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Paths crossing a line
Pairs of paths crossing each other

Proof ideas

Overview

We consider the enumeration of lattice paths with two kinds of
steps, with respect to some statistics:

The number of crossings, which has been studied since the 60s
in connection to random walks. In the special case of zero
crossings, one can count tuples of noncrossing paths using the
Lindström–Gessel–Viennot determinant.

The number of descents (valleys) and the major index, which
were introduced by MacMahon over 100 years ago, and studied
by many authors (e.g. yesterday’s talk by Terry Visentin).

In this talk we will see that combining these statistics one gets
surprisingly simple formulas.
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I. Paths crossing a line

Sergi Elizalde Lattice paths by crossings and major index



Paths crossing a line
Pairs of paths crossing each other

Proof ideas

Definitions
Results

Lattice paths, descents and major index

Let Ga,b be the set of lattice paths in Z2 with a steps U = (1, 1)
and b steps D = (1,−1), starting at the origin.

Paths P ∈ Ga,b can be encoded as binary words via U 7→ 0, D 7→ 1.

Definition
A descent of P is a valley DU, let des(P) = # descents.

The major index, maj(P), is the sum of the x-coordinates of
the descents.

P ∈ G8,6

1 3

7
10

des(P) = 4 maj(P) = 1 + 3 + 7 + 10 = 21
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Lattice paths and major index

q-binomial coefficients:[
n
k

]
q

=
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q)

Lemma (MacMahon) ∑
P∈Ga,b

qmaj(P) =

[
a + b
a

]
q

Example

∑
P∈G3,2

qmaj(P) =

[
5
3

]
q

= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6.
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Refinement by the number of descents

Lemma (Fürlinger–Hofbauer ’85)∑
P∈Ga,b

tdes(P)qmaj(P) =
∑
n≥0

tnqn
2
[
a
n

]
q

[
b
n

]
q

.

Example

∑
P∈G3,2

tdes(P)qmaj(P) = 1+tq+2tq2+2tq3+(t+t2)q4+t2q5+t2q6.
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Crossing a line

In addition to the statistics des and maj, we will keep track of
the number of times that the paths cross a horizontal line.

For ` ∈ Z and r ≥ 0, let G≥r ,`a,b be the set of paths in Ga,b that cross
the line y = ` at least r times.

y = 1

P ∈ G≥3,1
8,6

In particular, G≥0,`
a,b = Ga,b. We are interested in the polynomials

G≥r ,`a,b (t, q) =
∑

P∈G≥r,`
a,b

tdes(P)qmaj(P).

For this talk, we focus on the specialization G≥r ,`a,b (q) := G≥r ,`a,b (1, q).
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Crossing the x-axis

First consider the case ` = 0, which counts crossings of the x-axis.

Theorem
For any a, b, r ≥ 0,

G≥r ,0a,b (q) =



q(r+1
2 )

[
a + b

a + r

]
q

if a > b,

(1 + qa)q(r+1
2 )

[
2a− 1
a + r

]
q

if a = b,

q(r
2)

[
a + b

a− r

]
q

if a < b.

We give a bijective proof.
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Connections to other work

The specialization t = q = 1 (which ignores des and maj)
is due to Engelberg ’65 and Sen ’65, and has later been
rediscovered by other authors.

The proofs for t = q = 1 use repeated applications of the
reflection principle, which does not behave well with respect to
des or maj.

The case t = 1 and a > b can be shown to be equivalent to a
result of Seo–Yee ’18 about counting ballot paths with marked
returns by a different statistic. Their proof is by induction and
does not give a bijection.

The theorem has applications to the enumeration of partitions
λ with certain restrictions on the ranks λi − λ′i , studied by
Corteel–E.–Savage ’22+.
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Crossing an arbitrary horizontal line

Theorem

Let a, b,m ≥ 0, and let ` ∈ Z \ {0}. If 0 < ` < a− b, then

G≥2m+1,`
a,b (q) = G≥2m,`

a,b (q) = qm(2m+1+`)

[
a+ b
a+ 2m

]
q

.

If 0 > ` > a− b, then

G≥2m+1,`
a,b (q) = G≥2m,`

a,b (q) = qm(2m−1−`)
[
a+ b
a− 2m

]
q

.

If 0 > ` < a− b and m ≥ 1, then

G≥2m,`
a,b (q) = G≥2m−1,`

a,b (q) = qm(2m−1−`)
[

a+ b
a+ 2m − 1− `

]
q

.

If 0 < ` > a− b and m ≥ 1, then

G≥2m,`
a,b (q) = G≥2m−1,`

a,b (q) = q(m−1)(2m−1+`)

[
a+ b

a− 2m + 1− `

]
q

.

If 0 < ` = a− b, then

G≥2m,`
a,b (q) = qm(2m+1+`)

[
a+ b
a+ 2m

]
q

, G≥2m+1,`
a,b (q) = qm(2m+1+`)

[
a+ b

a+ 2m + 1

]
q

.

If 0 > ` = a− b, then

G≥2m,`
a,b (q) = qm(2m−1−`)

[
a+ b
a− 2m

]
q

, G≥2m+1,`
a,b (q) = q(m+1)(2m+1−`)

[
a+ b

a− 2m − 1

]
q

.
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Paths with north and east steps

For A,B ∈ Z2, let PA→B be the set of lattice paths from A to B
with steps N = (0, 1) and E = (1, 0).

A descent of P ∈ PA→B is a corner EN, des(P) = # descents,
maj(P) is the sum of the positions of the descents, determined by
numbering the vertices of P starting from 0.

des(P) = 2
maj(P) = 2 + 7 = 9

2

7

A = (x , y)

B = (u, v)

MacMahon’s formula gives∑
P∈PA→B

qmaj(P) =

[
u − x + v − y

u − x

]
q

.

Sergi Elizalde Lattice paths by crossings and major index



Paths crossing a line
Pairs of paths crossing each other

Proof ideas

Definitions
Results

Paths with north and east steps

For A,B ∈ Z2, let PA→B be the set of lattice paths from A to B
with steps N = (0, 1) and E = (1, 0).

A descent of P ∈ PA→B is a corner EN, des(P) = # descents,

maj(P) is the sum of the positions of the descents, determined by
numbering the vertices of P starting from 0.

des(P) = 2

maj(P) = 2 + 7 = 9

2

7

A = (x , y)

B = (u, v)

MacMahon’s formula gives∑
P∈PA→B

qmaj(P) =

[
u − x + v − y

u − x

]
q

.

Sergi Elizalde Lattice paths by crossings and major index



Paths crossing a line
Pairs of paths crossing each other

Proof ideas

Definitions
Results

Paths with north and east steps

For A,B ∈ Z2, let PA→B be the set of lattice paths from A to B
with steps N = (0, 1) and E = (1, 0).

A descent of P ∈ PA→B is a corner EN, des(P) = # descents,
maj(P) is the sum of the positions of the descents, determined by
numbering the vertices of P starting from 0.

des(P) = 2
maj(P) = 2 + 7 = 9

2

7

A = (x , y)

B = (u, v)

MacMahon’s formula gives∑
P∈PA→B

qmaj(P) =

[
u − x + v − y

u − x

]
q

.

Sergi Elizalde Lattice paths by crossings and major index



Paths crossing a line
Pairs of paths crossing each other

Proof ideas

Definitions
Results

Paths with north and east steps

For A,B ∈ Z2, let PA→B be the set of lattice paths from A to B
with steps N = (0, 1) and E = (1, 0).

A descent of P ∈ PA→B is a corner EN, des(P) = # descents,
maj(P) is the sum of the positions of the descents, determined by
numbering the vertices of P starting from 0.

des(P) = 2
maj(P) = 2 + 7 = 9

2

7

A = (x , y)

B = (u, v)

MacMahon’s formula gives∑
P∈PA→B

qmaj(P) =

[
u − x + v − y

u − x

]
q

.

Sergi Elizalde Lattice paths by crossings and major index



Paths crossing a line
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Proof ideas

Definitions
Results

Crossings of two paths

A crossing of two paths P and Q is a common vertex C such that:
P and Q disagree in the step arriving at C ;
at the first step after C where P and Q disagree, each path has
the same type of step (N or E ) as it had when arriving at C .

C
C

crossings not a crossing

P≥rA1→B◦,A2→B•
= {(P,Q) :P ∈ PA1→B◦ ,Q ∈ PA2→B• ,

P and Q have ≥ r crossings}.
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Paths crossing a line
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Proof ideas

Definitions
Results

Crossings of two paths

A pair in P≥3
A1→B2,A2→B1

:

In addition to des and maj, we
will keep track of the number of
times that the paths cross each
other.

For r ≥ 0, define the polynomials

A1
A2

B1

B2

H≥rA1→B◦,A2→B•
(t, q) =

∑
(P,Q)∈P≥r

A1→B◦,A2→B•

tdes(P)+des(Q)qmaj(P)+maj(Q)

and their specialization H≥rA1→B◦,A2→B•
(q) := H≥rA1→B◦,A2→B•

(1, q).
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Paths crossing a line
Pairs of paths crossing each other

Proof ideas

Definitions
Results

Easy cases and notation

Let A1 = (x1, y1), A2 = (x2, y2), B1 = (u1, v1), B2 = (u2, v2).

For r = 0, we can choose the two paths independently, so

H≥0
A1→B◦,A2→B•

(q) =

[
u◦ − x1 + v◦ − y1

u◦ − x1

]
q

[
u• − x2 + v• − y2

u• − x2

]
q

.

To give a general formula, first define

fr ,A1,A2,B2,B1(q) := qr(r+x2−x1)

[
u2 − x1 + v2 − y1

u2 − x1 + r

]
q

[
u1 − x2 + v1 − y2

u1 − x2 − r

]
q

.

Write A1 ≺ A2 to mean that A1 is strictly northwest of A2.
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Paths crossing a line
Pairs of paths crossing each other

Proof ideas

Definitions
Results

Counting pairs of paths by crossings

Theorem

Let A1 = (x1, y1), A2 = (x2, y2), B1 = (u1, v1), B2 = (u2, v2), where
A1 ≺ A2 and B1 ≺ B2, and x1 + y1 = x2 + y2.

Then, for all m ≥ 0,

H≥2m+1
A1→B2,A2→B1

(q) = H≥2m
A1→B2,A2→B1

(q) = f2m,A1,A2,B2,B1(q),

A1
A2

B1

B2

and for all m ≥ 1,

H≥2m
A1→B1,A2→B2

(q) = H≥2m−1
A1→B1,A2→B2

(q) = f2m−1,A1,A2,B2,B1(q).

Now let A = (x , y) and B = (u, v). Then, for all r ≥ 0,

H≥rA→B1,A→B2
(q) = fr ,A,A,B2,B1(q),

H≥rA1→B,A2→B(q) = fr ,A1,A2,B,B(q),

H≥rA→B,A→B(q) =

{
f0,A,A,B,B(q) if r = 0,
2
∑

j≥1(−1)j−1fr+j,A,A,B,B(q) if r ≥ 1.
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Paths crossing a line
Pairs of paths crossing each other

Proof ideas

Definitions
Results

Counting pairs of paths by crossings

With the specialization t = q = 1 (which ignores des and maj), the
theorem still holds without the requirement x1 + y1 = x2 + y2.

This case can be proved by repeatedly swapping prefixes of the
paths, similarly to the proof of the Lindström–Gessel–Viennot
(LGV) determinantal formula for non-intersecting paths.

However, this method does not prove the refinement by des or maj,
so we need different tools.

For the refinement by maj, we give bijections that have simple
descriptions in terms of paths.

For the further refinement by des, our proof is inspired by
Krattenthaler’s ’95 refinements of the LGV determinant by des and
maj. It is still bijective but relies on certain two-rowed arrays.
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III. Some bijections used in the proofs
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The bijections τ̄ and σ̄
The bijection θr for pairs of paths
The bijections τ and σ for paths crossing a line

The bijections τ̄ and σ̄

Partition PA→B = PE
A→B ∪ PN

A→B according to the last step of the
path. Let v = (1,−1).

Define a bijection
τ̄ : PE

A→B → PN
A+v→B

by placing the NE corners of τ̄(P) at the coordinates of the EN
corners of P :

P
τ̄(P)

A
A + v

B

If A = (x , y) and B = (u, v), one can show that

maj(τ̄(P)) = maj(P) + u − x − 1.
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A
A− v

B

If A = (x , y) and B = (u, v), then
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A bijection for pairs of paths

Given (P,Q) ∈ P≥rA1→B◦,A2→B•
, let C be the r th crossing from the

right. Suppose that P arrives to C with an N, and Q with an E .

Splitting the paths at C , write P = PLPR and Q = QLQR . Let

P ′ = σ̄(PL)QR ∈ PA1−v→B• and Q ′ = τ̄(QL)PR ∈ PA2+v→B◦ .

P
Q

C
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A2

B1

B2

PL

QL P ′

Q ′

C

A1 − v

A2 + v

B1

B2
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A bijection for pairs of paths

P
Q

C

A1
A2

B1

B2

θ2

P ′

Q ′

C

A1 − v

A2 + v

B1

B2

With the right setup, this map (P,Q) 7→ (P ′,Q ′) is a bijection,
which we denote by θr .

If A1 = (x1, y1) and A2 = (x2, y2), one can show that

maj(P ′) + maj(Q ′) = maj(P) + maj(Q)− (x2 − x1 + 1).
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Composing bijections

To prove our theorem about pairs of paths, we use compositions
such as θ1 ◦ θ2 ◦ · · · ◦ θr , which decreases maj by r(r + x2 − x1).

P
Q

C2

C1

A1
A2

B1

B2

θ2

P ′

Q ′

C2

C1

A1 − v

A2 + v

B1

B2

θ1

P ′′

Q ′′

C1

A1 − 2v

A2 + 2v

B1

B2

In this example, we have a bijection

θ1 ◦ θ2 : P≥2
A1→B2,A2→B1

→ P≥0
A1−2v→B2,A2+2v→B1

.
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Composing bijections

The bijection

θ1 ◦ θ2 : P≥2
A1→B2,A2→B1

→ P≥0
A1−2v→B2,A2+2v→B1

decreases maj by 2(2 + x2 − x1).

The pairs of paths in the image are easy to enumerate.

In this case,
with the assumption A1 ≺ A2 and B1 ≺ B2, we obtain

H≥2
A1→B2,A2→B1

(q) = q2(2+x2−x1)

[
u2 − x1 + v2 − y1

u2 − x1 + 2

]
q

[
u1 − x2 + v1 − y2

u1 − x2 − 2

]
q

.

As another application of these bijections, they can be used to give
a simpler proof (directly in terms of paths) of Krattenthaler’s
refinement by maj of the Lindström–Gessel–Viennot determinantal
formula for tuples of non-intersecting paths.
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Bijections for paths crossing a horizontal line

For the problem of a single path crossing a horizontal line, we
define similar bijections τ and σ. These apply to paths with U and
D steps ending on the x-axis, and they fix the right endpoint.

τ reflects the valleys along the x-axis: σ reflects the peaks:

P

τ(P) P σ(P)

maj(τ(P)) = maj(P), maj(σ(P)) = maj(P) + #U −#D − 1
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Composing bijections

To prove the theorems about paths crossing a line,

first we shift the path vertically so that the crossed line is the x-axis,
then we repeatedly apply σ and τ to certain prefixes:

y = 1

P ∈ G≥2,1
8,6

C2

C1

y = 0

P ∈ G≥2,1
8,6

C2

C1

apply τ to the prefix up to C2

apply σ to the prefix up to C1∈ G10,4

In this case, we get a bijection G≥2,`
a,b → Ga+2,b−2 that decreases

maj by `+ 3. The paths in the image are easy to count.
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Refinement by the number of descents

Our theorems have refinements that also keep track of des (i.e., the
number of DU or EN corners).

Here are some sample formulas:

If 0 < ` < a− b, then

G≥2m,`
a,b (t, q) =

∑
n

tnqn
2+m(m+`+1)

[
a

n −m

]
q

[
b

n + m

]
q

.

If A1 ≺ A2, B1 ≺ B2, and x1 + y1 = x2 + y2, then, for all m ≥ 0,

H≥2m
A1→B2,A2→B1

(t, q)

= q2m(2m+x2−x1) ·

(∑
n

tnqn(n+2m)

[
u2 − x1

n

]
q

[
v2 − y1
n + 2m

]
q

)

·

(∑
k

tnqn(n−2m)

[
u1 − x2

n

]
q

[
v1 − y2
n − 2m

]
q

)
.
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Refinement by the number of descents

Unfortunately, our bijections τ̄ , σ̄, σ do not behave well with
respect to the number of descents.

Instead, to prove these refinements, we use different bijections that
rely on Krattenthaler’s two-rowed arrays.

THANK YOU

References:

S.E., Counting lattice paths by crossings and major index I: the
corner-flipping bijections, arXiv:2106.09878.

S.E., Counting lattice paths by crossings and major index II: tracking
descents via two-rowed arrays, arXiv:2112.05696
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