Chaos in Exchange Rate Models

Dartmouth College Department of Mathematics Daniel Salas

November 23, 2015

Abstract

This paper analyzes the dynamic behavior of exchange rate models. Chaos is easily found in discrete models, but not in most continuous models below 4 dimensions. The paper concludes with a brief look at the real data and the challenges it presents.

1 Introduction

Exchange rates are a hot topic in economics. Currency manipulation (government intervention in the exchange rate instead of letting it 'float'), exchange rate crises, and currency unions are a few areas of interest. Large changes in exchange rates can have dramatic impacts on many countries' economies. In finance, the exchange rate is an important factor in the return on foreign assets. As a result, many people (especially Forex traders) would like to predict exchange rates.

Unfortunately, their exact behavior over short time horizons is still unknown. Most economists have put their focus toward stochastic models, but some still try and explain the behavior with nonlinear dynamics note. Over long time horizons, relatively simple models that use comparative statics can accurately predict the equilibrium exchange rate. But over short time horizons, exchange rates have drastically different behavior. One observation that has led economists to believe in some nonlinear dynamics is the evidence of exchange rate overshooting. The Dornbusch model (1976) was the first model to imply the existence of exchange rate overshooting. As a result, the principles of the Dornbusch model are the foundation for many linear and nonlinear dynamic models. First, I will show that even simple models of exchange rates can display 'random' behavior that is actually just chaotic and determinant behavior. Then I will explore the dynamics of simple dynamic ODE models. Lastly, I will briefly look at time-delay embedding in real data.

2 One Dimensional Discrete Map

First, I looked at the behavior of a 1 dimensional nonlinear map. For iterative maps, it is possible to get chaos with only 1 dimension (logistic map with a = 4) and that's what one can find using a very simple exchange rate model. The derivation of the model is short and requires some heavy assumptions.

Figure 1: Bifurcation of α .

Exchange rates in each period are determined by the previous period's exchange rate and various parameters. The parameters are assumed to be constant. The relationship between the change in the speculators demand for foreign currency and the equation for the trade balance are combined to yield the next period's exchange rate in terms of the previous exchange rate and various parameters. First, the speculators' demand for foreign currency is quantified:

$$S_t = \alpha (e_f/e_t - 1). \tag{1}$$

 α is a sensitivity parameter defined to be greater than zero (varying this sensitivity gives chaotic behavior). e_t is the current nominal exchange rate. e_f is the equilibrium exchange rate (fixed point in the map). The intuition is that the demand is proportional to the relative deviation of the equilibrium exchange rate to the current exchange rate. When α is small, speculators don't adjust their demand to deviations very strongly, thus the pressure on the next exchange rate to change is small. As α gets larger, the deviations are met with larger changes in demand, keeping the exchange rate within a tighter band around the equilibrium. As shown in the bifurcation plot, when alpha is sufficiently large (approximately 11), the speculators' demand responds so strongly that the exchange rate is quickly brought to its equilibrium level. The uninteresting case is when $\alpha = 0$. Then speculators play no role in determining the exchange rate since they never want foreign currency.

Next, the trade balance is defined

$$T_t = \beta(e_t - e_f) + \gamma(e_{t-1} - e_f).$$
 (2)

The relative size of γ to β is important. When gamma is larger, more trade is done using the previous exchange rate (common for purchase agreements to be made well in advance of the actual purchase at the current exchange rate). When β is larger, the opposite is true. As both get large, the volume of trade increases. As shown in the bifurcation plots, when γ/β gets larger/smaller the chaotic behavior increases. When the γ is small enough relative to β , the exchange rate settles into the equilibrium rate instead of chaotically orbiting around it. Lastly, if all constants (α, β, γ) are increased and held to the same ratio, the behavior doesn't change. The bifurcation plot is just a set of horizontal line(s) with then

Figure 2: Bifurcation of β . Blows up near zero because of β term in denominator.

Figure 3: Bifurcation of γ .

number of lines depending on the period of the sink. The period is differs by changing the ratio $\alpha : \beta : \gamma$.

Setting $T_t = \Delta S_t$ yields a quadratic relationship between the current exchange rate and the previous exchange rate with the following positive root of e_t :

$$\beta e_{t-1}e_t^2 - ((\beta + \gamma)e_f e_{t-1} - \gamma e_{t-1}^2 - \alpha e_f)e_t - \alpha e_f e_{t-1} = 0$$

$$e_{t} = \frac{(\beta + \gamma)e_{f}e_{t-1} - \gamma e_{t-1}^{2} - \alpha e_{f} + \sqrt{((\beta + \gamma)e_{f}e_{t-1} - \gamma e_{t-1}^{2} - \alpha e_{f})^{2} + 4\beta e_{t-1}\alpha e_{t-1}}}{2\beta e_{t-1}}$$
(3)

The intuition for setting the change in demand equal to the trade balance is that the value of goods being sold by a country must be equal to the money flowing into the country. This is related to the idea of balance of payments. The balance of payments means that the current account (value of exported products in home currency - value of imported goods in home currency) should equal the capital account (the foreign purchases of domestic assets with home

Figure 4: Bifurcation of β holding fixed $\gamma = 4\beta$.

Figure 5: Bifurcation of β holding fixed $\gamma = 4\beta$ and $\alpha = 6\beta/4$. The sink is period 2 in this case.

Figure 6: Time series illustrates sensitive dependence and unpredictable movements.

currency - the domestic purchases of foreign assets with foreign currency). The following thought experiment explains the reasoning behind the assumption.

If the dollar is worth more than the euro, then Europe will buy less of the US's exports since they are relatively more expensive. In turn, the US will buy more of Europe's exports since they are relatively cheaper (the US imports more). Thus, the US's net exports are negative. In the capital market, the return (yield, interest rate, etc.) on European assets (bonds, stocks, etc.) is weaker because the euro is less valuable than the dollar. So, people in both countries would shift their purchases in the capital market to US assets since these assets now have a higher return. The balance of payments implies that the shifts in the net exports (part of the current account) and investment in assets (capital account) should be equal. (Assume net exports are a positive value and an increase in domestic purchases of foreign assets (capital outflow) is a positive value. Also, for simplicity, assume the world is made up of only two separate trading partners (US and Europe).)

From map defined in (3), we assume when the parameters are not varied, they are $\alpha = 6$, $\beta = 4$, $\gamma = 26$, $e_0 = .9$, and $e_f = 1$. These parameters are used in the time series plot, calculating the Lyapunov exponent, and the time delay embedding. The time series plot illustrates the sensitive dependence. The second point iterated is only 10^{-8} greater than e_0 , but it reaches a maximum distance away from e_0 after only 50 iterations. The Lyapunov exponent is numerically calculated to be approximately .3491(> 0 necessary for chaos). Lastly, the plot of the time delay embedding contrasted with the time series plot emphasizes that while the two points seem to deviate from each other randomly, they are both following the same exact relationship between e_{n+1} and e_n .

Figure 7: Calculating the Lyapunov exponent $\left(h=.3491\right)$

Figure 8: Time delay embedding shows the shape of the iterating function.

Figure 9: Phase plane and behavior near unstable manifold

3 Giavazzi's Simplified Dornbusch Model

Giavazzi (2007) shows the Dornbusch model can be simplified to the following 2D system of linear ODEs. Since the model is 2D and linear, it does not exhibit chaotic behavior (Alligood). Even though it is not chaotic, the model does have some interesting properties and implications that are useful to know before expanding into a 3D nonlinear system. e = exchange rate, p = price level, m = quantity of money in economy, r = the interest rate, and $r_f = \text{the foreign interest rate}$. All variables will be in log terms (real money $= \ln(M/P) = m - p$). First, Giavazzi derives the \dot{e} relationship from the money market equilibrium. The money market equilibrium requires that money demand equal a fixed money supply, $m^S - p = \bar{m} - p = m^D - p = -\lambda r + \psi y$. $\lambda, \psi > 0$ and they represent the sensitivity of money demand to income y and interest rate r. Then assume that the interest parity condition holds, $r = r_f + \text{E}(\dot{e})$ (no arbitrage in capital market). Using Dornbusch's assumption that speculators have perfect foresight, $\text{E}(\dot{e}) = \dot{e}$, so the expected change = the actual change. After combining these equations, \dot{e} has solution:

$$\dot{e} = -\frac{\bar{m}}{\lambda} + \frac{p}{\lambda} \tag{4}$$

Then Giavazzi looks at a sluggish price level proportional (δ) to the discrepancy between aggregate demand and aggregate supply. Holding aggregate supply fixed at 0, and assuming the demand relation is $\dot{p} = \delta(y^D - y^S)$, the \dot{p} equation is

$$\dot{p} = \delta(e - p). \tag{5}$$

The equilibrium point is $\bar{e} = \bar{p} = \bar{m}$ by solving $\dot{e} = \dot{p} = 0$, thus in matrix form the relation is

$$\begin{bmatrix} \dot{p} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} -\delta & \delta \\ 1/\lambda & 0 \end{bmatrix} \begin{bmatrix} p - \bar{p} \\ e - \bar{e} \end{bmatrix}.$$

I found the eigenvalues to be $\mu_{1,2} = -\frac{\delta}{2} \pm \frac{\sqrt{\delta^2 + 4\delta/\lambda}}{2}$, and confirmed Giavazzi's result that the eigenvectors (the manifolds) are $\vec{v}_{1,2} = [\lambda \mu_{1,2} \ 1]$ (second is stable). Since δ and λ are assumed to be greater than zero, the equilibrium point will always be a saddle since there will always be one negative and one positive eigenvalue of the linear ODE. Below, I have shown the phase plane and the behavior

Figure 10: Phase plane and behavior near stable manifold

of solutions near the stable and unstable manifold (I modified a phase plane code from http://www-users.math.umd.edu/ petersd/246/matlabode2.html). Since, the equilibrium solution is always a saddle, very small deviations away from the stable manifold lead to solutions that diverge to ∞ or $-\infty$.

4 Nonlinear 3D system of ODEs

Asada et. al (2003) expand upon many models including the Dornbusch model. The nonlinear model proposed (Asada et. al p.227) gives rise to some interesting behavior. Unfortunately, this model does not have chaotic behavior, but it gets pretty close. The derivation of this model is much more complex, but the assumptions and relationships are still similar. The 3rd variable in this ODE system is the adjustment of the expected exchange rate. Previously, the expectations were assumed to be perfect, but now the expectations change along with the price level and the exchange rate. The dynamic behavior is described by the system:

$$\dot{e} = \beta_e (\bar{r}^* + \beta_\epsilon (e_0 - e) - \frac{\phi \bar{y} + p - \bar{m}}{\alpha_r})$$
$$\dot{p} = \beta_p ((\gamma - 1)\bar{y} + \delta(e - p) + \bar{u})$$
$$\dot{\beta}_\epsilon = \beta_{\beta_\epsilon} (v(\beta_\epsilon) - \beta_\epsilon), v(\beta_\epsilon) = \beta_p \delta(1 + \frac{1}{\alpha_r \beta_\epsilon})$$
(6)

All of the β 's are sensitivity parameters, and the exchange rate and price level changes are determined by a few more relationships. The equations are derived by Asada et. al by modifying some of Dornbusch's assumptions. For example, the $v(\beta_{\epsilon})$ is introduced by Asada to consider the relationship between "the believed and the actual adjustment speed of exchange rates" (p. 226). The time series plots of this model show an overshooting behavior consistent with the Dornbusch model and some oscillation around the equilibrium that looks chaotic!

Figure 11: e vs t. Overshooting occurs quickly, then violent oscillations around the equilibrium. Initial conditions vary by .01

Figure 12: p vs t. Overshooting occurs quickly, then violent oscillations around the equilibrium. Initial conditions vary by .01

Figure 13: β_{ϵ} vs t. Overshooting occurs quickly, then violent oscillations around the equilibrium. Initial conditions vary by .01

Figure 14: Time Delay Embedding using e_n, e_{n+1}, e_{n+2}

Figure 15: Time Delay Embedding using e_n, e_{n+10}, e_{n+20}

Out of curiosity, I looked at the "discrete" values of the exchange rate (continuous relationship calculated numerically so not really continuous, but the ODE system is meant to be interpreted continuously). The spacing between "discrete" values is 1 and 10 indices.

The time delay pattern starts looking like a rose bud with one time unit separation, at 10 time units the petals start to blossom or spread, and finally when the time step between observations is 100 units the pattern is a large 3 dimensional tangle.

Unfortunately, this model doesn't show chaotic behavior. The attractor is a straight line in 3 dimensions. Using a modified code provided by Professor Barnett (lyapflow.m), the Lyapunov exponents with these parameters are calculated to be all negative ($h_1 = -.572, h_2 = -4.728, h_3 = -13.891$). The parameters can be manipulated to give rise to positive exponents, but this occurs by making β_e too large. The model breaks down well before the Lyapunov exponents are positive (points shoot off to infinity or negative infinity). Asada et. al find chaotic attractors in the 8D, 10D, and 12D models that take a few chapters to explain.

Time Delay Embedding of 'discrete' data

Figure 16: Time Delay Embedding using $e_n, e_{n+100}, e_{n+200}$

Figure 17: Real Data Time Series: US/Japan. Time units are 1 month

5 Chaos in Real Data?

As seen in the time delay plots of the dollar/yen exchange rate, there doesn't seem to be an underlying pattern.

The time delay plots indicate that the best guess of the next exchange rate is the current exchange rate and some noise. I tried looking at the deviation of the current exchange rate as a new variable $w_t = e_t - \bar{e}_t$, where $\bar{e}_t \approx \frac{1}{9} \sum_{i=t-4}^{t+4} e_i$. This resulted in an incomprehensible blob. Even thought the blob doesn't show a clear pattern, it is more promising because it suggests that maybe there is some relationship, we just can't tell what it is. The relation is possibly more than 3 dimensions and I could be omitting some important variable like prices, or interest rates.

Figure 18: Real Data Time Delay Embedding: US/Japan. e_t, e_{t+1}, e_{t+2} . Time units are 1 month. Relationship is a noisy x = y = z relationship with x = z a little bit less accurate.

Figure 19: Real Data Time Delay Embedding: US/Japan. $w_t,w_{t+1},w_{t+2}.$ Time units are 1 month and $w_t=e_t-\bar{e}_t$

References

- Alligood, Sauer, Yorke. Chaos: An Introduction to Dynamical Systems. Springer-Verlag 1996. Chapters 1-13.
- [2] Asada, Toichiro; Carl Chiarella, Peter Flaschel, Reiner Franke. Open Economy Macro-Dynamics: An Integrated Disequilibrium Approach. Springer-Verlag Berlin Heidelberg 2003. Chapter 5.
- [3] Barnett, Alex. Dartmouth College Department of Mathematics.
- [4] Brock W., Hsieh D., LeBaron B. Nonlinear Dynamics, Chaos, and Instability. MIT Press 1991.
- [5] De Grauwe P. and Dewachter H. "A Chaotic Model of the Exchange Rate: The Role of Fundamentalists and Chartists." Open economies review 4: 351-379. Kluwer Academic Publishers 1993.
- [6] Dornbusch, Rudiger. "Expectations and Exchange Rate Dynamics." Massachusetts Institute of Technology. *Journal of Political Economy*. December 1976.
- [7] Engel, Mark, West. "Factor Model Forecasts of Exchange Rates." September 2010.
- [8] Federici D. and Gandolfo G. "Chaos and the exchange rate." Journal of International Trade & Economic Development 11:2 111-142 University of Rome 'La Sapienza', Italy. 2002.
- [9] Giavazzi, Francesco. "A Primer on Differential Equations." Universita' Bocconi September 2007.
- [10] Karaguler, Turban. "Chaos Theory and Exchange Rate Problem." Silesian University.
- [11] Lopez-Suarez C.F. and Rodriguez-Lopez J.A. "Nonlinear Exchange Rate Predictability." *Journal of International Money and Finance*. September 2011.
- [12] Sargent, Thomas J. Dynamic Macroeconomic Theory Harvard University Press 1987.
- [13] Vandrovych V. "Nonlinearities in Exchange-Rate Dynamics: Chaos?" Brandeis University. November 4, 2006.
- [14] Phase Plane Matlab code from http://www-users.math.umd.edu/ petersd/246/matlabode2.html
- [15] US/Japan Exchange rate data from http://fxtop.com/en/historicalexchange-rates
- [16] Template: https://www.overleaf.com/latex/templates/quantum-halleffect-report-template/hqsgsyxsvphs

6 MATLAB

6.1 One Dimensional Map

```
\% chaos 1d ex rate
% Daniel Salas
% M53 Project code
% November 23, 2015
clear
clc
close all;
% bifurcation plots take a lot of time...so set these to zero if you don't
\% want to see them
bifgamma = 0;
bifbeta = 0;
bifalpha = 0;
bifratio = 0;
bifratio 2 = 1;
N = 1100; \% N-1 = number of iterations
e = zeros(N,1); % array for exchange rates
e(1) = .9; \% initial exchange rate
B = 4; \% beta
g = 26; \% gamma
ee = 1; \% equilibrium exchange rate
a = 6; \% alpha
% Bifurcation Plot of Alpha
if bifalpha == 1
B = 4;
a = 6;
g = 26;
f = @(e) ((B+g).*ee.*e-g.*e.^{2}-a.*ee)./(2.*B.*e) + sqrt(((B+g).*ee.*e-g.*e.^{2}-a.*e)).
for i = 1:N-1
   e(i+1) = f(e(i));
end
figure (1)
scatter(a.*ones(200,1), e(N-199:N), '.k')
xlabel('\alpha')
ylabel('e')
title ('Bifurcation plot: e vs \alpha')
hold on
for a = 0.01:.01:12
```

```
 \begin{split} &f = @(e) \quad ((B+g)*ee*e-g*e^2-a*ee)/(2*B*e) + sqrt(((B+g)*ee*e-g*e^2-a*ee)^2+4*B*e*a \\ &for \ i = 1:N-1 \\ & e(i+1) = f(e(i)); \\ &end \\ &scatter(a*ones(200,1), e(N-199:N), '.k') \\ &end \\ &hold \ off \\ &end \\ \end{split}
```

```
B = 4;
a = 6;
g = 26;
e1 = zeros(N,1);
e1(1) = .9;
e2 = zeros(N,1);
e^{2}(1) = .9 + 10^{(-8)};
f = @(e) ((B+g)*ee*e-g*e^2-a*ee)/(2*B*e)+sqrt(((B+g)*ee*e-g*e^2-a*ee)^2+4*B*e*a)
for i = 1:N-1
    e1(i+1) = f(e1(i));
    e^{2}(i+1) = f(e^{2}(i));
end
figure (2)
plot (0:150, e1(1:151))
hold on
plot(0:150,e2(1:151))
xlabel('t (period)')
ylabel('e (exchange rate)')
title ('Exchange rate discrete in time')
legend ('e_0 = .9', 'e_0 = .9+10^{(-8)}')
hold off
```

```
figure (3)

plot (0:100, log (abs (e2(1:101) - e1(1:101))))

title ('Calculating Lyapunov Exponent')

xlabel ('t (period)')

ylabel ('ln | e_{.9}(t) - e_{.9+10^{-}{-8}(t)|')

hold on

y2 = log (abs (e2(51) - e1(51)));
```

 $y1 = \log(abs(e2(1)-e1(1)));$ plot([0 50],[y1 y2]); hold off slope = (y2-y1)/50

figure(4)
scatter(e1(1:N-1),e1(2:N))
hold on
scatter(e2(1:N-1),e2(2:N),'.r')
title('Time Delay Embedding')
xlabel('e_{n}')
ylabel('e_{n+1}')
legend('e_0 = .9', 'e_0 = .9+10^{(-8)})
hold off

```
if bifbeta == 1
B = 4;
a = 6;
g = 26;
for i = 1:N-1
   e(i+1) = f(e(i));
end
figure (5)
scatter (B.*ones (200,1), e(N-199:N), '.k')
xlabel('\ beta')
ylabel('e')
title ('Bifurcation plot: e vs \beta')
hold on
for B = 0.1:.01:15
f = @(e) ((B+g)*ee*e-g*e^2-a*ee)/(2*B*e)+sqrt(((B+g)*ee*e-g*e^2-a*ee)^2+4*B*e*a)
for i = 1:N-1
   e(i+1) = f(e(i));
end
scatter (B*ones (200,1), e(N-199:N), '.k')
```

```
end
hold off
end
% Bifurcation Plot of Gamma
if bifgamma == 1
B = 4;
a = 6;
g = 26;
f = @(e) ((B+g)*ee*e-g*e^2-a*ee)/(2*B*e)+sqrt(((B+g)*ee*e-g*e^2-a*ee)^2+4*B*e*a))
for i = 1:N-1
   e(i+1) = f(e(i));
end
figure (6)
scatter (g.*ones (200,1), e(N-199:N), '.k')
xlabel('\gamma')
ylabel('e')
title ('Bifurcation plot: e vs \gamma')
hold on
for g = 14:.05:40
f = @(e) ((B+g)*ee*e-g*e^2-a*ee)/(2*B*e)+sqrt(((B+g)*ee*e-g*e^2-a*ee)^2+4*B*e*a))
for i = 1:N-1
   e(i+1) = f(e(i));
end
scatter(g*ones(200,1), e(N-199:N), '.k')
end
hold off
end
% Bifurcation Plot of Gamma/Beta
if bifratio == 1
B = 4;
a = 6;
g = 4 * B;
f = @(e) ((B+g)*ee*e-g*e^2-a*ee)/(2*B*e)+sqrt(((B+g)*ee*e-g*e^2-a*ee)^2+4*B*e*a))
for i = 1:N-1
   e(i+1) = f(e(i));
end
```

end

```
for B = .1:.01:25
g = 4*B;
a = 6/4*B; % keep ratio between alpha, beta, and gamma fixed (hint: no chaos)
```

end

6.2 Giavazzi's 2D map: Phase Plane Code

```
% Modified Code from http://www-users.math.umd.edu/~petersd/246/matlabode2.html
clear; close all; clc
% Daniel Salas
\% Phase Plane M53 project
% November 23, 2015
h = .01;
m = 1;
d = 2;
1 = .5;
u1 = -d/2 + sqrt(d^2+4*d/1)/2;
u2 = -d/2 - sqrt(d^2+4*d/1)/2;
yo = (1+h) \cdot * [1*u1;1];
f = @(t, y) [d*(y(2)-y(1));(y(1)-m)/1];
figure (1)
vectfield(f, m-2.5:.25:m+2.5, m-2.5:.25:m+2.5)
xlabel('p')
ylabel ('e')
title ('Saddle Behavior: Phase Plane and Unstable Manifold')
hold on
plot([m-2.5,m+2.5],[0,0],'-k')
plot([0,0],[m-2.5,m+2.5],'-k')
plot(10.*[-l*u1, l*u1]+m, 10.*[-1, 1]+m, '-k')
plot(10.*[-l*u2, l*u2]+m, 10.*[-1, 1]+m, '-k')
for y_{20} = 0.4:0.1:1.2
  [ts, ys] = ode45(f, [0, 10], [1*u1; y20]+m);
  plot(ys(:,1), ys(:,2))
  scatter (ys(1,1), ys(1,2), 'o')
end
axis ([m-2.5 m+2.5 m-2.5 m+2.5])
hold off
figure (2)
vectfield(f, m-2.5:.25:m+2.5, m-2.5:.25:m+2.5)
xlabel('p')
ylabel('e')
```

```
title ('Saddle Behavior: Phase Plane and Stable Manifold')
hold on
plot ([m-2.5,m+2.5],[0,0],'-k')
plot([0,0],[m-2.5,m+2.5],'-k')
plot(10.*[-l*u1, l*u1]+m, 10.*[-1, 1]+m, '-k')
plot(10.*[-l*u2, l*u2]+m, 10.*[-1, 1]+m, '-k')
for y_{20} = 0.4:0.1:1.2
  [ts, ys] = ode45(f, [0, 10], [1*u2; y20]+m);
  plot(ys(:,1), ys(:,2))
  scatter (ys(1,1), ys(1,2), o')
end
axis ([m-2.5 m+2.5 m-2.5 m+2.5])
hold off
%vectfield vector field for system of 2 first order ODEs
%
    vectfield (func, v1val, v2val) plots the vector field for the system of
%
    two first order ODEs given by func, using the grid of y1val and
%
    y2 values given by the vectors y1val and y2val. func is either a
%
    the name of an inline function of two variables, or a string
%
    with the name of an m-file.
%
    By default, t=0 is used in func. A t value can be specified as an
%
    additional argument: vectfield (func, y1val, y2val, t)
function vectfield (func, y1val, y2val, t)
if nargin==3
  t = 0;
end
n1=length(y1val);
n2 = length(y2val);
vp1=zeros(n2,n1);
yp2=zeros(n2,n1);
for i=1:n1
  for j=1:n2
    ypv = feval(func, t, [y1val(i); y2val(j)]);
    yp1(j, i) = ypv(1);
    yp2(j, i) = ypv(2);
  end
end
quiver(y1val,y2val,yp1,yp2,'r');
axis tight;
%vectfieldn
              vector field for system of 2 first order ODEs,
%
              with arrows normalized to the same length
%
    vectfield (func, y1val, y2val) plots the vector field for the system of
%
    two first order ODEs given by func, using the grid of y1val and
%
    y2 values given by the vectors y1val and y2val. func is either a
%
    the name of an inline function of two variables, or a string
%
    with the name of an m-file.
%
    By default, t=0 is used in func. A t value can be specified as an
%
    additional argument: vectfield (func, y1val, y2val, t)
function vectfieldn (func, y1val, y2val, t)
```

```
if nargin==3
  t = 0;
end
n1 = length(y1val);
n2 = length(y2val);
yp1=zeros(n2,n1);
yp2=zeros(n2,n1);
for i=1:n1
  for j=1:n2
    ypv = feval(func, t, [y1val(i); y2val(j)]);
    yp1(j,i) = ypv(1);
    yp2(j, i) = ypv(2);
  end
end
len = sqrt(yp1.^2 + yp2.^2);
quiver (y1val, y2val, yp1./len, yp2./len, .6, 'r');
axis tight;
```

6.3 Asada's Nonlinear Map

Plots % Models 2D clcclear close all; h = .001;m = 2;d = 3;rf = 0;eo = 1.1;ar = 3;u = 1.3;g = .9;yb = 2; Bp = .3;Be = 10;BBe = 10;ph = .8;

% Equilibrium points $z1 = Bp*d/2+sqrt((Bp*d)^2+4*Bp*d/ar)/2;$ y1 = (rf+z1*(eo-(-u/d-(g-1)*yb/d))-(ph*yb-m)/ar)/(1/ar+z1);x1 = y1 - u/d - (g-1)*yb/d;

 $z2 = Bp*d/2-sqrt((Bp*d)^2+4*Bp*d/ar)/2;$

```
Xo1 = [x1; y1; z1] - h;
Xo2 = [x2; y2; z2] - h;
Xo1h2 = Xo1 -h;
Xo2h2 = Xo2-h;
t = [0:.01:100];
f = @(t,X) [Be*(rf+X(3)*(eo-X(1))-(ph*yb+X(2)-m)/ar);...
             Bp*((g-1)*yb+d*(X(1)-X(2))+u);...
             BBe*(Bp*d*(1+1/(ar*X(3)))-X(3))];
[T1, X1] = ode45(f, t, Xo1);
[T2, X1h2] = ode45(f, t, Xo1h2);
N = numel(X1(:, 1));
dX1 = zeros(N,3);
for i = 1:N
    dX1(i,:) = f(1,X1(i,:));
end
figure (1)
plot(T1, X1(:, 1))
hold on
plot(T1, X1h2(:, 1))
xlabel('T')
ylabel('Exchange rate (e)')
title ('Overshooting and orbiting around Equilibrium: e vs t')
hold off
figure (2)
plot(T1, X1(:, 2))
hold on
plot(T1, X1h2(:, 2))
xlabel('T')
ylabel('Price Level')
title('Lagging Price fluctuations: p vs t')
hold off
figure (3)
plot(T1, X1(:, 2))
hold on
plot(T1, X1h2(:, 2))
xlabel('T')
ylabel('\ beta_{\ epsilon} } (Expectations Parameter)')
title('Changing expectations: \beta_{\epsilon} vs t')
hold off
```

```
% Time Delay Embedding

M = 900; % how many points

sp = 100; % spacing between points

figure (4)

plot3 (X1(N-(M+2*sp):N-2*sp,1),X1(N-(M+sp):N-sp,1),X1(N-M:N,1))

hold on

scatter3 ([X1(N-(M+2*sp),1) X1(N-2*sp,1)],[X1(N-(M+sp),1) X1(N-sp,1)],[X1(N-M,1) X1(N-sp,1)],[X1(N
```

```
% figure(9)
% plot(T,X1(:,1))
% xlabel('T')
% ylabel('Exchange rate (e)')
% title('Close to stable manifold (roundoff error): e vs p')
```

```
Modified lyapflow codes:
```

```
% lyapunov exponents in a flow in R<sup>3</sup>, eg Lorenz attractor
% Needs the function lorenz_time1map.m which returns the time-1 map
% barnett 11/19/07
clear
close all;
clc
```

```
% My additions
h = .01; \% .01
m = 2; \%2
d = 3; \%3
rf = 0; \% 0
eo = 1.1; \% 1.1
ar = 3; \%3
u = 1.3; \% 1.3
g = .9; \% .9
yb = 2; \% 2
Bp = .1; \%.1
Be = 10; \%10, good .001
BBe = 10; \%10
ph = .8; \%.8
c = [m;
   d ;
```

rf; eo; ar; u; g;yb; Bp; Be; BBe; ph];% Equilibrium points $z1 = Bp*d/2+sqrt((Bp*d)^2+4*Bp*d/ar)/2;$ y1 = (rf+z1*(eo-(-u/d-(g-1)*yb/d))-(ph*yb-m)/ar)/(1/ar+z1);x1 = y1 - u/d - (g-1)*yb/d; $z_{2} = Bp*d/2 - sqrt((Bp*d)^{2} + 4*Bp*d/ar)/2;$ y2 = (rf+z2*(eo-(-u/d-(g-1)*yb/d))-(ph*yb-m)/ar)/(1/ar+z2); $x^2 = y^2 - u/d - (g-1)*yb/d;$

% Measure Lyapunov exponents... % ----- Re-orthogonalizing version, repeated averaging M = 20;% how many averaging loops N = 50;% how many its per meas step x = Xo1;h = zeros(3,1);% place to store averaged lyap exps for m=1:M J = eye(3);% Id is where Jacobean starts for n=1:N $[x Jx] = exlorenz_time1map(x,c);$ J = Jx * J: % update Jacobean [Q,R] = qr(J);% re-orthogonalize % but keep them correct lengths J = Q * diag(diag(R));end rN = abs(diag(R))% print out progress % sum up lyap exps from each run $h = h + \log(rN)/N;$ end % final answer: mean (over runs) of lyap exps h = h/M

% you can see the middle lyap exp is v close to 0 - in fact all flows have % a zero exponent if they are bounded and hit no equilibrium points.

%exlorenz_time1map.m

function $[x, DFx] = exlorenz_time1map(xo, c)$ % evolve Lorenz flow for 1 time unit, including finding the jacobean matrix

```
m = c(1);
     d=c(2);
     r f = c (3);
     eo = c(4);
     ar = c(5);
     u = c(6);
     g = c(7);
     yb=c(8);
     Bp=c(9);
     Be=c(10);
     BBe=c(11);
     ph=c(12);
F = @(t,X) [Be*(rf+X(3)*(eo-X(1)) - (ph*yb+X(2)-m)/ar);...
             Bp*((g-1)*yb+d*(X(1)-X(2))+u);...
             BBe*(Bp*d*(1+1/(ar*X(3)))-X(3))]; \% vec flow field
Df = @(y) [-Be*y(3) -Be/ar Be*(eo-y(1));...
            Bp*d - Bp*d 0; \ldots
            0 0 BBe*(-Bp*d/(ar*y(3)^2)-1); % DF at y
```

J0 = eye(3); % initial Jac matrix

% 12-component ODE flow given by 3 components of solution and 9 components % of the J matrix (J satisfies the ODE dJ/dt = Df.J) $G = @(t,z) [F(t,z(1:3,:)); Df(z(1:3,:))*z(4:6,:); Df(z(1:3,:))*z(7:9,:); \dots$ Df(z(1:3,:))*z(10:12,:)];[ts, xs] = ode45(G, [0 1], [xo; J0(:)], odeset('abstol', 1e-3)); % numerically solve in t domain x = reshape(xs(end,1:3), [3,1]); % extract the answer at the final time t=1 J = xs(end,4:end); % same for the J components DFx = reshape(J,[3 3]); % send J out as a 3x3 matrix.

6.4 Real Data Plots

% math exp with dollar yen % data from http://fxtop.com/en/historical-exchange-rates.php?A=1&C1=USD&C2=JPY clear clc close all; M = [122.50176]120.022268 120.175646 123.128729 123.397559123.730861 120.87394119.617625 120.340684118.671782 118.279355119.263228 116.282652 107.989769 107.283792 102.966938 101.723027 102.056261 101.763971 102.530867 102.354868 102.019534 103.942137 103.385798 100.028352 97.781882 99.203056 97.93082799.695216 97.366185

```
\begin{array}{c} 101.018171\\ 97.904468\\ 94.869816\end{array}
```

93.117683
89.047084
83.612486
81 017717
78 081006
78.381330
78.602062
78.092903
78.985946
79.240284
79.72825
81.296217
82.477133
78.458511
76.967734
77.811325
77.470746
76.653714
76.79352
76.995641
79 402519
80 448579
81 174027
01.174907
03.391242
81.724659
82.625214
82.628231
83.290905
82.513022
81.794824
84.376573
85.332527
87.541869
90.919565
92 150954
93 48913
90.678521
00 2073
90.2015
91.31002
89.814057
89.170045
90.376697
91.44315
94.838413
94.473409
96.599155
96.609295
98.73546
97.835667
92.542258
90.421242

91.161063
0.0 010000
90.819209
$100 \ 120255$
100.120200
106.617581
$109 \ 276898$
105.210050
106.826127
106 006652
100.900032
104.33583
100 500400
102.580485
100.878621
107.116111
107 810744
101.010111
112.259666
110 949462
110.343402
115.941668
115 007021
115.007921
116.747369
101 507007
121.587087
122.632672
122.002012
120.804112
118 882925
110.002020
117.231931
120 546543
120.040040
120.449895
117 182827
117.103037
117.312999
110 670075
118.070875
117.083237
115 041904
115.941304
115 664792
110.001102
114.722965
111 758/0/
111.100494
117.025997
117 974919
111.214310
117.910723
115 525045
115.525045
118.579271
110 117910
110.44/240
114.904814
111 000005
111.029225
110.625366
111 020001
111.938081
108.692609
100 000 14
100.00044
$107 \ 312797$
105.181809
$104 \ 92694$
100.00000
103.360992
103 781070
100.101019
104.768539

108 800/1
108.89041
110.086791
110 /07178
110.497178
109.322561
$109 \ 439853$
100.400000
112.015272
107.717074
100 50400
108.50408
106.582616
106 241606
100.341000
107.801899
100 2/0305
103.243333
109.580249
$114 \ 961343$
110.000005
118.829985
118.701607
110 979449
110.0/2443
117.279024
110 04060
119.94909
118.610842
$119 \ 377724$
110.700410
118.738412
122.034356
191 400169
121.490108
123.915857
$120 \ 708722$
120.100122
118.955994
118.045675
100.010010
123.329232
126.364753
120 745773
130.743773
131.021657
133 594942
100.004042
132.600256
127.258888
100 260742
122.302/43
121.280899
118 778984
110.110204
121.4507
124.573848
100 040740
122.242(48
121.814769
123 753005
121.100900
121.346998
116.178879
116 700407
110.783487
112.109344
108 00605
100.90000
108.452308
$106 \ 758782$

108 194849
100.124042
107.903854
106.10919
108 279072
100.219012
105.529986
106.38179
109 449633
105.445000
105.09912
102.575551
104.700703
106 096134
100.020134
107.010158
113.251455
119 538746
100.704100
120.704182
122.050127
119.721926
110.021020 110.620107
119.039197
116.716847
113.194605
$117 \ 144498$
100 940141
120.340141
120.775036
134.571939
144 670540
144.079549
140.629012
140.081734
134 878018
101.010010
132.228814
128.999937
125.689921
120 526867
129.520807
129.509902
125.181885
120.961006
120.001000
120.120304
117.819213
115.235649
114 286681
110.110005
119.119025
125.555351
122.669101
122 020004
117.76466
113.911394
$112 \ 267102$
112.357758
109.870911
107.865047
100 2/3838
109.240000

108 860000
100.000333
106.327634
107 200522
107.200352
105.885116
100.000110
105.61657
105 592571
105.525571
101.869461
101 047000
101.847809
$100 \ 731317$
100.151511
100.432867
04 610100
94.012133
87 23088
01.200000
84.555966
85 024827
85.024827
83.841584
00 601226
90.001336
98 239413
50.205410
99.732727
100 148581
100.146361
98.002763
00.471000
98.471022
98 833657
50.000001
99.886705
00 500242
90.002040
102.646814
100 700011
103.766884
$103 \ 327049$
105 000000
105.093329
$106 \ 310547$
100.010011
111.386134
100 05055
109.93933
107.854021
100 050005
106.958025
$105 \ 391873$
100.001010
103.803775
107 593089
101.000000
107.304622
110 214220
110.314339
112.30052
110 050501
116.978721
$120 \ 907447$
120.501441
125.052771
123 002087
120.332301
123.880529
101 160107
121.108197
122.667609
100 000001
126.300924
125 688681
120.00001
126.915488
120 892912
100.040410

199 191695
155.454085
132.875089
127.565603
195 151675
120.101070
128.066785
129.630486
130 710026
130.710020
134.550988
136.825919
$137 \ 903912$
100.00512
139.805458
138.067781
137.242536
127 210059
157.510958
130.373455
133.716559
133 855798
100.000120
128.992193
129.797831
138 717491
147 510000
147.519992
149.155896
153.785213
153 810801
155.810891
158.390939
153.198067
145 580979
144.04004
144.94094
143.611349
143.580133
142 120616
142.120010
145.174348
141.249727
140.533841
144 000306
144.009500
137.835909
132.069783
$130 \ 302498$
100.002100 107.701000
121.101089
127.032378
123.615549
$123 \ 174428$
129.031430
134.43109
133.707458
133 087389
105.00/002
127.196178
124.725675
124.998402
197 174456
121.114430

129.239742
127.218386
128 23464
135 324063
142 242052
143.343933
143.229484
147.645525
150.248765
144.467267
140.507903
142.917926
151 415226
151.410220 152.405171
153.495171
154.800579
162.269232
162.869942
156.327132
154.664649
154.096102
158 624531
167.620251
166 94066
100.84900
175.049839
178.598838
184.553017
200.29578
202.688562
203.943295
214 814032
236 730103
230.739103
237.188061
241.426105
248.87877
251.583255
251.540621
258.399539
260.200188
253 758022
200.100022
247.770701
243.01291
246.743635
245.074542
242.332984
242.756627
233.162972
230.459206
224 950794
221.000104
233.004907
233.621819

234 189389
234 01624
232.816753
232.010133
242.400457
244.293054
240.352217
240.047592
234.763035
237.448114
237.779223
235.913568
232.725418
241 605633
264 716095
204.110035
270.907332
262.585421
258.634407
254.607594
251.011234
236.600951
244.182826
240.793183
235.377297
200.011201 224 189587
224.109007
210.003232
223.294000
231.314074
229.425498
233.479311
232.146941
223.807552
220.258967
214.81364
208 705727
205 368235
200.000200 201.040441
201.340441 200.111074
209.111974
212.002023
209.045043
214.442584
223.929536
220.759039
217.991732
228.113398
250.185617
248.261321
243.861834
237 677148
239 673798
200.010100
444.004940

230.000919
222.12764
217 7105
217.7100
210.230107
218.783691
218.187954
215.892145
206.301069
200 305081
107 262452
197.202432
195.888825
191.333127
183.796296
189.938206
188 394057
100.554007
199.010290
214.099014
225.942913
221.502923
231.462133
239 972164
200.012104
240.897039
240.970512
244.582524
254.706805
266.729604
266 460586
264 600633
204.009033
272.806813
277.36373
275.059771
280.079147
284 678208
201.070200
290.113933
294.018223
294.888861
290.773709
287.145824
290.422104
294 506534
209.070100
298.978198
298.859769
298.92309
300.322251
301.365302
304.489592
305 503218
202 206506
302.200500
302.094604
299.449339

297.792211
296.004382
293.312742
291.132407
291.928226
287.502341
291.489179
299.442719
299.958486
299.576983
299.134599
299.006078
301.771725
289.693247
282.471106
278.37914
277.123647
281.632681
290.591913
296 363051
279 822637
277.573853
266 116993
265 055586
264 670738
263 73707
203.13101
203.399211
204.30301 265.032037
263.052057
203.170010
210.011930
200 474977
300.474877
300.391943
300.802809
300.704133
300.8179
300.611792
302.533537
304.067943
303.180602
302.291925
305.107897
312.550486
320.085217
328.751364
331.134762
338.362326
351.698443
357.503614

357.425501357.055715357.279053357.28324357.312873 357.961206357.665591 357.561898357.651666357.882079358.097067 359.326465 358.802558 358.890533358.029968357.581236 357.613592 357.743517 357.645345;

```
z1 = M(1:numel(M) - 2);
z_2 = M(2:numel(M)-1);
z3 = M(3:numel(M));
w = zeros(numel(M) - 8, 1);
for i = 5:numel(M)-4
    a = (M(i-4)+M(i-3)+M(i-2)+M(i-1)+M(i)+M(i+1)+M(i+2)+M(i+3)+M(i+4))/9;
    w(i-4) = M(i)-a;
end
sp = 1;
w1 = w(1:numel(w)-2*sp);
w2 = w(1+sp:numel(w)-sp);
w3 = w(1+2*sp:numel(w));
figure (1)
scatter3(z1, z2, z3)
xlabel('z_{n}')
ylabel ('z_{-}{n+1}')
zlabel ('z_{-}{n+2}')
figure (2)
plot(0:numel(M)-1,M)
figure (3)
scatter3(w1,w2,w3)
xlabel('w_{-}\{n\}')
ylabel('w_{-}\{n+1\}')
zlabel('w_{-}\{n+2\}')
```

```
numel(w)
numel(M(5:numel(M)-4))
figure(4)
scatter3(M(5:numel(M)-4),w,M(6:numel(M)-3))
```

```
 xlabel('z_{-}{n}') 
ylabel('w_{-}{n}') 
zlabel('z_{-}{n+1}')
```

numel(M)