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— Consecutive patterns

— Generalized patterns

e Statistics on pattern-avoiding permutations

— Equidistribution results of fixed points and
excedances

— Statistics on Dyck paths
— Bijective proofs
— Statistics and simultaneous avoidance

— Statistics and generalized patterns



Definitions
T=Tmo - Tn €Sn, 00 €S

m contains o if there exist 11 < ... <1 S.t.

mi, -, has type o (i.e., m, <, <= 04 < 7).

Otherwise, we say that « avoids o.

Example:
24531 contains 132
42351 avoids 132

Sn(o) :={m € Sy : m avoids o}

Basic questions:

e What can we say about |S,(0)|? Exact for-
mula? Asymptotic formula?

e For which o1 and o, do we have |Sp(o1)| =
|Sn(02)]7?



Patterns of length 3

By trivial bijections,

[Sn(123)] = [Sn(321)

1SR (132)| = |Sp(231)| = |Sn(312)] = |Snp(213)]

Knuth '73.

. . L L 2n
|Sn(123)| = |Sn(132)]| = Cp= n—+1 (n)

(Catalan number)



Patterns of length 4

West '90, Stankova ‘94, '96.

Patterns o € &4 fall in three different classes:
(a) 1234 —— enumerated by I. Gessel

(b) 1342 —— enumerated by M. Béna

(c) 1324 —— no formula known for |S,(1324)|

Bona '97. Forn > 7,

S, (1342)| < |Sn(1234)] < |Sp(1324)]

Bona '97.
32z
Sp(1342)[2" =
n2>30| n{ ) 14202 — 822 — (1 — 82)3/2

bijection between indecomposable 1324-
avoiding permutations and a certain kind of la-
belled trees.



Patterns of arbitrary length

Gessel '90.

Sp(123--- k)
Z | - nl2 |22n — det([\r—s|(22))7“,321,...,]{:—1
n>0 .

2n—+y
where I;(2z) = >,>0 nf(n—j_;), are Bessel functions

of imaginary argument.

Babson, West, Backelin, Xin '01. Forall r,t,n,

= |Sp(r---321a, 10,00 apiy)]



Asymptotic enumeration

Regev ’'81.

(k—1)%n

k2 _2F
n 2

1Sp(123 - k)| ~ ¢

Stanley-Wilf Conjecture '90.
For every pattern o, there exists A s.t.

1Sn(a)] < A"
for all n.
Proved very recently by Marcus and Tardos.
Idea of the

e (GGeneralize avoidance to 0-1 matrices

e For a O-1 permutation matrix P, let
f(n,P) ;= max # of 1'sin an nxn 0-1 matrix
avoiding P

e Main result: f(n,P) = O(n) if P permutation
matrix

e | he theorem follows from a result of Klazar



Simultaneous avoidance

m
Sn(o1,...,0m) = ﬂ Sn(o;)
1=1

Simion, Schmidt '85. Formula for |S, ()| for
every > C §3. Examples:

Sn(123,132)| =2n—1

Sp(132,321)| = (’g) +1

Sn(123,132,213)| = F,41 (Fibonacci number)
Sn(123,132,231)| =n

West '96. Formulas for |Sp(o1,02)| where o1 €
S3, 00 € S4. Examples:

Sp(123,3241)] =3-2n~1 — ("F1) —1
Sp(123,3214)| = Fo,

Proof uses generating trees.

Gire '93, Kremer '00, West '96.

|Sn(o1,00) =711 (large Schroder number)
for several pairs o1,00 € Sy



Consecutive patterns

7w contains the consecutive pattern o if 4 ¢ s.t.
Ti41 " T4k has type o.

Example:
13524 contains 231
23541 avoids 231

co(m) := # occurrences of o in 7

Pr(u,z) 1= > Y uCU(W)%

n>0 eSS,



E., Noy '00.

a)
c=12---(m+ 2)

1

. where w is the solution of
w(u, z)

P;(u,z) =

w(m+1)—|—(1—u)(w(m)—I—w(m_l)—l—. AW +w) =0
w(0) =1, &'(0) = -1, w*(0) =0, 2<k <m.

b)
c=12.---(a—1)a (a+1)
any perm. of {a—|—2,a—|—l3,...,m—|—2}
1 . :
P;(u,z) = , where £ is the solution of
§(u, 2)
—a+1
(a+1) 4 (1 _ 2 _
3 + ( u>(m—a—|—1)!£

£0)=1, ¢0)=-1,¢H(0)=0,2<k<a.

uses representations of permutations as
increasing binary trees.



Generalized patterns
(Babson, Steingrimsson '00)

Dashes between some letters of o.

If no dash, elements have to be adjacent in .
Example:

3542716 contains 12-4-3, but it avoids 12-43.

They generalize both classical patterns and con-
secutive patterns.

Claesson '01.

Sn(1-23)| = |8n(1-32)| = By (Bell number)
Sn(2-13)| = Cn

Sn(1-23,12-3)| = B} (Bessel number)
Sp(1-23,1-32)| = I, (involutions in Sy)
Sn(1-23,13-2)| = My (Motzkin number)




Permutation statistics

m; IS a fixed point of « if m; =1
fp(m) := number of fixed points of =

m; IS an excedance of w if nw; >
exc(m) := number of excedances of =«

m; IS @ descent of w if m; > m; 44
(otw. m; is a rise)

des(w) := number of descents of «
lis(w) := length of longest increasing subseq. of =
lds(7) := length of longest decreasing subseq. of 7

Ex: if m=4.2-17-5-36, then
fp(m) = 2, exc(w) = 2, des(w) = 4,
lis(w) = 3, Ids(w) =3



Robertson, Saracino, Zeilberger '02.
For any k,n,

{m € Sn(321) : fp(w) = k}|
= |{w € Sp(132) : fp(wr) = k}|

Their proof is not bijective.

e IS there a simple bijective proof?

e Can this theorem be generalized, considering
other statistics in permutations?

We will see a .
Idea: bijections between restricted permutations
and Dyck paths.



Dyck paths and Motzkin paths
Start and end at the z-axis; never go below it.

Dyck path: steps v = (1,1) and d = (1,-1).

/

D,, .= set of Dyck paths of length 2n
|Dn| = Cn

Motzkin path: stepsu=(1,1), d = (1,—1) and
h = (1,0).

My, = set of Motzkin paths of length n
(Mn| = Mp



For a Dyck path D, define:
peak: ud (up-step followed by down-step)
hill: peak at height 1

tunnel: horizontal segment between two lattice
points of D that stays always below D
(D has n tunnels, one for each step u)

centered tunnel: z-coordinate of midpoint is at
the middle of D

right tunnel: z-coordinate of midpoint is in the
right half of D




A simple bijective of
[{m € Sn(321) : fp(m) = k}|
= [{m € Sp(132) : fp(7w) = k}|

Composition of bijections:

PKrat Pep (0
Sn(132) — Dy «—— Dp <—>Sn(321)

fixed centered . fixed
— hills <

points 7 tunnels points



Orerar - Sn(132) — Dy (Krattenthaler '01)

Example: # = 67435281 € Sg(132)

Fixed points <——> centered tunnels




W Sp(321) — Dy,

Example: # = 23147586 € Sg(321)

Fixed points <——>

hills (= peaks of height 1)




: Dy — Dp, (Deutsch, E. '03)

1. Each v in D has a matching d (together they
determine a tunnel).

2. Read the steps of D in zigzag:
1,2n,2,2n—1,...

3. For each step, if its corresponding matching
step has not yet been read, draw an up-step
in (D). Otherwise, draw a down-step.

maps centered tunnels to hills.



More generally:

Deutsch, E. '03. Let
ar(m) = |{i:m =i+ r}

Br(m) = {i:i>rm =1}

Then, for any k,r, n,

{m € Sn(132) : ar(rw) = k}
= |{mw € Sp(321) : Br(w) = k}

uses a generalization of



Another application of the bijection

Deutsch, E. '03.

1+ Z Z xfp(w)qexc(w)pdes(w)—l—lzn
n>17eS,(132)
_ 214+ zz(p—1))
1+ (14+qg—2x)z—qz?(p—1)°+ V&

where
O=1-21+¢z+[(1-¢)2—2¢(p—1)(p+ 3)]z?
—2(14+q¢)(p—1)22° 4+ ¢*(p — 1)*2*

Proof:
PKrat Pep
fixed centered :
: — — hills
points tunnels
right even
excedances —> JIIN
tunnels up-steps
“certain
easigr to

enumerate



Generalization to excedances

E. '02.
For any k,[,n,

{m € Sp(321) : fp(wr) =k, exc(w) =1}
= {w € Sp(132) : fp(w) =k, exc(rw) =1}

Z Z :Cfp(w)qexc(ﬂ)zn — Z Z xfp(w)qexc(w)zn

n>1resS,(321) n>1r1eS,(132)

2
14+ (A +g-22)z+V1-20 + @)z + (1 - )%

Original proof is analytical and uses nonstandard tech-
nigues in generating functions.

We will see a



{m € 8,bliective P2l i(Exc@FI=03) of
= |{mr € 85,(132) : fp(x) =k, exc(w) = 1}

Composition of bijections:

SOKrat WRSK
Sp(132) — Dy — Sp(321)
fixed centered fixed
. <—> < .
points tunnels points
excedances — right — excedances

tunnels



Wyt Sp(321) — Dy,

RSK correspondence

m— (P,Q)

Example: m = 23514687

[2]3] 12]3]5] 1[3]5] 1/3]4] 1/3]4]6] 1|3[4]6]8] 3[4[6]7]
2] 2[5 2 2[5 5
_11]13|4|6|7 _ 11,23 7
P= 5758 Q= 4T5(s




(P,Q) — WV . (m)

_[1]3]4]6]7
p= [1]3]4 /M
_[1]2]3]6]7
0= 121 N




U maps fixed points to centered tunnels:

RSK

T, — 1

7w 321-avoiding } o

Then, both P and Q have shape

i > <i >

and 2 produces a centered tunnel.

It can also be checked that W __
tunnels.

K

maps excedances to right



Statistics and simultaneous avoidance

E, . = Z Z xfp(w)qexc(w)zn

n>0 eS8, (01,02)

(define F,, ., ., similarly)

E. '03. Explicit expressions for F,, ,, and Fy . ., for any
o1,02,03 € S3.

Examples:

1 — 2z — qz° + zq23
(1 —22)(1 — 2z —2gz2)

Fi30031=

Fi32213=

1 —(1+q)z—2¢2° +49(1 + q)2° — (2¢° + zq + 5¢°)2* + 22¢°2°
(1 —-2)(1 —22)(1 —q2)(1 — 4q2?)

— ltzz4(2’—@)2’+(—zq+q°+q)z°—2%¢z"
F123,132.215 = (Tha=) (1307 +72")

Idea of the . bijections between pattern-avoiding per-
mutations and Dyck paths with certain restrictions, so that
fp and exc correspond to statistics that are easier to enu-
merate.



Statistics and generalized patterns

E., Mansour '03.
Bijection between S,(1-3-2,1-23) and M,,.

D, 1= {D € D, with no uuu (3 consec. up-steps)}

ngrat QEM
S.(1-3-2,123) — Dp — My

steps u
lds ~ and h
lis —> height+41
rises — steps u
HEM @\n — Mn
N N
N\ /Té\/\ AN AN _N/\
AN L1 | AN VA4

uud — u
ud — h
d — d



From the bijection,

E., Mansour '03.

Z Z Ulds(w)y#{rises of ﬂ}zn

n>0 7es,(132,1-23,

12--(k+1))
Ui (355)
z/vy Uy, (212_\/1%)
sin(m—+1)t

where Up,(cost) = ==
(Chebyshev polynomials of the second kind).



Are there other statistics in restricted permutations
having the same distribution for different patterns?

Find distribution of statistics in permutations avoiding
longer patterns (e.g., of length 4).

Find |S,(0)| for other patterns (e.g. o = 1324).

How nice is |S,(0)|?

Conj. (Noonan, Zeilberger '96): For all o, |S,(o)| is a
P-recursive function of n.



e In the proof of the Stanley-Wilf conjecture (|S,(0)| <
A"), the constant )\ is very big.

Conj. (Arratia): If o € Sk, |Su(0)] < (k — 1)2".

e Find L(O') = liMy - \n/ ‘871(0-)‘

Known:
L(oc)=4if c € S3
L(12---k) = (k—1)2
L(1342) =38
Bona: L(12453) = (1 4+ v/8)?



