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Vaccination and Herd Immunity

I Direct vs. indirect protection from disease
I Direct: vaccinated individuals have immunity against disease
I Indirect: susceptible individuals are sheltered by the immunity

of others

I Elimination of smallpox & eradication of polio, measles, etc.

I As vaccination compliance increases, unvaccinated members
are less motivated to vaccinate



Goals for Study

In this study, we utilize a heterogeneous population of two
subgroups.

We model vaccine compliance amidst recurring epidemics to
explore the effect of minority opinion on population vaccination
rates.

Finally, we impose lattice-like neighborhoods to visualize the
spread of the biological and social contagions
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Assumptions

1. Well-mixed

2. Population remains constant

3. Vaccine grants perfect immunity

4. Individuals do not alter their vaccination strategy in the midst
of an epidemic



Game Setup

Let a denote the proportion of the population that belongs to G1.

There are three potential outcomes to this game:

Figure 1: Vaccination Game Flow Chart



Expected Payoffs

Expected Payoffs:

E(Vi) = −rvi
E(NV) = −πp × rs + (1− πp)× 0

where πp is the probability of infection.



Nash Equilibria

To find the Nash Equilibria1 for this game, we set

E(V) = E(NV)

rvi = −πp × rs
ri = 1− e−R0R(∞), where ri =

rv
rs

R(∞) = − log(1− ri)
R0

x∗i = 1 +
log(1− ri)
R0 × ri

The optimal strategy for each subgroup depends on their perceived
risk ratio, ri.

1Fu, Rosenbloom, Wang, Nowak 2011
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Initial Conditions

I rs = 1 (both groups)

I rv1 = 1/100

I rv2 = 1/20

I We vary a to observe how the size of the minority group
affects our population.



SIR Model

Kermack-McKendrick Epidemic Model2

dS

dt
= −βSI + µ(1− V )− µS

dI

dt
= βSI − γI − µI

dR

dt
= γI + µV − µR

Parameters: β, γ, µ

2Kermack, McKendrick 1927



Vaccination Dynamics

The state of the epidemic affects the change in the vaccination
compliance:

dV1
dt

= V1(1− V1)(−r1 + I)

dV2
dt

= V2(1− V2)(−r2 + I)



Results

Figure 2: Vaccination compliance at varying levels of a.



Results

a iter = 1 iter = 100

0.9 0.9439 0.8715
0.8 0.9436 0.8000
0.7 0.9434 0.7000
0.6 0.9431 0.6826
0.5 0.9428 0.6826

Table 1: Vaccination rates at varying levels of a



Transition to Stochastic Model

I Stochastic models incorporate an element of randomness
typical of biological processes

I Gillespie Algorithm (Stochastic Simulation Algorithm)3 4

1. Initialization
2. Time Component

3. Event Component

4. Iterate and Repeat

3Martinez-Urreaga, Mira, Gonzalez-Fernandez 2003
4Regoes, Schafroth



Stochastic Model

Figure 3: Stochastic SIR Model



Cellular Automaton & Neighborhood Dynamics

I Consider our “well-mixed” assumption from earlier

I We use the lattice structure of cellular automaton to simulate
an individuals’ interactions with neighbors

I Neighbors transmit infections and serve as role models in the
vaccination game

Figure 4: Types of 2-dimensional neighborhoods



Cellular Automaton & Neighborhood Dynamics

I Cyclic model has two stages:
1. Vaccination Decision

I Individuals evaluate the payoffs of their neighbors and
“switch” to that strategy with probability 5

1− 1

1 + e−k(fn−fm)

2. Epidemic

I SIR Demonstration

5Fu, Rosenbloom, Wang, Nowak 2011



Cellular Automaton & Neighborhood Dynamics

Figure 5: Vaccine Adherence with a = 0.9



Cellular Automaton & Neighborhood Dynamics

Figure 6: Vaccine Adherence with a = 0.7



Regionalization

I Before, we assumed that members of G1 and G2 were
scattered randomly through the population

I Now, we look at a model where the groups are kept separate



Regionalization

Figure 7: Regional Vaccine Compliance at a = 0.9



Regionalization

Figure 8: Regional Vaccine Compliance at a = 0.7



Results and Discussion

I Comparison of deterministic and stochastic CA models
I Effects of minority opinion

I G2 are less likely to vaccinate, causes G1 to compensate on
their behalf (deterministic)

I G2 are more likely to attempt free-riding, act as “bad
influences” for G1 neighbors

I When we separate G2 from the majority, vaccination rates for
G1 increased significantly

I Ideas for further research
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