Math 42, Winter 2017

Homework set 4, due Wed Feb 1
Collaboration and discussion of the problems is permitted, and even recommended. But you should write up and hand in your own solutions independently.

1. Consider the quadratic surface $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=a x^{2}+2 b x y+c y^{2}\right\}$, where a, b, c are three constants.
(a) Find a general formula for the two principal curvatures κ_{1}, κ_{2} (as defined by Euler) of S at the origin $(0,0,0)$.
(b) Find a general formula for the Gaussian curvature $\kappa=\kappa_{1} \kappa_{2}$ of S at $(0,0,0)$.
(c) Find a general formula for the so-called mean curvature $\left(\kappa_{1}+\kappa_{2}\right) / 2$ of S at $(0,0,0)$.
2. Consider the following atlas for the unit sphere $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ consisting of two charts. The first chart $\sigma_{1}: U_{1} \rightarrow S \cap W_{1}$ has domain $U_{1}=\mathbb{R}^{2}$ and

$$
\sigma_{1}(u, v)=\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right)
$$

The second chart $\sigma_{2}: U_{2} \rightarrow S \cap W_{2}$ has domain $U_{2}=\mathbb{R}^{2}$ and

$$
\sigma_{2}(u, v)=\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1},-\frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right)
$$

(The formulas for σ_{1} and σ_{2} differ only in the sign of the z-coordinate.) Remark: W_{1} and W_{2} are appropriate open subsets of \mathbb{R}^{3} that make the maps σ_{1}, σ_{2} bijective.
(a) What is the image $S \cap W_{1}$ of the map σ_{1} ?
(b) What is the image $S \cap W_{2}$ of the map σ_{2} ?
(c) What is the set $S \cap W_{1} \cap W_{2}$?
(d) What is the set $V_{1}=\sigma_{1}^{-1}\left(S \cap W_{1} \cap W_{2}\right)$?
(e) What is the set $V_{2}=\sigma_{2}^{-1}\left(S \cap W_{1} \cap W_{2}\right)$?
(f) Derive an explicit formula for the transition function $\Phi: V_{2} \rightarrow V_{1}$.

Hint. First find a formula for $u^{2}+v^{2}$ as a function of z.
3. Consider the atlas for the unit sphere S defined in Exercise 4.1.2 on p. 75 of Pressley's book (which we also discussed in Friday's lecture). In this problem we follow the notation of Pressley's Exercise 4.1.2.
(a) Find the point in $U \subset \mathbb{R}^{2}$ that corresponds to the point $P=\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$ on the sphere S for the chart $\sigma_{+}^{x}: U \rightarrow \mathbb{R}^{3}$.
(b) Calculate the tangent vectors σ_{u}, σ_{v} of S at the point P, when σ is the chart σ_{+}^{x}.
(c) Now find the point in $U \subset \mathbb{R}^{2}$ that corresponds to P, but this time for the chart σ_{+}^{z}.
(d) Calculate the tangent vectors σ_{u}, σ_{v} of S at the point P for this chart σ_{+}^{z}.

According to Proposition 4.4.2, the tangent space $T_{P} S$ of the sphere S at point P is the 2 dimensional vector subspace of \mathbb{R}^{3} spanned by the vectors σ_{u}, σ_{v} for any coordinate patch that contains P.
(a) Prove that the span of the vectors σ_{u}, σ_{v} for the chart σ_{+}^{x} of item (b) is the same subspace of \mathbb{R}^{3} as the span of the vectors σ_{u}, σ_{v} for the chart σ_{+}^{z} of item (d).

