Modified Lotka-Volterra systems

Nizar Ezroura
Michail Athanasakis
M53 15F

"Canonical" Lotka-Volterra system

- Fundamentally: Lotka-Volterra equations are a system of coupled, autonomous, $1^{\text {st }}$-order ODEs adapted from individual Verhulst (logistic) models:
$\left\{\begin{array}{l}\frac{d x}{d t}=x(\alpha-\beta y) \\ \frac{d y}{d t}=y(\delta x-\gamma)\end{array} \quad\right.$ with $\alpha, \beta, \gamma, \delta$ all positive constants

Dynamics of the canonical model:

Stability: two equilibria at $(0,0)$ and $\left(\frac{\gamma}{\delta}, \frac{\alpha}{\beta}\right)$
Jacobians: $J(0,0)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & -\gamma\end{array}\right) \rightarrow \mathrm{SP}, J\left(\frac{\gamma}{\delta}, \frac{\alpha}{\beta}\right)=\left(\begin{array}{cc}0 & -\frac{\beta \gamma}{\delta} \\ \frac{\alpha \delta}{\beta} & 0\end{array}\right) \rightarrow \lambda= \pm i \sqrt{\alpha \gamma} \rightarrow$ stable periodic orbits
Also, as the model is autonomous and $1^{\text {stt-order, Poincaré-Bendixson theorem predicts no chaos }}$ for these systems (even in the subsequent variations of these equations)

$$
\begin{aligned}
x^{\prime}(t) & =x(t)(0.3-0.2 y(t)) \\
y^{\prime}(t) & =y(t)(0.4 x(t)-0.5)
\end{aligned}
$$

Initial conditions $(x(0), y(0))=(3,1)$

"Canonical" LV system with 3 species

System: $\left.\begin{array}{c}\frac{d y}{d t}=x(\alpha-\beta y) \\ \frac{d z}{d t}=z(\delta x-\varepsilon z-\gamma) \\ \frac{d z}{d t}(\zeta y-\eta)\end{array}\right\} \alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta$ constants

- a: represents the natural growth rate of in the absence of predators
- B: represents the effect of predation on x
- Y : represents the natural death rate of y
- δ : represents the efficiency rate of y in the presence of x
- \quad : represents the effect of predation on species y by species z
- Ђ: represents the natural death rate of the predator z in the absence of prey
- n : represents the efficiency of the predator z in the presence of prey y

"Canonical" LV system with 3 species

- Equilibria: 2 points: $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}\gamma / \delta \\ \alpha / \beta \\ 0\end{array}\right)$.
- Jacobean: $\operatorname{Df}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}\alpha-\beta y & -x \beta & 0 \\ y \delta & \delta x-\varepsilon z-\gamma & -y \varepsilon \\ 0 & z \zeta & \zeta y-\eta\end{array}\right)$
- For parameters $\alpha=0.3 \quad B=0.2 \quad \gamma=0.4 \quad \delta=0.5 \quad \varepsilon=0.1 \quad \zeta=0.7 \quad \eta=0.3$:

For $\operatorname{Df}\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ are $\lambda= \pm 0.3,+0.4 \rightarrow$ saddle, and
For $\operatorname{Df}\left(\begin{array}{c}\gamma / \delta \\ \alpha / \beta \\ 0\end{array}\right)$ are $\lambda= \pm 0.1095 i, 0.75 \rightarrow$ unstable

"Canonical" LV system with 3 species

Single Trajectory for IC $(5,2,1)$

Single Trajectory for IC $(5,2,1)$

"Canonical" LV system with 3 species

Modifying the equations (more complex predator-prey behavior)

- We will look at variations to the relative consumption behavior (overconsumption of $x(t)$ by $y(t)$):
- first when $(\alpha-\beta y)$ is changed to $\left(\alpha-\beta y^{n}\right)$ (explicitly here, case of $n=2$)
- Dynamics:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x\left(\alpha-\beta y^{n}\right) \\
\frac{d y}{d t}=y(\delta x-\gamma)
\end{array}\right.
$$

Equilibria at $(0,0)\left(J=\left(\begin{array}{cc}\alpha & 0 \\ 0 & -\gamma\end{array}\right) \rightarrow \mathrm{SP}\right),\left(\frac{\gamma}{\delta}, \pm \sqrt{\frac{\alpha}{\beta}}\right)(\mathrm{J}=$ $\left(\begin{array}{cc}0 & -2 \beta\left(\frac{\gamma}{\delta}\right) \sqrt{\frac{\alpha}{\beta}} \\ \delta \sqrt{\frac{\alpha}{\beta}} & 0\end{array}\right) \rightarrow \lambda \in i \mathbb{R} \rightarrow$ periodic orbits)

Initial conditions $(x(0), y(0))=(3,1)$

Initial conditions $(x(0), y(0))=(3,-1)$

- And now changing $(\alpha-\beta y)$ to $\left(\alpha-\beta e^{y}\right)$:

Equilibria at $(0,0)$ and $\left(\frac{\gamma}{\delta}, \log \frac{\alpha}{\beta}\right)$
For $(0,0): J=\left(\begin{array}{cc}\alpha-\beta & 0 \\ 0 & -\gamma\end{array}\right)$ (then SP for $\alpha>\beta$, sink for $\alpha<\beta$)
For $\left(\frac{\gamma}{\delta}, \log \frac{\alpha}{\beta}\right): \quad J=\left(\begin{array}{cc}0 & -\frac{\gamma \alpha}{\delta} \\ \delta \log \frac{\alpha}{\beta} & 0\end{array}\right)$ (periodic orbits for $\alpha>\beta$, SP for $\alpha<\beta$)

$$
\begin{aligned}
& \alpha>\beta \\
& x^{\prime}(t)=x(t)\left(0.3-0.2 e^{y(t)}\right) \\
& y^{\prime}(t)=y(t)(0.4 x(t)-0.5)
\end{aligned}
$$

