Refined enumeration of pattern-avoiding permutations

Sergi Elizalde

MSRI

Representation Theory Seminar Stanford University December 2004

Slides available at

http://www.mrsi.org/~elizalde

Overview

- Pattern avoidance
 - Definitions
 - Exact enumeration
 - Asymptotic enumeration
 - Simultaneous avoidance
 - Consecutive patterns
 - Generalized patterns
- Statistics on pattern-avoiding permutations
 - Equidistribution results of fixed points and excedances
 - Statistics on Dyck paths
 - Bijective proofs
 - Statistics and simultaneous avoidance
 - Statistics and generalized patterns

Definitions

$$\pi = \pi_1 \pi_2 \cdots \pi_n \in \mathcal{S}_n$$
, $\sigma \in \mathcal{S}_k$

 π contains σ if there exist $i_1 < \ldots < i_k$ s.t. $\pi_{i_1} \cdots \pi_{i_k}$ has type σ (i.e., $\pi_{i_a} < \pi_{i_b} \Longleftrightarrow \sigma_a < \sigma_b$).

Otherwise, we say that π avoids σ .

Example:

24<u>53</u>1 contains 13242351 avoids 132

$$S_n(\sigma) := \{ \pi \in S_n : \pi \text{ avoids } \sigma \}$$

Basic questions:

- What can we say about $|S_n(\sigma)|$? Exact formula? Asymptotic formula?
- For which σ_1 and σ_2 do we have $|S_n(\sigma_1)| = |S_n(\sigma_2)|$?

Patterns of length 3

By trivial bijections,

$$|\mathcal{S}_n(123)| = |\mathcal{S}_n(321)|$$

 $|\mathcal{S}_n(132)| = |\mathcal{S}_n(231)| = |\mathcal{S}_n(312)| = |\mathcal{S}_n(213)|$

Knuth '73.

$$|\mathcal{S}_n(123)| = |\mathcal{S}_n(132)| = C_n = \frac{1}{n+1} {2n \choose n}$$
(Catalan number)

Patterns of length 4

West '90, Stankova '94, '96.

Patterns $\sigma \in \mathcal{S}_4$ fall in three different classes:

- (a) $1234 \longrightarrow$ enumerated by I. Gessel
- (b) $1342 \longrightarrow$ enumerated by M. Bóna
- (c) 1324 \longrightarrow no formula known for $|S_n(1324)|$

Bóna '97. For n > 7,

$$|S_n(1342)| < |S_n(1234)| < |S_n(1324)|$$

Bóna '97.

$$\sum_{n\geq 0} |\mathcal{S}_n(1342)|z^n = \frac{32z}{1 + 20z - 8z^2 - (1 - 8z)^{3/2}}$$

Proof: bijection between *indecomposable* 1324-avoiding permutations and a certain kind of labelled trees.

Patterns of arbitrary length

Gessel '90.

$$\sum_{n>0} \frac{|\mathcal{S}_n(123\cdots k)|}{n!^2} z^{2n} = \det(I_{|r-s|}(2z))_{r,s=1,\dots,k-1}$$

where $I_j(2z) = \sum_{n\geq 0} \frac{z^{2n+j}}{n!(n-j)!}$ are Bessel functions of imaginary argument.

Babson, West, Backelin, Xin '01. For all r, t, n,

$$|S_n(123 \cdots ra_{r+1}a_{r+2} \cdots a_{r+t})|$$

= $|S_n(r \cdots 321a_{r+1}a_{r+2} \cdots a_{r+t})|$

Asymptotic enumeration

Regev '81.

$$|S_n(123\cdots k)| \sim c \frac{(k-1)^{2n}}{n^{\frac{k^2-2k}{2}}}$$

Stanley-Wilf Conjecture '90.

For every pattern σ , there exists λ s.t.

$$|\mathcal{S}_n(\sigma)| < \lambda^n$$

for all n.

Proved very recently by **Marcus** and **Tardos**. Idea of the proof:

- Generalize avoidance to 0-1 matrices
- For a 0-1 permutation matrix P, let $f(n,P) := \max \# \text{ of 1's in an } n \times n \text{ 0-1 matrix}$ avoiding P
- Main result: f(n,P) = O(n) if P permutation matrix
- The theorem follows from a result of Klazar

Simultaneous avoidance

Defn:

$$S_n(\sigma_1,\ldots,\sigma_m) = \bigcap_{i=1}^m S_n(\sigma_i)$$

Simion, Schmidt '85. Formula for $|S_n(\Sigma)|$ for every $\Sigma \subseteq S_3$. Examples:

$$|\mathcal{S}_n(123, 132)| = 2^{n-1}$$

 $|\mathcal{S}_n(132, 321)| = \binom{n}{2} + 1$
 $|\mathcal{S}_n(123, 132, 213)| = F_{n+1}$ (Fibonacci number)
 $|\mathcal{S}_n(123, 132, 231)| = n$

West '96. Formulas for $|S_n(\sigma_1, \sigma_2)|$ where $\sigma_1 \in S_3$, $\sigma_2 \in S_4$. Examples: $|S_n(123, 3241)| = 3 \cdot 2^{n-1} - \binom{n+1}{2} - 1$ $|S_n(123, 3214)| = F_{2n}$

Proof uses generating trees.

Gire '93, Kremer '00, West '96.

 $|\mathcal{S}_n(\sigma_1, \sigma_2)| = r_{n-1}$ (large Schröder number) for several pairs $\sigma_1, \sigma_2 \in \mathcal{S}_4$

Consecutive patterns

Defn:

 π contains the consecutive pattern σ if $\exists i$ s.t. $\pi_{i+1} \cdots \pi_{i+k}$ has type σ .

Example:

13524 contains 231

23541 avoids 231

 $c_{\sigma}(\pi) := \#$ occurrences of σ in π

$$P_{\sigma}(u,z) := \sum_{n\geq 0} \sum_{\pi\in\mathcal{S}_n} u^{c_{\sigma}(\pi)} \frac{z^n}{n!}$$

E., Noy '00.

a)

$$\sigma = 12 \cdots (m+2)$$

 $P_{\sigma}(u,z) = \frac{1}{\omega(u,z)}$, where ω is the solution of $\omega^{(m+1)} + (1-u)(\omega^{(m)} + \omega^{(m-1)} + \ldots + \omega' + \omega) = 0$ $\omega(0) = 1$, $\omega'(0) = -1$, $\omega^{(k)}(0) = 0$, $2 \le k \le m$.

b)
$$\sigma = 12 \cdots (a-1)a \qquad (a+1)$$
 any perm. of $\{a+2,a+3,\ldots,m+2\}$

 $P_{\sigma}(u,z) = \frac{1}{\xi(u,z)}$, where ξ is the solution of

$$\xi^{(a+1)} + (1-u)\frac{z^{m-a+1}}{(m-a+1)!}\xi' = 0$$

$$\xi(0) = 1, \ \xi'(0) = -1, \ \xi^{(k)}(0) = 0, \ 2 \le k \le a.$$

Proof uses representations of permutations as

increasing binary trees.

Generalized patterns

(Babson, Steingrímsson '00)

Dashes between some letters of σ .

If no dash, elements have to be adjacent in π .

Example:

3542716 contains 12-4-3, but it avoids 12-43.

They generalize both classical patterns and consecutive patterns.

Claesson '01.

$$|\mathcal{S}_{n}(1-23)| = |\mathcal{S}_{n}(1-32)| = B_{n}$$
 (Bell number)
 $|\mathcal{S}_{n}(2-13)| = C_{n}$
 $|\mathcal{S}_{n}(1-23,12-3)| = B_{n}^{*}$ (Bessel number)
 $|\mathcal{S}_{n}(1-23,1-32)| = I_{n}$ (involutions in \mathcal{S}_{n})
 $|\mathcal{S}_{n}(1-23,13-2)| = M_{n}$ (Motzkin number)

Permutation statistics

```
\pi_i is a fixed point of \pi if \pi_i = i
fp(\pi) := number of fixed points of \pi
\pi_i is an excedance of \pi if \pi_i > i
exc(\pi) := number of excedances of \pi
\pi_i is a descent of \pi if \pi_i > \pi_{i+1}
           (otw. \pi_i is a rise)
des(\pi) := number of descents of \pi
lis(\pi) := length of longest increasing subseq. of \pi
Ids(\pi) := length of longest decreasing subseq. of \pi
Ex: if \pi = 4.2.17.5.36, then
fp(\pi) = 2, exc(\pi) = 2, des(\pi) = 4,
lis(\pi) = 3, lds(\pi) = 3
```

Robertson, Saracino, Zeilberger '02.

For any k, n,

$$|\{\pi \in S_n(321) : fp(\pi) = k\}|$$

= $|\{\pi \in S_n(132) : fp(\pi) = k\}|$

Their proof is not bijective.

Questions:

- Is there a simple bijective proof?
- Can this theorem be generalized, considering other statistics in permutations?

We will see a bijective proof.

Idea: bijections between restricted permutations and Dyck paths.

Dyck paths and Motzkin paths

Start and end at the x-axis; never go below it.

Dyck path: steps u = (1, 1) and d = (1, -1).

 $\mathcal{D}_n := \text{set of Dyck paths of length } 2n$ $|\mathcal{D}_n| = C_n$

Motzkin path: steps u = (1, 1), d = (1, -1) and h = (1, 0).

 $\mathcal{M}_n := \text{set of Motzkin paths of length } n$ $|\mathcal{M}_n| = M_n$ For a Dyck path D, define:

peak: ud (up-step followed by down-step)

hill: peak at height 1

tunnel: horizontal segment between two lattice points of D that stays always below D (D has n tunnels, one for each step u)

centered tunnel: x-coordinate of midpoint is at the middle of D

right tunnel: x-coordinate of midpoint is in the right half of D

A simple bijective proof of

$$|\{\pi \in S_n(321) : fp(\pi) = k\}|$$

= $|\{\pi \in S_n(132) : fp(\pi) = k\}|$

Composition of bijections:

$$\mathcal{S}_n(132) \overset{arphi_{\mathsf{Krat}}}{\longleftrightarrow} \mathcal{D}_n \overset{\Phi_{\mathsf{ED}}}{\longleftrightarrow} \mathcal{D}_n \overset{\psi}{\longleftrightarrow} S_n(321)$$

fixed \longleftrightarrow centered \longleftrightarrow hills \longleftrightarrow fixed points

$$\varphi_{\mathsf{Krat}}: \mathcal{S}_n(132) \longrightarrow \mathcal{D}_n$$
 (Krattenthaler '01)

Example: $\pi = 67435281 \in S_8(132)$

Fixed points <--> centered tunnels

Excedances <--> right tunnels

$$\psi: \mathcal{S}_n(321) \longrightarrow \mathcal{D}_n$$

Example: $\pi = 23147586 \in S_8(321)$

Fixed points <--->

hills (= peaks of height 1)

$$\Phi_{\mathsf{FD}}:\mathcal{D}_n\longrightarrow\mathcal{D}_n$$
 (Deutsch, E. '03)

- 1. Each u in D has a matching d (together they determine a tunnel).
- 2. Read the steps of D in zigzag: 1, 2n, 2, 2n 1, ...
- 3. For each step, if its corresponding matching step has not yet been read, draw an up-step in $\Phi_{\text{ED}}(D)$. Otherwise, draw a down-step.

 Φ_{FD} maps centered tunnels to hills.

More generally:

Deutsch, E. '03. Let

$$\alpha_r(\pi) := |\{i : \pi_i = i + r\}|$$

$$\beta_r(\pi) := |\{i : i > r, \pi_i = i\}|$$

Then, for any k, r, n,

$$|\{\pi \in \mathcal{S}_n(132) : \alpha_r(\pi) = k\}|$$

= $|\{\pi \in \mathcal{S}_n(321) : \beta_r(\pi) = k\}|$

Proof uses a generalization of Φ_{ED} .

Another application of the bijection

Deutsch, E. '03.

$$1 + \sum_{n \ge 1} \sum_{\pi \in S_n(132)} x^{\mathsf{fp}(\pi)} q^{\mathsf{exc}(\pi)} p^{\mathsf{des}(\pi) + 1} z^n$$

$$= \frac{2(1 + xz(p-1))}{1 + (1 + q - 2x)z - qz^2(p-1)^2 + \sqrt{\spadesuit}}$$

where

Proof:

$$\mathcal{S}_n(132) \stackrel{arphi_{\mathsf{Krat}}}{\longleftrightarrow} \mathcal{D}_n \stackrel{oldsymbol{\Phi}_{\mathsf{ED}}}{\longleftrightarrow} \mathcal{D}_n$$
 fixed centered tunnels \leftrightarrow hills excedances \leftrightarrow right tunnels \leftrightarrow up-steps descents+1 \leftrightarrow peaks \leftrightarrow "certain statistic" easier to enumerate

Generalization to excedances

E. '02.

For any k, l, n,

$$|\{\pi \in S_n(321) : fp(\pi) = k, exc(\pi) = l\}|$$

= $|\{\pi \in S_n(132) : fp(\pi) = k, exc(\pi) = l\}|$

$$\sum_{n\geq 1} \sum_{\pi \in \mathcal{S}_n(321)} x^{\mathsf{fp}(\pi)} q^{\mathsf{exc}(\pi)} z^n = \sum_{n\geq 1} \sum_{\pi \in \mathcal{S}_n(132)} x^{\mathsf{fp}(\pi)} q^{\mathsf{exc}(\pi)} z^n$$

$$= \frac{2}{1 + (1 + q - 2x)z + \sqrt{1 - 2(1 + q)z + (1 - q)^2 z^2}}$$

Original proof is analytical and uses nonstandard techniques in generating functions.

We will see a bijective proof.

$$|\{\pi \in \mathcal{S}_n \text{ bijestive (#)} \supseteq f_k \text{ bijestive (#)} \text{ of } \\ = |\{\pi \in \mathcal{S}_n(132) : \text{ fp}(\pi) = k, \, \text{exc}(\pi) = l\}|$$

Composition of bijections:

$$\mathcal{S}_n(132) \stackrel{arphi_{\mathsf{krat}}}{\longrightarrow} \mathcal{D}_n \stackrel{arphi_{\mathsf{RSK}}}{\longleftarrow} S_n(321)$$
fixed \longleftrightarrow centered \longleftrightarrow fixed points
excedances \longleftrightarrow right \longleftrightarrow excedances

$$\Psi_{\mathsf{RSK}}: \mathcal{S}_n(321) \longrightarrow \mathcal{D}_n$$

Step 1: RSK correspondence

$$\pi \mapsto (P,Q)$$

Example: $\pi = 23514687$

Example:
$$n = 29914001$$

$$(P,Q)\mapsto oldsymbol{\Psi}_{\scriptscriptstyle{\mathsf{RSK}}}(\pi)$$

 $\Psi_{\mbox{\tiny RSK}}$ maps fixed points to centered tunnels:

$$\left. \begin{array}{c} \pi \text{ 321-avoiding} \\ \pi_i = i \end{array} \right\} \Rightarrow \pi = \underbrace{\cdots}_{< i} i \underbrace{\cdots}_{> i}$$

Then, both P and Q have shape

and i produces a centered tunnel.

It can also be checked that $\Psi_{\mbox{\tiny RSK}}$ maps excedances to right tunnels.

Statistics and simultaneous avoidance

$$F_{\sigma_1,\sigma_2} := \sum_{n \ge 0} \sum_{\pi \in \mathcal{S}_n(\sigma_1,\sigma_2)} x^{\mathsf{fp}(\pi)} q^{\mathsf{exc}(\pi)} z^n$$

(define $F_{\sigma_1,\sigma_2,\sigma_3}$ similarly)

E. '03. Explicit expressions for F_{σ_1,σ_2} and $F_{\sigma_1,\sigma_2,\sigma_3}$, for any $\sigma_1, \sigma_2, \sigma_3 \in S_3$.

Examples:

$$F_{132,231} = \frac{1 - z - qz^2 + xqz^3}{(1 - xz)(1 - z - 2qz^2)}$$

 $F_{132,213} =$

$$\frac{1 - (1+q)z - 2qz^2 + 4q(1+q)z^3 - (xq^2 + xq + 5q^2)z^4 + 2xq^2z^5}{(1-z)(1-xz)(1-qz)(1-4qz^2)}$$

$$F_{123,132,213} = \frac{1+xz+(x^2-q)z^2+(-xq+q^2+q)z^3-x^2qz^4}{(1+qz^2)(1-3qz^2+q^2z^4)}$$

Idea of the proof: bijections between pattern-avoiding permutations and Dyck paths with certain restrictions, so that fp and exc correspond to statistics that are easier to enumerate.

Statistics and generalized patterns

E., Mansour '03.

Bijection between $S_n(1-3-2, 1-23)$ and \mathcal{M}_n .

 $\widehat{\mathcal{D}}_n := \{ D \in \mathcal{D}_n \text{ with no } uuu \text{ (3 consec. up-steps)} \}$

$$\theta_{\mathsf{EM}}:\widehat{\mathcal{D}}_n\longrightarrow \mathcal{M}_n$$

$$uud \to u$$

$$ud \to h$$

$$d \to d$$

From the bijection,

E., Mansour '03.

$$\sum_{n\geq 0} \sum_{\pi\in\mathcal{S}_n(132,1-23, 12\cdots(k+1))} v^{\operatorname{Ids}(\pi)} y^{\#\{\operatorname{rises of } \pi\}} z^n$$

$$= \frac{U_{k-1}\left(\frac{1-vz}{2z\sqrt{vy}}\right)}{z\sqrt{vy}\,U_k\left(\frac{1-vz}{2z\sqrt{vy}}\right)}$$

where $U_m(\cos t) = \frac{\sin(m+1)t}{\sin t}$ (Chebyshev polynomials of the second kind).

Open questions

- Are there other statistics in restricted permutations having the same distribution for different patterns?
- Find distribution of statistics in permutations avoiding longer patterns (e.g., of length 4).
- Find $|S_n(\sigma)|$ for other patterns (e.g. $\sigma = 1324$).
- How nice is $|S_n(\sigma)|$?

 Conj. (Noonan, Zeilberger '96): For all σ , $|S_n(\sigma)|$ is a P-recursive function of n.

• In the proof of the Stanley-Wilf conjecture $(|S_n(\sigma)| < \lambda^n)$, the constant λ is very big.

Conj. (Arratia): If $\sigma \in \mathcal{S}_k$, $|\mathcal{S}_n(\sigma)| < (k-1)^{2n}$.

• Find $L(\sigma) = \lim_{n \to \infty} \sqrt[n]{|\mathcal{S}_n(\sigma)|}$. Known:

$$L(\sigma) = 4 \text{ if } \sigma \in S_3$$

 $L(12 \cdots k) = (k-1)^2$
 $L(1342) = 8$

Bóna: $\hat{L}(12453) = (1 + \sqrt{8})^2$