Math 42, Winter 2017 Homework set 4, due Wed Feb 1

Collaboration and discussion of the problems is permitted, and even recommended. But you should write up and hand in your own solutions independently.

- 1. Consider the quadratic surface $S = \{(x, y, z) \in \mathbb{R}^3 \mid z = ax^2 + 2bxy + cy^2\}$, where a, b, c are three constants.
 - (a) Find a general formula for the two principal curvatures κ_1, κ_2 (as defined by Euler) of S at the origin (0, 0, 0).
 - (b) Find a general formula for the Gaussian curvature $\kappa = \kappa_1 \kappa_2$ of S at (0, 0, 0).
 - (c) Find a general formula for the so-called mean curvature $(\kappa_1 + \kappa_2)/2$ of S at (0, 0, 0).
- 2. Consider the following atlas for the unit sphere $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ consisting of two charts. The first chart $\sigma_1 : U_1 \to S \cap W_1$ has domain $U_1 = \mathbb{R}^2$ and

$$\sigma_1(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right)$$

The second chart $\sigma_2: U_2 \to S \cap W_2$ has domain $U_2 = \mathbb{R}^2$ and

$$\sigma_2(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, -\frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right)$$

(The formulas for σ_1 and σ_2 differ only in the sign of the z-coordinate.) Remark: W_1 and W_2 are appropriate open subsets of \mathbb{R}^3 that make the maps σ_1, σ_2 bijective.

- (a) What is the image $S \cap W_1$ of the map σ_1 ?
- (b) What is the image $S \cap W_2$ of the map σ_2 ?
- (c) What is the set $S \cap W_1 \cap W_2$?
- (d) What is the set $V_1 = \sigma_1^{-1} (S \cap W_1 \cap W_2)$?
- (e) What is the set $V_2 = \sigma_2^{-1} (S \cap W_1 \cap W_2)$?
- (f) Derive an explicit formula for the transition function $\Phi: V_2 \to V_1$. Hint. First find a formula for $u^2 + v^2$ as a function of z.
- 3. Consider the atlas for the unit sphere S defined in Exercise 4.1.2 on p.75 of Pressley's book (which we also discussed in Friday's lecture). In this problem we follow the notation of Pressley's Exercise 4.1.2.
 - (a) Find the point in $U \subset \mathbb{R}^2$ that corresponds to the point $P = (\frac{2}{3}, \frac{2}{3}, \frac{1}{3})$ on the sphere S for the chart $\sigma_+^x : U \to \mathbb{R}^3$.
 - (b) Calculate the tangent vectors σ_u, σ_v of S at the point P, when σ is the chart σ_+^x .
 - (c) Now find the point in $U \subset \mathbb{R}^2$ that corresponds to P, but this time for the chart σ_+^z .

(d) Calculate the tangent vectors σ_u, σ_v of S at the point P for this chart σ_+^z .

According to Proposition 4.4.2, the tangent space T_PS of the sphere S at point P is the 2 dimensional vector subspace of \mathbb{R}^3 spanned by the vectors σ_u, σ_v for any coordinate patch that contains P.

(a) Prove that the span of the vectors σ_u, σ_v for the chart σ_+^x of item (b) is the same subspace of \mathbb{R}^3 as the span of the vectors σ_u, σ_v for the chart σ_+^z of item (d).