
CPRNGs as An Application of Chaos

Carter J. Bastian
Math 53, 15F

January 7, 2016



Carter J. Bastian Math 53, 15F

Purpose

The purpose of this project is to explore the use of chaotic pseudo-random number
generators (CPRNGs) as an application of chaos theory. The main objective is to
develop, test, and analyze an extensible1 series of CPRNGs based in simple maps
which can have chaotic orbits.

To this end, the software at
https://github.com/carterjbastian/chaotic-prngs
was developed and implemented in tandem with the dieharder test series[1] to
analyze the validity of this use of chaos.

Background Information

Blackledge and Ptitsyn define a pseudo-random number generator (PRNG) as a
“deterministic algorithm that, on input of a short seed (an initial condition), out-
puts a typically much longer sequence that is computationally indistinguishable
from a uniformly chosen string”[3]. This definition spawns two important theoret-
ical considerations that must be accounted for while designing CPRNGs.

First, it’s important to differentiate between chaos and pseudo-chaos. Whereas
chaotic maps consist of infinitely precise state variables, the orbits computed in
any practical simulation must be represented with a finite binary length (in this
case, 32 bits). This means that,

1. there is a finite number of states in any pseudo-chaotic system,

2. the result of successive iterations is an approximation subject to non-trivial
roundoff error, and

3. the pseudo-chaotic system may be observed on a finite time scale or granularity[3].

This distinction is important because, as Blackledge and Ptitsyn state, pseudo-
chaos is always a “poor approximation of chaos because the approximated model
does not converge to the original model”[3]. This means both that systems that
are theoretically chaotic may exhibit non-chaotic properties and that systems that
are not formally chaotic may exhibit pseudo-chaotic properties.

This divergence between theory and application causes a series of challenges
which must be taken into consideration whenever chaos theory is applied in a
crypto-system. First and foremost, many of the tools used in theoretical chaos
cease to be applicable. For example, while the analytic Lyapunov exponent –
a measure of the rate at which orbits that are arbitrarily close to one another
separate – of a chaotic map will be larger than the Lyapunov exponent of it’s
pseudo-chaotic counterpart [5][3].

Furthermore, the use of the Lyapunov exponent as a measure of a pseudo-
chaotic system’s predictability (or lack thereof) is flawed in that it does not con-
sider the scope or resolution over which the system is observed [6]. As such, one

2



Carter J. Bastian Math 53, 15F

needs to adopt an alternative measure based less in chaos theory and more in
information and complexity theory [3]2.

Second, without a practical way to rigorously prove or check the indistinguisha-
bility of a long sequence from one uniformly chosen, statistical tests must be used
instead to evaluate the quality of CPRNGs. Because of the inevitability of peri-
odicity implied by the finite state space of pseudo-chaotic systems, it’s important
that the tests be applied with an extremely large resolution. An ideal pseudo-
chaotic crypto-system would consist of a single periodic orbit iterating over the
entire state space. However, for practical use of a CPRNG, we only need to require
that the periodic orbit asymptotically reached from the initial condition be both
long enough and structurally diverse enough as to not allow an arbitrarily large
amount of knowledge of past states to yield significant insight into future behavior
of the system.

The dieharder test suite was employed to provide some measurable degree of
certainty regarding the practical usability strength of each developed CPRNG.
The dieharder suite is a battery of tests designed to rigorously apply generators
of possibly-random numbers to the point of failure [1]. As such, many of the
tests performed requires a large amount of generated output. So as to not in-
duce unnecessary and artificial periodicity into the tests (by allowing the input to
the dieharder tests to repeat), 1,000,000,000 numbers were generated with each
CPRNG for consumption by DieHarder3.

Notes on Project Design

In order to accurately test a PRNG, the dieharder package requires a large sample
of presumably-random 32-bit integers. These samples consist of 1,000,000,000
unsigned (32-bit) integers and can be found in the “output” directory of the source
code.

Further, for reference, the corresponding trace files (in the “trace” directory of
the source code) contain the floating-point values on the map’s original interval
(usually [0,1] unless otherwise noted in the generators.c internal documentation).

The maps implemented as PRNGs (listed and described fully in Appendix A)
were chosen somewhat arbitrarily. Considerations included whether the map had
been covered or seen throughout the term (such as the tent and logistic maps),
the ease of computation (such as the sine map and the iterative map), or previous
use in application4.

For comparison, the industry standard random number generator – glibc’s
linear congruential PRNG implemented as rand() in the stdlib.h package – was
tested alongside the newly developed CPRNGs. This design decision was based
on the assumption that the standard could serve as an industry-grade benchmark
with respect to its ability as a PRNG and it’s performance metrics.

The conditions for the pseudo-chaotic systems were selected in the same manner
as the seeds standard PRNGs in the GNU Scientific Library (GSL) tradition. This
is because, in order for a PRNG to be usable, one must be able to seed across its

3



Carter J. Bastian Math 53, 15F

entire range of possible initial conditions [7]. The implications of this for CPRNGs
will be further discussed in the conclusions.

Experimental Results

In short, the CPRNGs consistently performed quite well on a small subset of the
dieharder tests. There were a few outlying CPRNGs which performed quite well
outside of this subset of consistently-passed tests. Overall, there was only one
CPRNG which failed entirely in its capacity to generate pseudo-random output.
However, even the highest-performing CPRNGs were unable to match the capa-
bilities of the control.

The tests which were passed almost uniformly by the CPRNGs birthday spac-
ings test (in which a set of random points chosen on a large interval is tested for
an exponential distribution), and the 32x32 and 6x8 rank tests (in which the rank
of multiple matrices built from random numbers is counted) [8]. Notice that these
tests are the three which require the fewest random numbers of the entire test
suite.

Recall that the periodic orbits eventually reached by the CPRNGs must be
both unpredictably distributed and sufficiently long (approaching the size of the
state space) in order for such an orbit to be capable of producing pseudo-random
data. One explanation for the inconsistencies in the test results is that the idea
of a “sufficiently long” periodic orbit is dependent on the amount of random data
required, or the granularity at which one is analyzing the randomness of CPRNG
resolution.

In other words, the passing of the tests requiring less data suggests that the
pseudo-chaotic orbits achieved by almost all of the maps were sufficiently diverse in
distribution to be used as good approximations to random data, but were simply
too short for use in more consumptive tests.

With that in mind, there were a few notable outliers in the set of PRNGs
(namely, the Chebyshev map, the piecewise map, the modified tent map, and the
circle map) which were able to perform well on tests outside the set of those passed
easily by the CPRNGs. While it is difficult to analytically or computationally
pinpoint exactly why these CPRNGs performed better than their counterparts
(for reasons fully enumerated in End Note 4), it is reasonable to believe that it
has to do either with the length of the periods these maps approached or with the
even distribution of these eventually periodic orbits across the state space.

This can be seen especially clearly in the successes of the modified tent and
piecewise maps. While these maps failed to pass even the 6x8 rank test (which was
passed by all other CPRNGs except that of the singer map), they succeeded fully
in the entire set of NIST sts monobit and series tests, designed to test the series of
random numbers as randomly constructed strings of bits at various resolutions (re-
ferred to in the tests and in Appendix B as ”ntups”). This suggests that, although
the periodic orbits may be too confined, they still consisted of quite unpredictable
selections throughout the sample space [9] and thus worked exceedingly well on a

4



Carter J. Bastian Math 53, 15F

small scope.
On the other hand, it is much easier to analytically explain the shortcomings

of extremely poor performers. The most clear example of this is the standard tent
map (see Appendix A). As demonstrated in class, the set of all initial conditions
for chaotic orbits of the tent map is the set of numbers without a finite binary
expansion – the set of irrationals. Accordingly, the tent map’s pseudo-chaotic
counterpart (implemented and demonstrated in full in the file /src/broken/tent.c,
but replaced with the “modified tent” map in actual experimentation) quickly falls
into a short periodic orbit and thus fails each of the dieharder tests.

Similarly, the singer map failed for dynamical reasons; the finite initial seed
provided at run time was in the basin of an attracting fixed point for the pseudo-
chaotic system analog (0.6821692814), and the potentially-random orbit quickly
fell into period-1 repetition.

In terms of performance, some of the CPRNGs (especially the Chebychev map)
performed well, even in comparison to a highly-optimized industry standard with
performance features such as specialized compilation techniques on most platforms.
This suggests that, with any amount of low-level optimization, some of these maps
may have the potential to match or even outperform the control PRNG. This
would make them extremely valuable tools for use in situations where lightweight
PRNGs are needed at a small scope.

Analysis

The observations from the dieharder tests breakdown of the CPRNGs provide us
with some insights into the relationship between properties of the finite analogs
of chaotic maps and their applicability and potential for use as random number
generators.

First, the size and distribution of the set of pseudo-chaotic initial conditions
affects the statistical consistency of the CPRNGs results. The smaller this set, the
more likely it is that a CPRNG will fail entirely by falling into an unsuitably short
orbit or even getting trapped into spitting out the same exact “random” number
repeatedly forever. Clearly, both of these behaviors are unacceptable in PRNGs,
and thus much care needs to be taken in CPRNG design to ensure that either the
map has no such pitfalls or that, as suggested by Senkerik et. all, some mechanism
is put in place to automatically catch problematic initial conditions and switch to
the use of a different chaotic map within the CPRNG [7].

Second, the periodicity of various orbits in a pseudo-chaotic map has a large
effect on the resolution or scale at which a CPRNG is useful. Taking care to design
pseudo-chaotic maps in such a way that the minimum orbit is decided to be suffi-
ciently long for use in a particular application. This practice has been the primary
method of improvement of standard PRNGs since the advent of Linear Congru-
ential Model and may prove to be highly useful in the design and engineering of
CPRNGs as well [8].

Third, the distribution of points across the system’s state space for each orbit

5



Carter J. Bastian Math 53, 15F

within a pseudo-chaotic map seems to play a defining role in the extent to which
a CPRNG succeeds at random number generation (when seeded with an initial
condition for a sufficiently-long, eventually-periodic orbit).

In conclusion, it appears that pseudo-chaos is a fairly unexplored aspect of
chaos theory, and yet is one with great potential for application. The results of
the tests suggested that efficient, powerful CPRNGs are a very real possibility, and
may be useful already as lightweight PRNGs working with limited-scope use.

6



Carter J. Bastian Math 53, 15F

Notes

1 A major development focus for this project was to design these CPRNGs in such a way that
they would be easily extensible for future development and practical use. To this end, all software
was designed and constructed using software engineering practices which may seem unnecessary
for the mathematics, but will be largely helpful to anyone trying to build, test, use, or extend the
set of CPRNGs implemented in this assignment.

The other justification for this focus is that the implementation of the CPRNGs tested should
be as similar to the implementation in which they would be applied. This is the primary jus-
tification for the choice of C (instead of MATLAB, R, or even a higher-level language such as
Python).

2Blackledge and Ptitsyn recommend the use of Kolmogorov-Sinai entropy. It’s interesting
to note that this is related both to the Lyapunov Exponent of an orbit at various resolutions,
and also to the algorithmic complexity of the pseudo-chaotic system. This touches one of the
core issues with CPRNG development from analytically chaotic maps; while complexity is not
a necessary property in chaotic systems, it is a necessary characteristic of strong PRNGs [3].
However, further analysis along these lines is beyond the scope of this project and is more fully
developed in Blackledge and Ptitsyn’s paper.

3The amount of rigor required by dieharder to accurately gauge the “randomness” of each
generator was the source of many practical issues. Each attempted trial of the program had
to run for 10 to 12 hours, and upon completion, there was far too much data to import into
MATLAB without running out of memory, even for purposes as simple as graphing the tracefiles.

For example, in order to have calculated the Lyapunov exponent, one would needed to have
read through the entirety of each 13Gb text file and run a program to estimate the Lyapunov
exponent on an orbit no greater than the length of the shortest orbit found. With 20 orbits of
1,000,000,000 points each, this is a nontrivial computational challenge.

This difficulty, in addition to the weaknesses with traditional chaotic measures on pseudo-
chaotic orbits (described in background information), is why it was not feasible to calculate the
Lyapunov exponents of the pseudo-chaotic orbits. Furthermore, computing more-viable measures
such as the orbits’ Kolmogorov-Sinai Entropies is a computational challenge outside the scope of
this project.

4An example of this is the choice of some of the maps suggested for use in Biogeography based
optimization of neural computation by Saremi and Mirjalili [2]

7



Carter J. Bastian Math 53, 15F

References

[1] Brown, R. G. (n.d.). Robert G. Brown’s DieHarder Page. Retrieved January
07, 2016, from http://www.phy.duke.edu/ rgb/General/dieharder.php

[2] Saremi, S., & Mirjalili, S. (2013). Integrating Chaos to Biogeography-Based Op-
timization Algorithm. International Journal of Computer and Communication
Engineering IJCCE, 655-658.Zur Elektrodynamik bewegter Körper. (German)

[3] Blackledge, J., & Ptitsyn, N. (2010). Encryption using Deterministic Chaos.
ISAST Transactions on Electronics and Signal Processing, vol. 4, issue 1, pp.
6-17.

[4] S.K. Park & K.W. Miller (1988). Random Number Generators: Good Ones Are
Hard To Find. Communications of the ACM 31 (10): 1192–1201.

[5] Alligood, K. T., Sauer, T. D., & Yorke, J. A. (2000). Chaos: An introduction
to dynamical systems. New-York: Springer.

[6] Boffetta, G. (2002). Predictability: A way to characterize complexity. Physics
Reports, 356(6), 367-474

[7] Senkerik, R., Pluhacek, M., Zelinka, I., & Oplatkova, Z. K. (2014). Utilization
of the Discrete Chaotic Systems as the Pseudo Random Number Generators.
Advances in Intelligent Systems and Computing Modern Trends and Tech-
niques in Computer Science, 155-164.

[8] Renyl, A. (1953). On the Theory of Order Statistics Acta Mathematica Hun-
garica Akadémiai Kiadó, vol. 4, issue 3-4, pp.191-231

[9] National Institute of Standards and Technology (2010). A Statistical Test
Suite for the Validation of Random Number Generators and Pseudo Random
Number Generators for Cryptographic Applications NIST Special Publication
800-22rev1a http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-
22rev1a.pdf

8



Carter J. Bastian Math 53, 15F

Appendix A: Maps Tested

Chebyshev Map

xn+1 =
cos(i ∗ arccos(xn))

2

Circle Map

xn+1 = (xn + 0.2 − 0.5 sin(2πxn)

2π
)mod 1

Gauss Map

xn+1 = exp(−8.0x2n) − 0.6

Iterative Map

xn+1 = sin
0.7π

xn

Logistic Map

xn+1 = 3.57xn(1 − xn)

Modified Tent Map

xn+1 =

{
xn
0.7 xn < 0.7
10
3 (1.0 − xn) xn ≥ 0.7

Piecewise Map

xn+1 =


1.0−xn

0.4 0.6 ≤ xn < 1
0.6−xn

0.1 0.5 ≤ xn < 0.6
xn−0.4

0.1 0.4 ≤ xn < 0.5
xn
0.4 0 < xn < 0.4

Sine Map

xn+1 = sinxnπ

Singer Map

xn+1 = 1.07(−13.302875x4n + 28.75x3n − 23.31x2n + 7.68xn)

Sinusoidal Map
xn+1 = 2.3x2n sin(πxn)

9



Appendix B: DieHarder Test Results 

Control Cheby circle gauss iterate log mtent piece sine singer sinus

birthday 0.80037713 0.61612158 0.69002300 0.14540994 0.68974158 0.00000000 0.97484422 0.46939423 0.28385343 0.00000000 0.98521939

operm5 0.87698994 0.70707689 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

rank (32 x 
32) 0.71787430 0.98911707 0.38547362 0.56991125 0.07764281 0.27246476 0.51828621 0.30537308 0.47160765 0.00000000 0.42179329

rank (6 x 
8) 0.98221815 0.34669293 0.98420807 0.94639648 0.29876321 0.00018419 0.00000000 0.00000000 0.04711309 0.00000000 0.47319463

bitstream 0.86164212 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.29326739 0.30765939 0.00000000 0.00000000 0.00000000

opso 0.01560613 0.01319234 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

oqso 0.02954957 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

dna 0.36274614 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

count 1s 
str 0.91680337 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

count 1s 
byte 0.38060358 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

parking 
lot 0.79600924 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

2d sphere 0.73163604 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

3d sphere 0.69822030 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000



squeeze 0.91864526 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

runs (1) 0.78263170 0.87351971 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

runs (2) 0.44210106 0.49737442 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

craps (1) 0.85406703 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

craps (2) 0.06072170 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

marsaglia 
tsang gcd
(1)

0.49452632 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

marsaglia 
tsang gcd
(2)

0.12324267 0.46955378 0.03685836 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

sts 
monobit 0.65511215 0.54276764 0.00000000 0.00000000 0.18736829 0.00000000 0.73577198 0.82015233 0.00000000 0.00000000 0.00000000

sts runs
0.11869829 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.76663333 0.28902569 0.00000000 0.00000000 0.00000000

sts serial
ntups = 1 0.65511215 0.54276764 0.00000000 0.00000000 0.18736829 0.00000000 0.73577198 0.82015233 0.00000000 0.00000000 0.00000000

sts serial
ntups = 2 0.80235845 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.44412050 0.31662081 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 3

0.84397721 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.79864491 0.95372691 0.00000000 0.00000000 0.00000000

sts serial 
(2)
ntups = 3

0.94185356 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.79810964 0.48195750 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 4

0.96709032 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.02191229 0.72869188 0.00000000 0.00000000 0.00000000

Control Cheby circle gauss iterate log mtent piece sine singer sinus



sts serial 
(2)
ntups = 4

0.20776304 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.01670098 0.20358673 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 5

0.64218821 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.01893154 0.15558838 0.00000000 0.00000000 0.00000000

sts serial 
(2)
ntups = 5

0.73363534 0.00000000 0.56925823 0.00000000 0.00000000 0.00000000 0.98559162 0.23513045 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 6

0.84014037 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.13572548 0.15258654 0.00000000 0.00000000 0.00000000

sts serial 
(2)
ntups = 6

0.96719431 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.86706303 0.30806653 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 7

0.49695827 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00165143 0.67421597 0.00000000 0.00000000 0.00000000

sts serial 
(2)
ntups = 7

0.22415817 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.09253935 0.32256166 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 8

0.87314884 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.14377708 0.95403385 0.00000000 0.00000000 0.00000000

sts serial 
(2)
ntups = 8

0.59261587 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.99516053 0.96963698 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 9

0.83471442 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.26507755 0.90679242 0.00000000 0.00000000 0.00000000

sts serial 
(2)
ntups = 9

0.99686110 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.47290753 0.47024589 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 10

0.81931026 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.24494277 0.18140977 0.00000000 0.00000000 0.00000000

sts serial 
(2)
ntups = 10

0.32264707 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.91558222 0.59951817 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 11

0.66225979 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.27898207 0.61880597 0.00000000 0.00000000 0.00000000

Control Cheby circle gauss iterate log mtent piece sine singer sinus



sts serial 
(2)
ntups = 11

0.85707797 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.18652946 0.90827716 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 12

0.30820180 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.56756119 0.13456096 0.00000000 0.00000000 0.00000000

sts serial 
(2)
ntups = 12

0.37041744 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.56228444 0.60003194 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 13

0.27864397 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.74029006 0.65589206 0.00000000 0.00000000 0.00000000

sts serial 
(2)
ntups = 13

0.46646329 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.65634770 0.80806436 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 14

0.80459771 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.16740276 0.99580894 0.00000000 0.00000000 0.00000000

sts serial 
(2)
ntups = 14

0.95926557 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.62691250 0.29550675 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 15 0.68692471 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.70582595 0.44034454 0.00000000 0.00000000 0.00000000

sts serial 
(2)
ntups = 15

0.43717751 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.60430976 0.34172733 0.00000000 0.00000000 0.00000000

sts serial 
(1)
ntups = 16

0.57670831 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.42694708 0.97524520 0.00000000 0.00000000 0.00000000

sts serial 
(2)
ntups = 16

0.95730758 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.98301047 0.58302278 0.00000000 0.00000000 0.00000000

rgb 
minimum 
distance

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

rgb 
permutati
ons

0.70423102 0.95946617 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

rgb kstest 
test 0.43989972 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000001 0.00000000 0.00000000 0.00000000

Control Cheby circle gauss iterate log mtent piece sine singer sinus



Color Code: 
 green Full Pass 
 yellow Weak Pass 
 red Failed  

dab byte 
distrib 0.98114803 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.39423380 0.00000000 0.00000000 0.00000000

dab dct 0.55616945 0.51936377 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.01757265 0.00000000 0.00000000 0.00000000

dab fill 
tree (1) 0.29884218 0.99018824 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

dab fill 
tree (2) 0.46261950 0.91111412 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

dab fill 
tree 2 (1) 0.69606118 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

dab fill 
tree 2 (2) 0.43562959 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

dab 
monobit 2 0.59964022 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 1.00000000 1.00000000 0.00000000 1.00000000

Control Cheby circle gauss iterate log mtent piece sine singer sinus



Appendix C: Performance Results 

Time Control Cheby circle gauss iterate log mtent piece sine singer sinus

Real 11m12.913s 13m36.957s 12m50.958s 13m56.388s 14m50.037s 15m58.258s 17m53.710s 17m52.890s 16m21.521s 18m55.896s 20m21.797s

User 9m9.341s   10m53.023s 9m58.970s 9m50.527s 9m49.312s 8m53.796s 9m17.165s 9m22.241s 9m44.204s 10m55.871s 9m57.889s

Sys 0m39.246s  0m49.477s 0m50.541s 0m50.890s 0m43.047s 0m45.368s 0m49.794s 0m49.067s 0m50.498s 0m49.914s 1m14.486s  


