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Classical patterns

Definition. An occurrence of a permutation σ as a pattern in a
permutation τ is a subsequence of τ whose letters are in the same
relative order as those in σ.

Examples.
I 231 occurs in twice in 416325: 416325 and 416325.

I An inversion in τ is an occurrence of 21, e.g. 1423.

Big research area in the last three decades.

Knuth (1975): For any permutation σ ∈ S3, the number of
permutations in Sn avoiding σ is Cn.

Open: find a formula for the number permutations avoiding 1324.

This is NOT the definition that we will focus on.
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Consecutive patterns

Definition. An occurrence of a consecutive pattern σ in a permutation
τ is a subsequence of adjacent letters of τ in the same relative order
as those in σ.

When not specified, patterns will be consecutive patterns in this talk.

Examples.
I 123 occurs twice in 7245136: 7245136 and 7245136.
I 416325 avoids 231.
I A descent in τ is an occurrence of 21, e.g. 4132 and 4132.
I A peak is an occurrence of 132 or 231, e.g. 13425.
I A permutation is alternating (up-down or down-up) iff it avoids

123 and 321.

Consecutive patterns arise naturally in dynamical systems, and play
a role in distinguishing deterministic from random sequences.
Work in the area by Aldred, Amigó, Atkinson, Bandt, Baxter, Bernini, Bóna, Dotsenko, Duane,
Dwyer, Ehrenborg, Ferrari, Keller, Kennel, Khoroshkin, Kitaev, Liese, Liu, Mansour,
McCaughan, Mendes, Nakamura, Noy, Perarnau, Perry, Pompe, Pudwell, Rawlings, Remmel,
Sagan, Shapiro, Steingrímsson, Warlimont, Willenbring, Zeilberger . . .
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A sample of known results on consecutive patterns

For a fixed pattern σ, let

Pσ(u, z) =
∑
n≥0

∑
π∈Sn

u#{occurrences of σ in π} zn

n!
,

Pσ(0, z) =
∑
n≥0

αn(σ)
zn

n!
,

where αn(σ) = #{π ∈ Sn : π avoids σ}.

1. Exact enumeration: Formulas for Pσ(u, z) are known for some σ.

Examples:

P132(u, z) =

(
1−

∫ z

0
e(u−1)t2/2 dt

)−1

P1234(0, z) =
2

cos z − sin z + e−z

Also for σ monotone; σ non-overlapping with σ1 = 1; σ = 1324; etc.
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A sample of known results on consecutive patterns

2. Classification according to consecutive Wilf-equivalence: Let

σ ∼ τ if Pσ(0, z) = Pτ (0, z),
σ

s∼ τ if Pσ(u, z) = Pτ (u, z).

Example: 1342 s∼ 1432.

Equivalence classes known only for patterns of length up to 6.

Conjecture [Nakamura ’11]: σ ∼ τ iff σ s∼ τ .

3. Asymptotic enumeration:

Theorem [E. ’06] For every σ, limn→∞

(
αn(σ)

n!

)1/n
exists.

Theorem [E. ’13] For every σ ∈ Sm there exists n0 such that

αn(123 . . . (m − 2)m(m − 1)) ≤ αn(σ) ≤ αn(12 . . .m)

for all n ≥ n0.
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Pattern posets

Order permutations by pattern containment:
σ ≤ τ if σ occurs as a pattern in τ .

132

142314323142 4132

1542341523 5142341532

516423

Classical patterns

132

14323142

1542341532

516423

Consecutive patterns

The consecutive pattern poset is more manageable:
I Every permutation covers at most two others.
I The Möbius function is known [Bernini–Ferrari–Steingrímsson,

Sagan–Willenbring ’11], unlike in the clasical case.

Sergi Elizalde The Structure of the Consecutive Pattern Poset



Pattern posets

Order permutations by pattern containment:
σ ≤ τ if σ occurs as a pattern in τ .

132

142314323142 4132

1542341523 5142341532

516423

Classical patterns

132

14323142

1542341532

516423

Consecutive patterns

The consecutive pattern poset is more manageable:
I Every permutation covers at most two others.
I The Möbius function is known [Bernini–Ferrari–Steingrímsson,

Sagan–Willenbring ’11], unlike in the clasical case.
Sergi Elizalde The Structure of the Consecutive Pattern Poset



Pattern posets

I In the consecutive pattern poset, when σ occurs just once in τ ,
[σ, τ ] is a product of two chains [BFS11].

123

4123 2341

54123 52341 34512

465123 652341 634512

5762341 7634512

68734512

No analogue for classical pattern poset.
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Main questions

Unless otherwise specified: consecutive pattern poset.

321

3214 1432

2154332154

321654

1. Which open intervals are disconnected?
2. Which intervals are shellable?
3. Which intervals are rank-unimodal?
4. Which intervals are (strongly) Sperner?
5. Which intervals have Möbius function equal to 0?
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1. Which open intervals are disconnected?

Definition. For σ < τ , we say that σ straddles τ if σ is both a prefix
and suffix of τ and has no other occurrences in τ .

321

3214765

3214 1432

32145 12543

213654321465

Theorem
For σ < τ with |τ | − |σ| ≥ 3, the open interval (σ, τ) is disconnected if
and only if σ straddles τ .
In this case, (σ, τ) consists of two disjoint chains.
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2. Which intervals are shellable?

Some combinatorial topology...

Poset P −→ Simplicial complex ∆(P)

To each interval [p,q] we associate an order complex ∆(p,q), whose
faces are the chains in (p,q).

Example.

a b

c d

e f

p

q

p

q

d b

a f

e c

1 2
3 4

Definition. A pure d-dimensional complex is shellable if its facets can
be ordered F1,F2, . . . ,Fn such that, for all 2 ≤ i ≤ n,

Fi ∩ (F1 ∪ F2 ∪ · · · ∪ Fi−1)
is pure and (d − 1)-dimensional.
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is pure and (d − 1)-dimensional.
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Shellability

Non-shellable example:

1

2

3
4

Why we care about shellability:

I Shellable⇒ contractible, or homotopic to a wedge of spheres in
the top dimension.

I Combinatorial tools for showing shellability of ∆(P):
EL-shellability, CL-shellability, etc.
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Disconnected and non-shellable

Easy non-shellable example: If (σ, τ) disconnected with |τ | − |σ| ≥ 3,
then ∆(σ, τ) is not shellable.

321

3214 1432

2154332154

321654

We call this a non-trivial disconnected interval.

If [σ, τ ] contains a non-trivial disconnected subinterval, then [σ, τ ] is
not shellable.
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2. Which intervals are shellable?

If [σ, τ ] contains a non-trivial disconnected subinterval, then [σ, τ ] is
not shellable.

What about intervals without disconnected subintervals?

Theorem
The interval [σ, τ ] is shellable if and only if it contains no non-trivial
disconnected subintervals.

Theorem
Fix σ, and let τ ∈ Sn be uniformly random. Then

lim
n→∞

(Probability that [σ, τ ] is shellable) = 0.
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3. Which intervals are rank-unimodal?

12

123 213 132

2134 1243 1324

21354 12435

213546

Theorem
Every interval [σ, τ ] is rank-unimodal.

Idea of proof.
I Top part is grid-like.
I Use explicit injection for all other ranks.

Conjecture [McNamara–Steingrímsson ’15]
Every interval [σ, τ ] in the classical pattern poset is rank-unimodal.
(True for intervals of rank ≤ 8.)
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4. Which intervals are (strongly) Sperner?

Definition. A poset P is Sperner if the largest rank size equals the
size of the largest antichain.

Example.

Not Sperner:Not Sperner:Not Sperner:
but 2-Sperner:

Definition. A poset P is k -Sperner if the sum of the sizes of the k
largest ranks equals the size of the largest union of k antichains.
P is strongly Sperner if is it k -Sperner for all k .

Theorem
Every interval [σ, τ ] is strongly Sperner.

The proof uses a result of Griggs, plus the injections from our
rank-unimodality proof.
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5. Which intervals have Möbius function equal to 0?

Interior i(τ): the permutation pattern obtained by deleting first and
last element of τ .

Exterior x(τ): the longest proper prefix that is also a suffix (as a
pattern).

Examples.
τ = 21435, i(τ) = 132, x(τ) = 213
τ = 123456 (monotone), x(τ) = 12345
τ = 18765432, x(τ) = 1

Theorem [BFS, SW ’11]. For σ ≤ τ ,

µ(σ, τ) =


µ(σ, x(τ)) if |τ | − |σ| > 2 and σ ≤ x(τ) 6≤ i(τ),
1 if |τ | − |σ| = 2, τ is not monotone,

and σ ∈ {i(τ), x(τ)},
(−1)|τ |−|σ| if |τ | − |σ| < 2,
0 otherwise.
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5. Which intervals have Möbius function equal to 0?

Theorem
Fix σ, and let τ ∈ Sn wtih τ ≥ σ be uniformly random. Then

lim
n→∞

(Probability that µ(σ, τ) = 0) = 1.

Crucial role played by x(τ).
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Length of the exterior

Number of permutations τ ∈ Sn with |x(τ)| = k :
n\k 1 2 3 4 5 6 7 8 9

2 2
3 4 2
4 12 10 2
5 48 58 12 2
6 280 306 118 14 2
7 1864 2186 822 150 16 2
8 14840 17034 6580 1660 186 18 2
9 132276 154162 58854 15118 2222 226 20 2

10 1323504 1532574 588898 150388 30238 2904 270 22 2

Easy: Main diagonal values are 2.

Lemma: Next diagonal values are 2n + 2 (for n ≥ 4).

Theorem

e − 1 ≤ lim
n→∞

En(|x(τ)|) ≤ e.
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Length of the exterior
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Open problems: exterior
n\k 1 2 3 4 5 6 7 8 9

2 2
3 4 2
4 12 10 2
5 48 58 12 2
6 280 306 118 14 2
7 1864 2186 822 150 16 2
8 14840 17034 6580 1660 186 18 2
9 132276 154162 58854 15118 2222 226 20 2

10 1323504 1532574 588898 150388 30238 2904 270 22 2

1. Find a formula for the remaining entries in the table.

2. Known: first column is divisible by 4. Is the second column ≡ 2 mod 4?

3. Find lim
n→∞

Pn(|x(τ)| = k) for each k . (We know limit exists.)

Bóna ’11: 0.3640981 ≤ lim
n→∞

Pn(|x(τ)| = 1) ≤ 0.3640993.

4. Find the exact value of lim
n→∞

En(|x(τ)|).
Steingrímsson: It seems to be ≈ 1.9127.

5. Find the number of τ ∈ Sn such that x(τ) ≤ i(τ).
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Open problems: pattern posets

Consecutive case:
6. Characterize those intervals [σ, τ ] that are lattices.
7. Find an easy classification of intervals that contain no non-trivial

disconnected subinterval (and are thus shellable).

Classical case:
8. Wilf ’02: What’s the Möbius function µ(σ, τ)?

So far known only in very specific cases.
9. Prove the rank-unimodality conjecture.

10. Can anything be said about when σ occurs just once in τ?
11. Understand non-shellable intervals without non-trivial

disconnected subintervals. e.g. [123,3416725].

Thanks!
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