretically optimal strategies 
derived via dynamic programming under perfect rationality and the adaptive 
behaviors of reinforcement learning (RL) agents with bounded rationality and 
limited information. In the symmetric tug-of-war model, optimal play requires 
each player to always push in their direction, yielding a linear win probability 
V(s)=s/N Without prior knowledge, RL agents gradually learned this strategy 
through self-play and adaptation. When facing suboptimal opponents, they 
exceeded equilibrium payoffs by exploiting mistakes, mirroring real-world 
scenarios where adaptive traders capitalize on inefficiencies. However, 
learning involved transient suboptimal behavior, particularly in rarely visited 
states analogous to irrational actions like panic selling or premature exits in 
financial markets. These inefficiencies declined over time as agents refined 
their value estimates, reflecting how arbitrage can self-correct mispricings. 
Our results suggest RL offers a powerful lens for modeling strategic behavior 
in adversarial financial environments where perfect information and rationality 
do not hold. Future work will extend the model to include partial observability, 
richer action spaces, transaction costs, and risk preferences to better reflect 
market dynamics. We also plan to scale the model using deep multi-agent RL 
and explore empirical applications, such as interpreting order book 
competition as a tug-of-war, to assess how learned strategies align with real 
trading behavior

Models and Methods   
We model the financial tug-of-war as a turn-based game played in discrete time, where two competing traders 
influence the movement of an asset’s price. One trader, representing bullish market behavior, consistently tries to 
push the price upward. The other, representing bearish sentiment, applies downward pressure. The price itself is 
simplified into discrete levels, forming a finite set of states. These states range from a minimum level (representing the 
lower price bound) to a maximum level (the upper bound). The game ends when the price hits either extreme, with 
one trader declared the winner based on which direction the price reached.

At every step of the game, both players simultaneously choose an action. These actions correspond to their trading 
intent: pushing the price up or pulling it down. However, the outcome is not deterministic. Instead, it is governed by 
probability. When both players choose to push in the same direction, either both upward or both downward, the price 
is likely to move in that direction, but not with certainty. The strength of the price movement reflects a bias toward the 
combined push. On the other hand, if the players oppose each other, one pushing up and the other down, the forces 
cancel out, and the price has an equal chance of moving up or down. This random element reflects real-world market 
uncertainty, where even coordinated actions cannot fully control outcomes.

The central goal for each trader is to steer the price toward their preferred terminal state: the bullish trader wants to 
reach the upper bound, and the bearish trader wants the price to fall to the lower bound. In order to determine the best 
possible strategy for each player, we turn to the tools of dynamic programming. We define a value function that tells 
us the probability that the bullish trader wins when the price is at a given level, assuming both players make optimal 
choices from that point forward.

Solving for this function involves reasoning recursively: at any non-terminal state, the optimal action depends on the 
expected outcome of all possible future paths. The bullish player aims to maximize their chance of success, while the 
bearish player tries to minimize it. The result is a game of opposing interests, where each player reacts not only to the 
current state but to how the other might respond.

In the special case where the game is symmetric, meaning both players have the same influence and the same rules 
for how actions affect the price, the best strategy becomes straightforward. Each player should always apply pressure 
in the direction of their goal: the bullish trader always pushes upward, and the bearish trader always pushes 
downward. When this occurs, the game reduces to a fair random walk, where the price moves unpredictably until it 
reaches one of the boundaries. In this case, the probability that the bullish trader wins is simply proportional to how far 
the current price is from the lower bound.

To explore how real-world traders might behave when they do not have perfect information or computational power, 
we introduce reinforcement learning. Instead of calculating optimal moves in advance, reinforcement learning agents 
improve over time by learning from experience. We use a specific method called Q-learning, where each agent 
maintains an evolving estimate of how good each possible action is in each state. These estimates are updated after 
every game based on whether the agent won or lost and what actions it took along the way.

Over the course of many training episodes, the agent plays repeatedly and gradually learns which actions tend to lead 
to success. Sometimes the agent acts according to its current best guess; other times, it explores less certain options 
to improve its understanding. This exploration ensures that the agent doesn’t miss out on potentially better strategies.

There are two main ways to train these agents. One method involves placing the learning agent against a fixed 
opponent that always behaves in the same way. This lets us observe how well the agent can adapt to exploit a 
predictable adversary. The other method is called self-play, where both agents learn at the same time, constantly 
adjusting to each other's strategies. This dynamic environment better reflects real market behavior, where traders 
evolve in response to one another.

As training continues, the reinforcement learning agents typically converge to strategies that closely resemble the 
theoretically optimal ones. Their win probabilities stabilize and begin to mirror the expected results derived from 
dynamic programming. By comparing these learned outcomes with exact solutions, we gain insight into how close real 
learning-based behavior can come to rational, game-theoretic ideals—and where it might diverge due to limitations in 
information, time, or adaptation.


