Minority Opinion and the Vaccination Game

Olivia Conway

2017 REU Program Dartmouth College

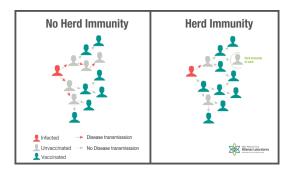
August 3, 2017

Outline

- Background
- Vaccine Game
- Deterministic Model
- Stochastic Model
- Cellular Automaton and Network Dynamics
- Results and Discussion

Vaccination and Herd Immunity

- Direct vs. indirect protection from disease
 - Direct: vaccinated individuals have immunity against disease
 - Indirect: susceptible individuals are sheltered by the immunity of others
- ► Elimination of smallpox & eradication of polio, measles, etc.
- As vaccination compliance increases, unvaccinated members are less motivated to vaccinate



Goals for Study

In this study, we utilize a heterogeneous population of two subgroups.

Goals for Study

In this study, we utilize a heterogeneous population of two subgroups.

We model vaccine compliance amidst recurring epidemics to explore the effect of minority opinion on population vaccination rates.

Goals for Study

In this study, we utilize a heterogeneous population of two subgroups.

We model vaccine compliance amidst recurring epidemics to explore the effect of minority opinion on population vaccination rates.

Finally, we impose lattice-like neighborhoods to visualize the spread of the biological and social contagions

Assumptions

- 1. Well-mixed
- 2. Population remains constant
- 3. Vaccine grants perfect immunity
- 4. Individuals do not alter their vaccination strategy in the midst of an epidemic

Game Setup

Let a denote the proportion of the population that belongs to G_1 .

There are three potential outcomes to this game:

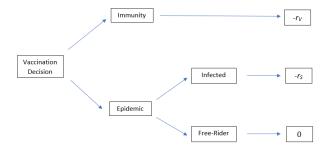


Figure 1: Vaccination Game Flow Chart

Expected Payoffs

Expected Payoffs:

$$E(V_i) = -r_{vi}$$

$$E(NV) = -\pi_p \times r_s + (1 - \pi_p) \times 0$$

where π_p is the probability of infection.

To find the Nash Equilibria for this game, we set

$$E(V) = E(NV)$$

¹Fu, Rosenbloom, Wang, Nowak 2011

To find the Nash Equilibria for this game, we set

$$E(V) = E(NV)$$

$$r_{vi} = -\pi_p \times r_s$$

¹Fu, Rosenbloom, Wang, Nowak 2011

To find the Nash Equilibria for this game, we set

$$E(V) = E(NV)$$

$$r_{vi} = -\pi_p \times r_s$$

$$r_i = 1 - e^{-R_0 R(\infty)}, \text{ where } r_i = \frac{r_v}{r_s}$$

$$R(\infty) = -\frac{\log(1 - r_i)}{R_0}$$

¹Fu, Rosenbloom, Wang, Nowak 2011

To find the Nash Equilibria for this game, we set

$$E(V) = E(NV)$$

$$r_{vi} = -\pi_p \times r_s$$

$$r_i = 1 - e^{-R_0 R(\infty)}, \text{ where } r_i = \frac{r_v}{r_s}$$

$$R(\infty) = -\frac{\log(1 - r_i)}{R_0}$$

$$x^*_i = 1 + \frac{\log(1 - r_i)}{R_0 \times r_i}$$

The optimal strategy for each subgroup depends on their perceived risk ratio, r_i .

¹Fu, Rosenbloom, Wang, Nowak 2011

Initial Conditions

- $ightharpoonup r_s = 1$ (both groups)
- $r_{v1} = 1/100$
- $r_{v2} = 1/20$
- ▶ We vary *a* to observe how the size of the minority group affects our population.

SIR Model

Kermack-McKendrick Epidemic Model²

$$\begin{array}{ll} \frac{dS}{dt} & = & -\beta SI + \mu(1-V) - \mu S \\ \frac{dI}{dt} & = & \beta SI - \gamma I - \mu I \\ \frac{dR}{dt} & = & \gamma I + \mu V - \mu R \end{array}$$

Parameters: β , γ , μ

²Kermack, McKendrick 1927

Vaccination Dynamics

The state of the epidemic affects the change in the vaccination compliance:

$$\frac{dV_1}{dt} = V_1(1 - V_1)(-r_1 + I)$$

$$\frac{dV_2}{dt} = V_2(1 - V_2)(-r_2 + I)$$

Results

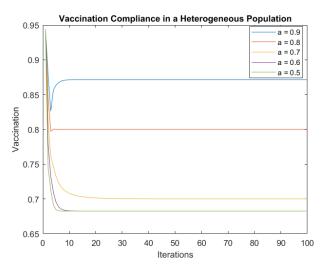


Figure 2: Vaccination compliance at varying levels of a.

Results

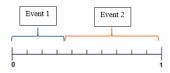
а	iter = 1	iter = 100
0.9	0.9439	0.8715
0.8	0.9436	0.8000
0.7	0.9434	0.7000
0.6	0.9431	0.6826
0.5	0.9428	0.6826

Table 1: Vaccination rates at varying levels of a

Transition to Stochastic Model

- Stochastic models incorporate an element of randomness typical of biological processes
- ► Gillespie Algorithm (Stochastic Simulation Algorithm)^{3 4}
 - 1. Initialization
 - 2. Time Component

3. Event Component



4. Iterate and Repeat

⁴Regoes, Schafroth

³Martinez-Urreaga, Mira, Gonzalez-Fernandez 2003

Stochastic Model

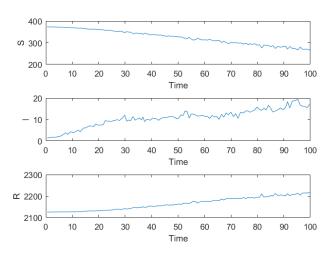


Figure 3: Stochastic SIR Model

- Consider our "well-mixed" assumption from earlier
- ▶ We use the lattice structure of cellular automaton to simulate an individuals' interactions with neighbors
- Neighbors transmit infections and serve as role models in the vaccination game

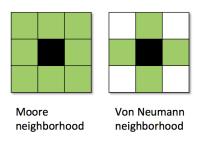


Figure 4: Types of 2-dimensional neighborhoods

- Cyclic model has two stages:
 - 1. Vaccination Decision
 - Individuals evaluate the payoffs of their neighbors and "switch" to that strategy with probability 5

$$1 - \frac{1}{1 + e^{-k(f_n - f_m)}}$$

- 2. Epidemic
- SIR Demonstration

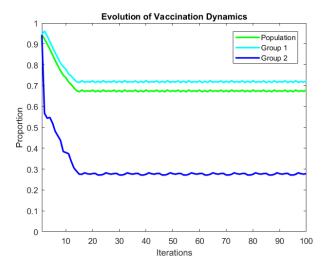


Figure 5: Vaccine Adherence with a = 0.9

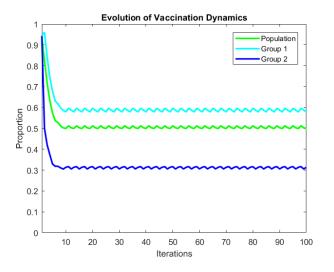
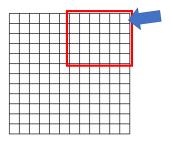


Figure 6: Vaccine Adherence with a = 0.7

Regionalization

- ▶ Before, we assumed that members of G_1 and G_2 were scattered randomly through the population
- ▶ Now, we look at a model where the groups are kept separate



Regionalization

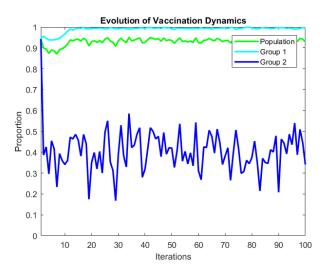


Figure 7: Regional Vaccine Compliance at a=0.9

Regionalization

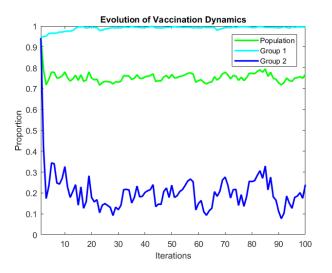


Figure 8: Regional Vaccine Compliance at a = 0.7

Results and Discussion

- Comparison of deterministic and stochastic CA models
- Effects of minority opinion
 - $ightharpoonup G_2$ are less likely to vaccinate, causes G_1 to compensate on their behalf (deterministic)
 - ► G₂ are more likely to attempt free-riding, act as "bad influences" for G₁ neighbors
 - ▶ When we separate G₂ from the majority, vaccination rates for G₁ increased significantly
- Ideas for further research