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Abstract This paper presents a sparse Bayesian learning (SBL) algorithm for lin-
ear inverse problems with a high order total variation (HOTV) sparsity prior. For
the problem of sparse signal recovery, SBL often produces more accurate estimates
than maximum a posteriori estimates, including those that rely on ¢; regulariza-
tion. Moreover, rather than a single signal estimate, SBL yields a full posterior
density estimate which can be used for uncertainty quantification. However, SBL
is only immediately applicable to problems having a direct sparsity prior, or to
those that can be formed via synthesis. This paper demonstrates how a problem
with an HOTYV sparsity prior can be formulated via synthesis, and then develops
a corresponding Bayesian learning method. This expands the class of problems
available to Bayesian learning to include, e.g., inverse problems dealing with the
recovery of piecewise smooth functions or signals from data. Numerical examples
are provided to demonstrate how this new technique is effectively employed.

Keywords high order total variation regularization - sparse Bayesian learning -
analysis and synthesis - piecewise smooth function recovery
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1 Introduction

Many real-world phenomena give rise to piecewise smooth signals, [18]. As such,
inverse problems to recover them from measurement data is a well-studied prob-
lem, [25]. Particular attention has been paid to piecewise smooth signal or function
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recovery from Fourier or spectral data, [12-14]. A now standard approach to piece-
wise smooth signal recovery is to minimize a least squares cost function with ¢;
norm based high order total variation (HOTV) regularization, [6,21]. This is well-
known to encourage sparsity in the approximate edge domain of the function. In
practice, this can be achieved by penalizing the gradient domain of the signal us-
ing the HOTV operator Ty, € RN =™XN "4 finite difference approximation to the
mth gradient. In particular, this paper deals with HOTV orders m = 1,2, 3. While
we do not explicitly consider m > 4, the methods developed are easily adapted.
Using such an operator is common for inverse problems in image processing when
one has a prior belief that the signal of interest being recovered is approximately
piecewise polynomial of order m — 1, [1]. This technique has been useful in appli-
cations to improve robustness in synthetic aperture radar imaging, [1,22], and to
recover fine details in electron tomography imaging, [23].

The main contribution of this paper is an alternative Bayesian learning based
method for inverse problems where an HOTV sparsity prior is appropriate. This
expands the class of problems available to this clearly strong method which pro-
vides a full posterior density estimate rather than a single point estimate. Because
the sparsity assumption for piecewise smooth signal reconstruction is typically
viewed in the analysis formulation, i.e. T, = s with a the signal of interest
and s the sparse representation, Bayesian learning is not immediately applicable.
In particular, since Ty, is not square and therefore not invertible, more work is
required. In what follows, our approach is to form an equivalent synthesis formula-
tion of the form & = Vs in order to effectively reduce the problem to sparse signal
recovery. Since sparse Bayesian learning (SBL), [27], is applicable and has been
shown to be superior to many other methods for sparse signal recovery, [15,17],
then one can expect superiority in this synthesis construction as well. Our proce-
dure involves a modification from [19] to the analysis operators T}, to make these
operators full rank and therefore invertible. This ultimately enables the formula-
tion of a Bayesian learning algorithm for inverse problems with a HOTYV sparsity
prior like piecewise smooth signal recovery.

This paper is organized as follows. Section 2 reviews sparse signal recovery
using a maximum a posteriori estimate, and describes how both the synthesis
and analysis approaches are typically employed to recover signals that are sparse
in a transform domain (e.g. the HOTV domain). Section 3 explains how to for-
mulate a synthesis approach for the HOTV analysis operators via the technique
introduced in [19]. Since SBL typically provides superior performance for the syn-
thesis approach, in Section 4 we demonstrate how SBL specifically can be applied
to synthetic HOTV. Numerical examples are implemented in Section 5, where
we demonstrate that our new approach, which we call high order total variation
Bayesian learning (HOTVBL), outperforms the standard ¢; norm based HOTV
regularization (analysis approach). Some concluding remarks and ideas for future
investigations are provided in Section 6.
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2 Background
2.1 Sparse signal recovery

Let z € RY be a sparse signal with £ < N of its elements nonzero. We seek to
recover x from measurements
b= Az +n, (1)

where A € R7*¥ is a given forward measurement matrix and the given data is
b € R7. The vector n € R” is a noise vector accounting for model and measurement
error. In this paper we will assume that n is zero-mean white Gaussian with
variance 2, and under the assumption that the entries of b are independent as in
[17], we have the likelihood model

_ 1
p(blz) = (2m%) "% exp (—ﬁnAm - b||§) : (2)
A straightforward way to estimate x is to maximize this likelihood:

s, = argmax {p(blz)}
_ 2\—J/2 1 9
arg max {(27r1/ ) exp (—Z?HAw - ng)}

= argmin {|| A2 — b3 } . 3)

However, solving (3) frequently yields a solution that is not sparse, i.e. with many
greater than k nonzero elements. To see this, consider the denoising problem where
J = N and A is the identity matrix. In this case the estimate is just the noisy
collected signal, x3,;;, = b. To improve on this result, a prior on x is often incor-
porated to encourage sparsity. For example, the Laplace density function

p(@) = (8)" exp (~pllely), @

is frequently chosen because it corresponds to the £; regularization often used in
compressive sensing. Here p determines the spread of the distribution and can
intuitively be associated with how sparse x is. We note, however, that there are
many sparsity-encouraging priors characterized by sharp peaks at zero. E.g., ||x|1
in (4) can also be replaced with ||x||5 for p € (0, 1] which would correspond to £,
regularization. Using Bayes’ theorem we can now compute a maximum a posteriori
(MAP) estimate by maximizing the posterior

T ap = argmax {p(z[b)}

{2

= argmax {—log p(b|z) — log p(x)}
= argmin {||A@ — bl[3 + p||a]l1 } (5)

The first term in (5), often referred to as the fidelity term, is minimized when the
solution aligns most closely with the given data. The second term is the imposed
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sparsity penalty on «. In the field of compressive sensing the sparsity prior param-
eter 1 and noise variance v? are often combined as A = ur? and relabeled as the
regularization parameter, which balances the fidelity term, the sparsity penalty,
and noise reduction. Even though the inversion can be ill-posed, if certain condi-
tions are met, then with high probability & can be exactly recovered from many
fewer than N measurements using this method, [4]. From (5) it is also evident
that without prior information of u or v2, it can be difficult to choose a suitable
regularization parameter for any given application.

Moreover, even if the prior parameters are known, the maximum is not cat-
egorically representative of the posterior density. Hence it may be favorable to
estimate the entire posterior density and then derive statistics. In SBL, [27], a
flexible, hierarchical prior whose parameters are learned from the data is used to
encourage sparsity and estimate the entire posterior density. Confidence intervals
can be derived from this posterior to aid in uncertainty quantification, [17]. For
sparse signal recovery, in terms of accuracy at a given sparsity level k, SBL has
outperformed a variety of other methods, [15,17], including the ¢; regularization
scheme in (5), [26], and more advanced reweighting algorithms, [5,7]. For more
evidence see, e.g., Figs. 6, 7, and 8 in [15], and Figs. 2 and 4 in [17].

2.2 Synthesis and analysis

It is important to note that while ¢; and reweighted regularization schemes are
readily adapted to signal processing applications, i.e. where the sparsity occurs
in some related domain (e.g. the gradient or wavelet domain), SBL is specifically
designed for sparse signals. Because of its clear advantages in sparse signal recovery,
we would like to adapt SBL for these other problems as well. Specifically, we are
interested in applying SBL when the vector of interest « is not sparse, but a known
transformation of @ is. There are two approaches: synthesis and analysis.

In the synthesis approach, which is typically associated with compressed sens-
ing, we formulate a method based on the assumption that

r=7Vs, (6)

where V' e RV*M g called a synthesis operator and s € RM is a sparse vector.
Sparse signal recovery is used to obtain s from measurements in (1), now written
as b= AVs + n. Using ¢ regularization as in (5), a synthesis approach recovery
for the signal of interest x is given by

@iynihesis = V. |argmin {[[AVs — bl3 + Alls|l1 } (7)

Because synthesis effectively reduces the problem to sparse signal recovery, the
SBL method is directly applicable to problems formed as (7) by recovering s and
then synthesizing via (6). In the corresponding analysis approach, we formulate a
method based on the assumption that

Tx = s, (8)

where T € RM*N is called an analysis operator and s € RM is a sparse vector.
In an ¢; regularization scheme, the signal of interest x is directly estimated by
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regularizing on the sparsity of T'x as
Tinatysis = argmin { || Az — bl[3 + || Ta|1 } (9)

Choosing to use (7) or (9) may simply depend on whether it is more natural to view
the sparsifying transformation as Tx = s or * = V's. The choice of analysis versus
synthesis and the differences and similarities between them are further analyzed
n [10]. A particular result of interest is that if V' := T~ then (7) and (9) are
equivalent. As discussed in more detail in Section 4.1, because of the conjugate
prior structure used in the SBL method, SBL is not readily applicable to problems
viewed in the analysis approach.

In this paper we focus on a particular problem that is typically viewed in the
analysis approach, that is when the underlying signal can be viewed as a piecewise
smooth function. We will mainly consider the case for which the analysis operator
T is the high order total variation (HOTV) operator Tr, € RNV=mXN "9 finite
difference approximation to the mth gradient. Using such an analysis operator is
used in inverse problems when one has a prior belief that the signal of interest being
recovered is approximately piecewise polynomial of order m — 1, [1]. In particular,
we are interested in m = 1,2, 3. While we do not explicitly consider m > 4 in this
paper, we provide general formulae for these cases.

Our goal is to formulate a Bayesian learning method for piecewise smooth signal
recovery, or more generally inverse problems with a HOTV sparsity prior. This will
expand the class of problems available to Bayesian learning. However, as mentioned
above, the HOTV problem is viewed in the analysis approach with T, = s
as in (8), and T, is not square and therefore not invertible. Hence SBL is not
immediately applicable. In Section 3, we demonstrate how to form an equivalent
synthesis operator for HOTV in order to reduce the problem to sparse signal
recovery, after which we can directly apply SBL. As a consequence, this approach
should yield the same benefits as SBL does for standard sparse signal recovery.
Our procedure involves a modification from [19] to make the analysis operators
full rank and therefore invertible. This ultimately enables us to then formulate a
Bayesian learning algorithm for inverse problems with a HOTYV sparsity prior in
Section 4.

3 Synthesis Operators for HOTV Regularization

In part because of its edge-preserving properties, HOTV regularization is a com-
mon technique for inverse problems in image processing, [1,22,23]. The corre-
sponding HOTV operator, Ty, € RN="XN iy (9), is a scaled finite difference
approximation of the mth gradient.! For example, when N = 6 we have

1-21 0 00 13 -31 00
01 -21 00

i I3=10 -1 3 =3 1 0f.
00 1 -210}" 0 0 -1 3 —31
00 0 1 =21

-11 0 0 O
0-11 0 O
Th=|0 0 -11 0
0 0 0 -11
0 0 0 0 -1

yTo =

— O O O QO

(10)

1 As mentioned, we only consider m < 3, which sufficiently captures the signal variation
in our examples. Higher order gradients may be more suitable in other applications, or when
resolution is insufficient, [23].
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Clearly Thx = s is sparse whenever the underlying signal x is piecewise constant,
since T is an exact transformation to the edge domain. High order gradients
are useful when it is assumed that the smooth regions of the signal are better
approximated by piecewise polynomials.

It has been demonstrated that SBL is more effective for sparse signal recovery
than many other algorithms, including ¢ regularization and many variants, [15,
17]. In the synthesis approach, problems with transform sparsity priors are es-
sentially reduced to sparse signal recovery. Hence, since SBL is more effective for
sparse signal recovery, it may be advantageous to use SBL whenever an analysis
approach can be replaced by a synthesis approach. In addition, Bayesian learning
is able to estimate a posterior distribution for the signal as opposed to a single
signal estimate, which can aid in uncertainty quantification. In what follows we
demonstrate this idea. Specifically, we employ SBL to estimate the HOTV spar-
sity representation of the signal and subsequently synthesize the piecewise smooth
signal of interest. A density estimate for both the sparse representation and the
signal of interest are obtained.

Since SBL is available only to problems formed via synthesis, we must first
find a corresponding synthesis operator for T),,. A problem quickly arises in devel-
oping a synthesis approach for HOTV, however. Notably, T}, is not invertible (or
square), so the required synthesis operator V' such that @ = Vs is not immediately
apparent. Hence as in [19], we “complete” Ty, which we will denote as T, by
adding rows in its null space. As in Appendix D of [19], rows corresponding to the
0 through (m — 1)th forward difference coefficients are added. For example, when
N =6 and m = 1,2,3 we have

1 0 0 0 00O 1 0 0 0 00 1 0 0 0 00O
-11 0 0 00 -11 0 0 00 -11 0 0 00
_ 0-11 0 00| = 1 =21 0 0 0| 4 1 -21 0 00
Ti=10 011 000'2=|0 1 21 00'B=|213-31 00
00 0-110 00 1-210 0 -13-310
0 0 0 0 -11 00 0 1 -21 0 0 -1 3 =31

(11)

Observe that Ty, € RV *YN has rank N and yields a new sparse representation
Tz =t= m : (12)

where r € R™ and s € RVY~™, thus ¢ € RY. Moreover, the matrix completion
is constructed in a sensible way since the points added to the sparse representa-
tion are simply a finite difference approximation to the derivative. For example,
if the previous stencil contained three points, such as the case corresponding to
T, to construct the completion matrix Ty the coefficients of two point centered
differencing are used in the second row. Since we can not approximate a deriva-
tive with one grid point, we simply use 1 in the first row. The process is similar
for generating general T, with each of the top m rows (except the first) hav-
ing values corresponding to the coefficients of the mth finite difference derivative
approximations.
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The synthesis operators for HOTV analysis operators in (11) are subsequently
defined by Vi, := T;;!. For example, for N = 6 and m = 1,2, 3 we have

100000 100000 100000
110000 110000 110000
111000 121000 121000

Vi= 111100 Ve = 132100 Ve = 133100/ (13)
111110 143210 146310
111111 154321 1510631

In general V,, is lower triangular. A general formula for V;,, for m > 2 in terms of
Vin_1is

.. mel[i;j] lf] <m
ol = {55 w0

The main result of [19] of use in this paper is Lemma 3.2, which asserts that
assuming there is sparsity in the latter N — m elements of the new sparse vector
(i.e. the original sparse representation), the ¢; regularized estimate using T, is
consistent with the original problem using T since the added rows are in the null
space of T. In particular, the following two estimates via analysis and synthesis
are shown to be equivalent:

*
:Ilgl

= argmin {|| Az — bl[3 + || Tl }
’ (15)
=Vn {argmtin{HAth — b3+ N[t[m +1: N]||1H ,

where t[m+1 : N] denotes the latter N —m elements of ¢. That is, in the synthesis
form the sparsity-encouraging ¢1 norm only regularizes with respect to the elements
of the original analysis operation. We use this equivalency in the next section to
inspire the use of V,, as a synthesis operator in a Bayesian learning procedure.
In addition, our approach does not require the sparsity in the remaining N — m
elements of the new sparse vector (as assumed in Lemma 3.2 in [19]), since the
data directly dictate which elements in the sparsity domain have non-zero value.

4 High Order Total Variation Bayesian Learning (HOTVBL)

The MAP estimate provided in (5) is typically aligned with the compressive sensing
approach for sparse signal recovery, and forms the basis for the approximation in
(9) when the signal is sparse in some transform domain. As noted previously, the
MAP estimate is not categorically representative of the posterior density. Because
of this limitation, a better approach is needed.

In Bayesian learning, instead of a fixed sparsity-inducing prior on ¢t = Th,x,
an empirical prior characterized by flexible parameters that must be estimated
from the data is used. In this investigation we focus on sparse Bayesian learning
(SBL), [27], which has also been used in Bayesian compressed sensing, [17]. It is
important to note that SBL is only available to problems formed via synthesis
or directly sparse problems. Indeed, this is what motivated our derivation of the
HOTYV synthesis operator in Section 3.
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Recall that we seek to employ SBL since in many cases it has been shown em-
pirically and theoretically to be superior in terms of accuracy to MAP estimates,
[11,15,29,30]. Theoretical analysis in [20] and [30] shows that SBL provides a
closer approximation to the o norm of the sparse signal than the ¢; norm. For
the noiseless case, it was shown in [29] that the global minimum of the effective
SBL cost function is achieved at a solution such that the posterior mean equals
the maximally sparse solution. Furthermore, local minima are achieved at sparse
solutions, regardless of noise. Empirically, [15] shows that SBL achieves superior
sparse signal recovery results compared to £1, reweighted £1, and reweighted /2
regularization (see [4,5,7], respectively). This is further supported by multi-run
testing in [17]. In addition, SBL provides a full posterior distribution and confi-
dence intervals versus a point estimate, and automatically estimates all parameters
from the given data.

Hence SBL will be used in an attempt to more accurately detect the sparse
HOTV (or approximate edge) representation by recovering the sparse signal t =
T« from noisy measurements

b=Ax+n=AV,t+n:= H,t+n, (16)

where n is distributed zero-mean Gaussian with unknown variance v2. The piece-
wise smooth signal is then recovered via synthesis by & = Vj,.t.

4.1 Sparse Bayesian Learning (SBL)

Below is a brief review of how SBL is formulated. More details can be found in [17,
27]. First we develop a parametrized prior on t. Because Gaussian noise is assumed
in (16), we define a conjugate zero-mean Gaussian prior on each element of ¢

N

p(tla) = [N (t:l0,a;t),

i=1

where a; is the precision or inverse variance. We then define a conjugate Gamma
prior over a

N
plala,b) = H I'(aila,b).

Finally, we marginalize over the hyperparameters a to obtain the overall prior on
t as

N S
p(tla,b) = H/O N(t:0, a7 MY (aila, b)da. (17)

Each integral being multiplied in (17) is distributed via the Student’s ¢-distribution,
which, for suitable a and b, is strongly peaked at t; = 0. Therefore this prior fa-
vors t; being zero, hence encouraging sparsity. We also impose a conjugate Gamma
prior I'(Ble,d) on 8 = % Only point estimates are needed for a and 3, so we
simply set a, b, ¢,d = 0 implying uniform hyperpriors on a logarithmic scale for a
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and f3, [27]. Because of the conjugate priors used above, the posterior distribution
for t can be solved for analytically as a multivariate Gaussian distribution

p(tlb.a,B) = N(t|p, X),
with mean and covariance matrix given by

n=BXH.b, (18)

¥ = (ﬁH,Z;Hm + A)_l , (19)

where A = diag(a), [2].
Marginalizing over t, the marginal log-likelihood for a and S is

logp(yla, B) = 10g/p(y|g,5)p(g|a)dg
(20)

= —% (Jlog27r + log |C| + th_ly) ,

with C = 87T+ H,, A" HZ,, [2]. Note that (20) cannot be maximized in closed
form. In [27], a maximum likelihood approximation is employed that uses the point
estimates for a and 8 to maximize (20), and is implemented via an ezpectation-
mazimization (EM) algorithm, [9]. In particular, the update for a to maximize
(20) is

W Yi
o' = 5 (21)
for each 4, with p; the ith posterior mean weight from (18) and v; = 1 — a; X
with ¥ from (19). For § the update is

B(HeW) _ M — ZZ Vi

[ — L 22
o~ Holl2 (22)

Appendix A of [27] gives details on the derivation of these terms. Observe that
a®") and %) are functions of p and X, and vise versa. The EM algorithm
iterates between (18) and (19), and (21) and (22) until a convergence criterion is
satisfied. Due to the properties of the EM algorithm, SBL is globally convergent,
i.e. each iteration is guaranteed to reduce the cost function, [29]. It has been
observed that most a; — oo, corresponding to a sparse result with many ¢; ~ 0.

Note that after the convergence criterion has been satisfied, the final u* and X*
are the mean and covariance matrix, respectively, of the Gaussian approximation
to the posterior density function for t = me7 not x. This density can perhaps be
useful for tasks typically accomplished by edge detection such as boundary identi-
fication, scale separation, or other downstream processes such as determining the
support of the signal, or which regions of the signal may need further investiga-
tion. While this approximate edge density may be of some use in and of itself, the
approximate Gaussian posterior density for the piecewise smooth signal of interest
x is defined by the statistics

E(z) = Vinu'",
Cov(z) = Vin XV, (23)
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Similar to the case of sparse signal recovery, Cov(x) can be used to develop con-
fidence intervals for the estimated values of x as will be shown in Section 5.

Note that each iteration of the described EM algorithm requires the inversion
of an N x N matrix to compute the covariance matrix X. This scales to O(N?)
operations — clearly inefficient for large N. Fast algorithms based on the cost func-
tion (20) have been developed, [11,28], and are used in our numerical experiments.
For signals of the size implemented in Section 5 (e.g., N = 128 and N = 250), we
observed no difference between HOTVBL and the minimization of (9) in terms of
runtime.

5 Numerical Results

We now perform a variety of tests comparing HOTV {1 estimates xj, given by
(15) and the HOTVBL procedure described in Section 4.1. In particular we use
xpr = E(x) from (23) as the point estimate associated with HOTVBL. The noise
level in the collected data is measured by signal-to-noise ratio defined

N 2
SNR =20 - logy, ( 2—1””2) . (24)

We compare the reconstructions using the relative error defined

RelErr(z") = 7”“’”;”;””2

) (25)
where £* is the recovered signal and x is the ground truth. This provides a total
error measure for each experiment. We also use the maximum error defined

MaxErr(z®) = argmax |z; — x| (26)
K3
to quantify the worst case pointwise error.

Test 1: Probability of success at a given sparsity level with underdetermined Gaus-
sian forward model and no noise. In this test, first a sparse signal t € R?®? with k
nonzero elements is generated with the height of the spikes drawn from a standard
Normal distribution. This signal is then transformed by Vi, in order to generate a
piecewise (m — 1) order polynomial € R?%° with k jumps or edges whose heights
are standard Normal distributed. This signal of interest is then obfuscated by a
matrix A € R59%250 where the entries of A have also been drawn from a standard
Normal distribution. No noise is added, such that the data is modeled exactly by
b= Ax = H,,t. The signal x is then reconstructed using HOTVBL with appro-
priate m. The above process represents one trial. A trial is considered a success
if MazErr(xj;) < 1073, For each k = 1,2,3,...,25, we ran 500 trials, with the
success probability determined as the number of successes divided by 500. This is
a standard test of sparse signal recovery methods, [15]. Figure 1 shows the results
for HOTVBL using m = 1,2, 3. Plots for the noise-free variant of (15), i.e. basis
pursuit [8], are omitted as there were no successes registered in any of the 500
trials for any k value. Note that this lack of success is likely due at least in part to
the inherent regularization parameter A = 1 used in basis pursuit, [3]. In addition,
the stringent success definition in terms of pointwise error likely ruled out many
reconstructions whose relative error would be acceptable.
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1 0-0-0-0Og=trg ‘ :

—&— HOTVBL with m=1
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T
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Fig. 1 Sparsity level versus probability of success.

Test 2: Denoising reconstruction of ideal signals with varying noise level. In this
test, we consider the classical denoising problem, which epitomizes the difficulty in
balancing fidelity, sparsity, and noise reduction. In denoising, A = I the identity,
meaning we collect a noisy signal b = x+n, and regularize by the HOTYV sparsity of
the signal to return a result more faithful to the unknown ground truth signal. We
compare the resulting reconstructions xj, from (15) and the proposed HOTVBL
procedure x5;. We test first on ideal signals, that is ground truth signals that
are exactly piecewise polynomial with only a single jump. In these cases, Ty is an
appropriate sparsifying transform. Since the ground truth in this case is known,
we can optimize the regularization parameter A in (15) to minimize the relative
error. We show this best-case scenario while noting that without oracle knowledge
of the signal, this optimal result may be difficult to obtain in real-world examples.

Figures 2, 3, and 4 show comparisons of x*¢; and xJ;, for denoising piecewise
constant, linear, and quadratic functions with one jump with SN R = 0 dB. Tables
1, 2, and 3, show the error statistics for SINR = 0 dB as well as other experiments
on the same signals at various lower noise levels SNR = 10, 20,30 dB. Bold in
these tables indicates the superior performance. There is a significant improvement
in accuracy both near edges and in smooth regions.

Finally, note the error bars in these plots and the significance they have with re-
spect to uncertainty quantification. In signal recovery, typically only a single signal
estimate is the final result. However, the data collected typically holds more infor-
mation. In HOTVBL a posterior density is estimated rather than a single point
estimate. This allows us to form error bars for the signal of interest as well as its
sparse representation. These error bars indicate the certainty of the estimate. They
represent the 99% confidence interval associated with the point estimate. These
intervals are computed from the diagonal elements of the covariance matrix (i.e.,
the variance at each point). In addition to potential utility in downstream process-
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Table 1 Comparison of relative and maximum errors with varying noise level for piecewise
constant function with m = 1.

SNR MazErr(xzy;) RelErr(zgp) MazErr(zy) RelErr(zy))

30dB  0.0004 0.0004 0.0226 0.0108
20 dB  0.0005 0.0005 0.0968 0.0208
10dB  0.0197 0.0189 0.1788 0.0639
0 dB 0.0563 0.0556 0.3580 0.1710

ing, one general observation these intervals yield is that uncertainty is typically
higher in edge regions than in smooth regions.

O true signal x O true signal
25 % noisy signal +  recovery via TVI1
1 recovery via TVBL
2 Ei
[
15 . 08
1 x i
06
0.5
X 0.4
x « X, "
0.5 X x XX x 02
Xx Xy B
4 e
0¢
1.5 1
2 -0.2
20 40 60 80 100 120 20 40 60 80 100 120

Fig. 2 Noisy, true, and recovered piecewise constant signals from noisy image data with
SNR=0 dB using m = 1.

O true signal . 1 O tue signal
15 % noisy signal . * « +  recovery via HOTVI1
; * 0.8 recovery via HOTVBL
% " 06

0.4

4
. .
0.2 t
+ %
+
T
.

02

-0.6

15 x xx X 08

20 40 60 80 100 120 20 40 60 80 100 120

Fig. 3 Noisy, true, and recovered piecewise linear signals from noisy image data with SNR=0
dB using m = 2.

Test 3: Fourier reconstruction of non-ideal function from noisy complexr Fourier
data. Complex data can also be used with HOTVBL. E.g., if the signal is real
and complex data with complex Gaussian noise is collected, then the model (16)
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Table 2 Comparison of relative and maximum errors with varying noise level for piecewise

linear function with m = 2.

SNR MazErr(xzy;) RelErr(zgp) MazErr(zy) RelErr(zy))
30dB 0.0059 0.0054 0.0693 0.0164
20dB  0.0094 0.0086 0.0993 0.0516
10dB 0.3863 0.0636 0.7247 0.1533
0dB 0.8681 0.2649 0.9273 0.3850

O true signal
* _ noisy signal

O true signal
+  recovery via HOTVI1
f recovery via HOTVBL

Fig. 4 Noisy, true, and recovered piecewise quadratic signals from noisy image data with
SNR=0 dB using m = 3.

Table 3 Comparison of relative and maximum errors with varying noise level for piecewise
quadratic function with m = 3.

SNR MazErr(xzy;) RelErr(zg) MazErr(zy) RelErr(zy)
30dB 0.0128 0.0050 0.0905 0.0227
20dB  0.0209 0.0142 0.2025 0.0630
10dB 0.1226 0.0583 0.7387 0.1801
0dB 1.2022 0.3286 1.1926 0.3688
simply needs to be modified to
Re Re(H Re(n
()] _ [Re(Hm)] , , [Re(n)] 2
Im(y) Im(H,) Im(n)

The problem of reconstructing piecewise smooth signals from spectral or Fourier
data, i.e. where A is the discrete Fourier transform, is a well-studied problem,
[12-14]. In this problem, discrete Fourier data is collected with SNR = 10 dB. The
Bayesian learning procedure operates exactly as in Section 4.1. Signals x5, and
x;, recovered using m = 2 and m = 3 are shown in Figure 5. In opposition to Test
2, the signal used here is piecewise smooth with no m value perfectly sparsifying
the signal. The values m = 2 and m = 3 were chosen because there are fewer
nonzero coefficients in the sparsity representation compared with using m = 1. In
particular, Tz had k = 52, Thx had k = 34, and Tsz had k = 39. The maximum
and relative errors for m = 1,2, 3 are given in Table 4.
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O true signal O true signal
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Fig. 5 Noisy, true, and recovered signals from Fourier data with SNR=10 dB on the left with
m = 2 and on the right with m = 3.

Table 4 Comparison of relative and maximum errors with varying m for piecewise smooth
function from Fourier data with SNR=10 dB.

m  MazErr(zy;) RelErr(zyg;) MazErr(zy) RelErr(zy)

1 0.5680 0.1262 0.4893 0.1329
2 0.4542 0.0904 0.5396 0.1491
3 0.5674 0.1250 0.5998 0.1670

6 Conclusion

This paper presented a Bayesian learning method for inverse problems with an
HOTYV sparsity prior, including the problem of piecewise smooth function recov-
ery. The standard analysis form HOTV-regularized problem was reformulated by
completing the rank of the HOTV analysis operator and inverting it to retrieve an
equivalent synthesis operator. This allowed the creation of a Bayesian learning al-
gorithm for piecewise smooth signal recovery that is typically only available for di-
rectly sparse problems. Our numerical experiments show that these methods show
promise because of their accuracy, the provision of a full posterior density estimate
including confidence intervals, and data-driven parameter estimation. HOTVBL
is in particular much better suited than the standard HOTV regularized problem
in low SNR environments.

Future investigations will include efforts to improve efficiency, perhaps by pre-
processing with prior information, which may help to mitigate the cost of im-
plementing HOTVBL for two-dimensional imaging problems. Another potential
application for HOTVBL is in effective shock tracking for numerical conservation
laws, where the number of grid points are typically much smaller than the number
of pixels in a two dimensional image. HOTVBL may potentially increase the ac-
curacy of the ¢; regularization techniques for solving conservation laws discussed
in [24,16] for solving numerical conservation laws. Another benefit in extending
the use of HOTVBL to conservation laws is that it will provide a full posterior
density estimate as well.
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