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Our project for Math 53 deals with Lotka-Volterra systems and their dynamical properties, with an 

interpretative emphasis on the biological implications of our results. For the project, Nizar Ezroura 

and I decided to work on the canonical (or, simply, the normally accepted) form of the Lotka-

Volterra system for 2-species and for 3-species chains, and then examine two variations of the 2-

species system under our personal modification. 

For a 2-species chain, the simple Lotka-Volterra system is an autonomous 1st order system: 

 

𝑑𝑥

𝑑𝑡
= 𝑥(𝛼 − 𝛽𝑦)

𝑑𝑦

𝑑𝑡
= 𝑦(𝛿𝑥 − 𝛾)

  

Here the x variable represents the population which is being preyed on, and the y variable 
represents the population of the predator. The four constants, α, β, γ, δ, are used as following:  

α: represents the natural growth rate of in the absence of predators 

β: represents the effect of predation on x 

γ: represents the natural death rate of y 

δ: represents the efficiency rate of y in the presence of x 
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This system has two equilibrium points, (0,0)  and  (
𝛾

𝛿
,
𝛼

𝛽
). Evaluating the Jacobean at each 

point gives us: 

 𝐽(0,0) = (
𝛼 0
0 −𝛾

) Which is a triangular matrix, one eigenvalue positive one negative, so the 

origin is a saddle point 

 𝐽 (
𝛾

𝛿
,
𝛼

𝛽
) = (

0 −
𝛽𝛾

𝛿
𝛼𝛿

𝛽
0
) Whose eigenvalues are ±𝑖√𝛼𝛾  and therefore it has stable periodic 

orbits. Using the values 𝛼 = 0.3, 𝛽 = 0.2, 𝛾 = 0.5, 𝛿 = 0.4 and plotting the graph, we see: 

                                                         

    Figure 1: y(t) versus x(t)                                                                                                              Figure 2: y(t) and x(t) versus t 

In Fig. 1 we see that the origin is a saddle point, and we can also see that there exists an attracting 

point in the first quartile. In Fig. 2 we can see how the populations of prey and predators vary over 

time; we should note how they are de-phased essentially running in a circle where the minimum 

of one quantity approximately corresponds to the point in time for the other quantity’s maximum.  
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Turning to the 3-species chain now, the canonical form of the Lotka-Volterra system is now: 

𝑑𝑥

𝑑𝑡
= 𝑥(𝛼 − 𝛽𝑦)

𝑑𝑦

𝑑𝑡
= 𝑦(𝛿𝑥 − 휀𝑧 − 𝛾)

𝑑𝑧

𝑑𝑡
= 𝑧(휁𝑦 − 휂)

 

The newly added population, z, is a “super” predator that predates on population y but does not 

interact directly with population x. Such a biological system could be a chain of rats (as x), snakes 

(as y), and owls (as z). 

The meaning of the new constants bears the meaning:  

ε: represents the effect of predation on species y by species z 

ζ: represents the natural death rate of the predator z in the absence of prey 

η: represents the efficiency of the predator z in the presence of prey 

Working towards its dynamical analysis, we find the two equilibrium points to be  (
0
0
0
) and (

𝛾/𝛿
𝛼/𝛽
0

).  

The generalized form of the Jacobean is Df(
𝑥
𝑦
𝑧
) = (

𝛼 − 𝛽𝑦 −𝑥𝛽 0
𝑦𝛿 𝛿𝑥 − 휀𝑧 − 𝛾 −𝑦휀
0 𝑧휁 휁𝑦 − 휂

) and at the 

equilibrium points: 

Df (
0
0
0
) Has eigenvalues ±0.3,  + 0.4 so it is a saddle point. 
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Df (
𝛾/𝛿
𝛼/𝛽
0

) Has eigenvalues ±0.1095𝑖,  0.75 so it is unstable. For the calculation of the eigenvalues 

we used the values for the parameters: 

𝛼 = 0.3  𝛽 = 0.2  𝛾 = 0.4  𝛿 = 0.5  휀 = 0.1  휁 = 0.7  휂 = 0.3 

The following plots show a single trajectory in three dimensions of our system: 

    

We can see in the xz-plane plot that x and z are correlated, as expected. We cannot talk about 

causation in their relationship, of course, as they do not interact directly in any way, but their 

indirect interaction verifies that they should be positively correlated. As the population of x 

increases, there is an ambundance of resources for y to grow, and therefore an ambundance of 

resources for z to grow. Also, as z grows, its effect on the population of y causes the latter to be in 

fewer and fewer numbers, and therefore x can grow freely. There is a small “drawback” at every 

step in both graphs that we could interpret as the “phase” of cycle that we encountered in the 2-

species chain example too. This drawback is slightly exaggerated in the following graph:  
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 This figure shows y(t) versus t. We can see that 

the drawback in this case reduces it to zero after every step, or close to 0 enough so that the 

population would biologically not be able to recover in numbers as quickly as the model expects 

(certain time for members to reach maturity, for reproduction to take place, etc.) This could be 

expected, since there is no constant in the system that accounts for the natural growth of y as a 

population – its growth is determined totally from its predation on x, which is not what would 

realistically happen in a biosystem. But the LV system is more interested in the interaction 

between the species than in accurately portraying the evolution on their own. 

Our personal modification of the LV system for 2-species chain had these changes:  

𝑑𝑥

𝑑𝑡
= 𝑥(𝛼 − 𝛽𝑦𝑛)

𝑑𝑦

𝑑𝑡
= 𝑦(𝛿𝑥 − 𝛾)

 Which has a monomial term in place of the y factor in the first equation, and 

𝑑𝑥

𝑑𝑡
= 𝑥(𝛼 − 𝛽𝑒𝑦)

𝑑𝑦

𝑑𝑡
= 𝑦(𝛿𝑥 − 𝛾)

 which has an exponential term. The following table summarizes our analysis for 

both systems: 
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System with monomial term for n=3 System with exponential term 

Equilibria: (0,0) and (
𝛾

𝛿
, √

𝛼

𝛽

3
) (0,0) and (

𝛾

𝛿
, log

𝛼

𝛽
) 

Jacobeans:  𝐽(0,0) = (
𝛼 0
0 −𝛾

) 

J(
𝛾

𝛿
, ± √

𝛼

𝛽
 ) =

(

 
 
 
0 −2𝛽 (

𝛾

𝛿
)√
𝛼

𝛽

𝛿√
𝛼

𝛽
0

)

 
 
 

 

𝐽(0,0) = (
𝛼 − 𝛽 0
0 −𝛾

) 

𝐽 (
𝛾

𝛿
, log

𝛼

𝛽
) =

(

 
0 −

𝛾𝛼 

𝛿

𝛿 log
𝛼

𝛽
0
)

  

Stability:  

(0,0) is a saddle point 

(
𝛾

𝛿
, ± √

𝛼

𝛽
 ) leads to periodic orbits  

 

(0,0) is a saddle for 𝛼 > 𝛽, sink for 𝛼 < 𝛽 

(
𝛾

𝛿
, log

𝛼

𝛽
) has periodic orbits for 𝛼 > 𝛽,  and 

is a saddle for 𝛼 < 𝛽 

 

On the contours, the Lyapunov function of both systems satisfies the requirement: �̇� = 0 and 

𝐸(𝑥, 𝑦) stays positive. Explicitly, the forms are: 

System with monomial term for n=3 System with exponential term 

𝐸 = 𝛿𝑥 + ß𝑦 − 𝛾 𝑙𝑛𝑥 + 𝛼/𝑥 
𝐸 = 𝐾 + 𝛿𝑥 + 𝛽𝑦 − 

𝛾 ln 𝑥 + 𝛼𝑒−𝑦 

 

Therefore both of these systems include closed periodic orbits.  
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Closed periodic orbits for monomial system       Closed periodic orbits for the exponential system 

Biologically inaccurate, as the orbits move to negative 
values for the y population 

 

On numerical accuracy: 

“ode45” was used for all of the 𝑥(𝑡) and 𝑦(𝑡) computations, in solving the ODEs. A fixed 

parameter of relative error 10−5 was used, although 10−3 was enough to yield smooth and non-

interrupted solution curves.  
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Appendix 
MATLAB codes: 

For the system solver: 

                              
%F = @(t, y) [ y(1)*(0.3-0.2*y(2)); y(2) *(0.4*y(1)-0.5)] 
%F = @(t, y) [ y(1)*(0.3-0.2*y(2)^3); y(2)^3 *(0.4*y(1)-0.5)]; 
%F = @(t, y) [ y(1)*(0.3-0.2*exp(y(2))); exp(y(2)) *(0.4*y(1)-0.5)]; 
  
yo = [3;1];                              % IC for u and v 
[ts, ys]  = ode45(F, [0 50], yo,odeset('reltol',1e-5)); % numerically solve in t domain [0,50] 
figure; 
plot(ts,ys(:,1)) 
hold on 
plot(ts,ys(:,2)) 
xlabel('Time') 
xlabel('Time interval [0,50]') 
ylabel('Species population x(t), y(t)') 
title('Initial conditions (x(0),y(0))=(3,1)') 
legend('x(t)','y(t)') 
 
 

For the 3-species plot: 

function my_phase() 
[~,X] = ode45(@gg,[0 5], [5 2 1]); 
u = X(:,1); 
w = X(:,2); 
v = X(:,3); 
plot3(u,w,v) 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid 
title('Single Trajectory for IC (5,2,1)') 
size(u) 
tt=linspace(0,5,4013); 
figure; 
plot(tt,u) 
title('x') 
figure; 
plot(tt,w) 
title('y') 
figure; 
plot(tt,v) 
title('z') 
end 
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function dX = gg(t, y) 
dX = zeros(3,1); 
u  = y(1); 
w  = y(2); 
z  = y(3); 
a = 5; b = 2; c = 0.3; d = 0.1; e = 0.2; f = 0.2; g = 2; 
dX = [y(1)*(a-b*y(2)); y(2)*(d*y(1)-e*y(3)-c); y(3)*(g*y(2)-f)]; 
end 
 
 

 


