Math 42, Winter 2017

Homework set 5, due Wed Feb 8
Collaboration and discussion of the problems is permitted, and even recommended. But you should write up and hand in your own solutions independently.

1. Consider the quadratic surface $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=a x^{2}+2 b x y+c y^{2}\right\}$, where a, b, c are three constants. The single chart $\sigma: \mathbb{R}^{2} \rightarrow S$ with $\sigma(u, v)=\left(u, v, a u^{2}+2 b u v+c v^{2}\right)$ parametrizes all of S.

Calculate the First Fundamental Form

$$
\|\mathbf{v}\|^{2}=E \lambda^{2}+2 F \lambda \mu+G \mu^{2} \quad \mathbf{v}=\lambda \sigma_{u}+\mu \sigma_{v}
$$

for the chart σ. Note that E, F, G are functions of the parameters u, v.
2. This problem is about the unit sphere $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$. Let σ be the chart $\sigma: \mathbb{R}^{2} \rightarrow S$ that was given on the previous homework set, ${ }^{1}$

$$
\sigma(u, v)=\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right)
$$

Let f be the smooth map $f: S \rightarrow S$ given in x, y, z coordinates as

$$
f(x, y, z)=\left(x^{2}-y^{2}, 2 x y, z \sqrt{2-z^{2}}\right)
$$

(a) Show that if $(x, y, z) \in S$ then also $f(x, y, z) \in S$, i.e. f is indeed a map $S \rightarrow S$.
(b) Show that if P is a point on the equator of S, then the derivative $D_{P} f: T_{P} S \rightarrow T_{P} S$ is an invertible map.
(c) If Q is the South Pole $Q=(0,0,-1)$, what is the derivative $D_{Q} f$ of f at Q ?
(d) Calculate the First Fundamental Form of the sphere in the surface patch σ, i.e. find formulas for the coefficients E, F, G in the quadratic form $E \lambda^{2}+2 F \lambda \mu+G \mu^{2}$ (in terms of u, v).
(e) Use the First Fundamental Form to find the length of the closed curve γ on the sphere S that corresponds to the circle $u^{2}+v^{2}=r^{2}$ of radius $r>0$ in the chart domain.

[^0]
[^0]: ${ }^{1}$ On Homework set $4, \sigma$ was referred to as σ_{1}.

