
3. POWER SERIES

3.1. SERIES AS FUNCTIONS

At the end of Chapter 1 we saw that Taylor polynomials of “infinite degree” might be
valuable for approximating functions. First we needed to understand what it meant to
add infinitely many numbers together, a notion that we formalized and studied in Chap-
ter 2. With these prerequisites covered, we return to the analysis of functions, beginning
by studying power series, which are series involving powers of x, such as

n 0

cnxn c0 c1x c2x
2 c3x

3 .

This power series is centered at x 0. Our definition below is slightly more general.

Power Series. A power series centered at x a is a series of the form

n 0

cn x a n c0 c1 x a c2 x a 2 c3 x a 3 .

The first question we should ask is:

Given a power series, for what values of x does it converge?

As the next three examples show, the techniques we have developed to analyze series are
capable of answering this question as well.

Example 1. Find the values of x for which the power series
n 0

n! x 2 n converges and

plot them on a number line.

The reader may have noticed that we have switched (mostly) from sums starting at n 1 to sums starting
at n 0. This is because when dealing with regular series, it is natural to index the first term as a1, while with
power series it is more convenient to index the terms based on the power of x.
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Solution. We test the series for absolute convergence using the Ratio Test:

an 1

an

n 1 ! x 2 n 1

n! x 2 n
n 1 x 2 unless x 2.

Therefore the series converges only when x 2, so our plot is a single point,

01234

x

showing that the power series converges only at x 2.

Example 2. For what values of x does the power series
n 0

x 1 n

n!
converge?

Solution. We again test the series for absolute convergence using the Ratio Test:

an 1

an

x 1 n 1

n 1 !

x 1 n

n!

x 1

n 1
0 for all x.

Therefore this series converges (absolutely) for every x, so our number line contains all
real numbers,

0 1 212

x

We can also write this as the interval , , or we may simply express it as the set of all
real numbers, R.

Our third and final example is a bit more interesting.

Example 3. For what values of x does the power series
n 0

x 3 n

n 1 4n
converge?

Solution. Again we begin by testing the series for absolute convergence with the Ratio
Test, although in this case we will need to work more afterward:

an 1

an

x 3 n 1

n 2 4n 1

x 3 n

n 1 4n

x 3

4

n 2

n 1

x 3

4
.

For what values of x is
x 3

4
1? This inequality can be rewritten as

1
x 3

4
1,
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or, simplifying,
4 x 3 4,

so the given power series converges by the Ratio Test if 7 x 1, or in other words,
if x lies in the interval 7, 1 . The power series diverges if x 7 or x 1. But
when x 7 or x 1, the Ratio Test is inconclusive, so we have to test these endpoints
individually. This is typical for power series, not specific to this example.

Plugging in x 7, our series simplifies to

n 0

4 n

n 1 4n
n 0

1 n

n 1
.

Since this is the alternating harmonic series, we know that it converges (conditionally). So,
our power series converges at x 7.

Plugging in x 1, our series simplifies to

n 0

4n

n 1 4n
n 0

1

n 1
.

This is the harmonic series which we know diverges, so our power series diverges at x 1.
Putting this all together, the given power series converges if and only if 7 x 1,

which we can also write as the interval 7, 1 . The number line plot of this interval is:

0 11234567

x

(Here the closed circle means that x 7 is included, while the open circle means that
x 1 is excluded.)

These examples have demonstrated three different types of convergence. As our next
theorem shows, every power series exhibits one of these three behaviors.

Radius Theorem. Every power series cn x a n satisfies one of
the following:

(1) The series converges only when x a, and this convergence
is absolute.

(2) The series converges for all x, and this convergence is abso-
lute.

(3) There is a number R 0 such that the series converges abso-
lutely when x a R and diverges when x a R. Note
that the series may converge absolutely, converge condition-
ally, or diverge when x a R.
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The proof of the Radius Theorem is outlined in Exercises 40–45.
Case (1) of this theorem holds when the coefficients cn are “large”, while case (2) holds

when these coefficients are “small”. Case (3) holds for coefficients which lie somewhere
in between these two extremes. Note that for series which satisfy case (3), the interval of
convergence is centered at x a. We call the number R in this case the radius of convergence.
(In case (1) we might say that the radius of convergence is 0, while in case (2) we might say
that it is .)

When case (3) holds, there are four possibilities for the interval of convergence:

a R, a R , a R, a R , a R, a R , a R, a R .

In order to decide which of these is the interval of convergence, we must test the endpoints
one-by-one, as we did in Example 3. Therefore the general procedure for determining the
interval of convergence of a given power series is:

1. Identity the center of the power series.

2. Use the Ratio Test to determine the radius of convergence. (There are rare instances
in which the Ratio Test is not sufficient, in which case the Root Test should be used
instead, see Exercises 20–26 of Section 2.6.)

3. If the series has a positive, finite radius of convergence (case (3)), then we need to
test the endpoints a R and a R. These two series may be tested with any method
from the last chapter.

When a power series converges, it defines a function of x, so our next question is:

What can we say about functions defined as power series?

The short answer is that inside its radius of convergence, a power series can be treated like
a long polynomial. In particular, we can differentiate power series like polynomials:

Term-by-Term Differentiation. Suppose that

f x
n 0

cn x a n c0 c1 x a c2 x a 2 c3 x a 3

converges for all x in the interval a R, a R . Then f is differen-
tiable for all values of x in the interval a R, a R , and

f x
n 1

ncn x a n 1 c1 2c2 x a 3c3 x a 2 4c4 x a 3 .

In particular, the radius of convergence of f x
n 1

ncn x a n 1

is at least R.
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This theorem says quite a lot about the behavior of a power series inside its radius of
convergence. Not only can we differentiate such a power series, but the derivative has
at least as large a radius of convergence. Well then, there’s nothing stopping us from taking
the derivative of this derivative, and so on. Therefore, inside its radius of convergence,
a power series defines an infinitely differentiable, or smooth, function of x. Such functions
are extremely well-behaved. For one, remember that in order to be differentiable, a func-
tion must first be continuous, so inside its radius of convergence, a power series defines a
continuous function.

Integration can be handled the same way, by treating a power series as a long polyno-
mial inside its radius of convergence.

Term-by-Term Integration. Suppose that

f x
n 0

cn x a n c0 c1 x a c2 x a 2

converges for all x in the interval a R, a R . Then

f x dx
n 1

cn
x a n 1

n 1
C

c0 x a c1

x a 2

2
c2

x a 3

3
C,

and this series converges for all x in the interval a R, a R .

Term-by-term differentiation and integration should not seem obvious, and their justi-
fication takes quite a bit of work, even in more advanced courses. For now, we take them
for granted.
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EXERCISES FOR SECTION 3.1

Find the intervals of convergence of the series in Ex-
ercises 1–10.

1.
n 1

xn

7 n

2.
n 0

3nxn

n 2 3

3.
n 0

3n x 2 n

n 2 3

4.
n 0

4x n

n4

5.
n 0

4x n

n4

6.
n 0

4x 2 n

n4

7.
n 0

xnn!

8.
n 0

x 2 nn!

2n

9.
n 0

x 2

3n

n

10.
n 0

1 3 5 2n 1

n!
xn

In Exercises 11–20, construct a power series with
the given intervals of converge, or explain why one
does not exist.

11. 2, 2

12. 4, 0

13. 0, 2

14. ,

15. 0,

16. 1,

17. 3, 7

18. 3, 7

19. , 2

20. 7

Rewrite the expressions in Exercises 21–24 as series
in which the generic term involves xn.

21.
n 2

n n 1 cnxn 2

22.
n 0

cnxn 3

23.
n 1

ncnxn 1 2x
n 0

anxn

24. x
n 2

n n 1 cnxn 2

n 0

anxn

Explain why none of the functions plotted in Exer-
cises 25–28 are equal to power series on the interval

3, 3 .

25.

1

1 212

26.

1

1 212
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27.

1

1 212

28.

1

1 212

29. Explain why the radius of convergence of the
power series for f x tan x centered at a 0 is at
most π 2.

30. Explain why a power series can converge con-
ditionally for at most two points.

Exercises 31–33 concern the series

n 0

2n cos nx

n!
.

Note that this is not a power series. Below, the 100th
partial sum,

100

n 0

2n cosnx

n!

of this series is plotted.

3

6

6 12 18

31. Show that this series converges for all x.

32. Does this series define a periodic function of x,
as the plot above seems to demonstrate?

33. Verify that the actual series is within 1 100 of the
partial sum plotted above for all values of x.

34. Suppose you know, from using the Ratio Test,
that the radius of convergence of cnxn is R 6.
What is the radius of convergence of cnn3xn?

35. Suppose you know, from using the Ratio Test,
that the radius of convergence of cnxn is R 6.
What is the radius of convergence of cnxn 3n?

36. Suppose that the radius of convergence of
cnxn is R 1. Then what is the radius of con-

vergence of snxn where sn c0 c1 cn?

37. Suppose that the radius of convergence of
cnxn is R 1. Then what is the radius of con-

vergence of snxn where sn c0 c1 cn?

Use the bounds given by Exercises 50 and 50 of Sec-
tion 2.4 to find the radii of convergence of the series
in Exercises 38 and 39.

38.
n 0

n!

nn
xn

39.
n 0

2n!

3n2 2n 1
xn

Exercises 40–45 detail the proof of the Radius The-
orem. For simplicity, we assume that the series is
centered at 0, that is, that a 0, but the proof eas-
ily extends to other centers by making a change of
variables, setting y x a.

40. Suppose that the power series cnxn converges
at x s. Prove that there is an integer N so that
cn 1 s n for all n N .

41. With N as in the previous exercise, prove that if
x s and n N , cnxn x s n.

42. Using the previous two exercises and the Com-
parison Test, prove that if the power series cnxn

converges at x s then it converges absolutely
whenever x s .
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43. Prove that if the power series cnxn diverges
at x t then it diverges whenever x t .

44. Define C to be the set of values of x for which
cnxn converges. Prove that either C contains all

real numbers or C is bounded.

45. Use the fact that every bounded set of real num-
bers has a least upper bound (this is called the Com-
pleteness Property) to prove the Radius Theorem.
(The least upper bound b of the set C is the least
number such that c b for all c C.)
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ANSWERS TO SELECTED EXERCISES, SECTION 3.1
1. 1, 1

3. 7 3, 5 3

5. 1 4, 1 4

7. Converges only for x 0

9. Converges for all real numbers

11. One example is
n 0

xn

2n

13. One example is
n 0

x 1 n

n2

15. No such power series exists, by the Radius Theorem

17. One example is
n 0

x 5 n

n2n

19. No such power series exists, by the Radius Theorem

21.
n 0

n 2 n 1 cn 2x
n

23.
n 0

n 1 cn 1x
n

n 1

2an 1x
n

25. Because the function has a discontinuity at x 2

27. Because the function has a sharp corner at x 1 (so its first derivative is not defined there)

29. Because tan x has a vertical asymptote at x π 2


