First Exam

Math 2 - Winter 2014

This exam has 8 questions on 9 pages, for a total of 30 points.
You have 120 minutes to answer all questions.
This is a closed book exam.
Use of calculators and other electronic devices is not permitted.
Show all your work, justify all your answers.

Question	Points	Score
1	30	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	
8	0	
Total:	30	

30 1. Compute the area of the region in the first quadrant bounded by the functions

$$
y=1+x^{2}, \quad y=2, \quad \text { and } \quad x=0 .
$$

\qquad 2. Compute the volume of the region from Problem 1 rotated about the x-axis. Recall that the region is bounded in the first quadrant by the functions

$$
y=1+x^{2}, \quad y=2, \quad \text { and } \quad x=0
$$

Page 3
\qquad 3. Compute the area between (or bounded by) the given curves.

Page 4
\square 4. Verify that the stated indefinite integrals are valid.
(a) $\int x e^{-3 x} \mathrm{~d} x=-\frac{e^{-3 x}}{3}\left(x+\frac{1}{3}\right)+C$.
(b) $\int e^{x} \cos x \mathrm{~d} x=\frac{1}{2} e^{x}(\sin x+\cos x)+C$.

Page 5
5. Evaluate the following indefinite integrals.
(a) $\int \sin x \cos x d x$
(b) $\int \frac{x^{4}+9}{3 x^{2}} \mathrm{~d} x$
(c) $\int \frac{3 x^{3}+2 x^{2} e^{x}}{x^{3} e^{x}} \mathrm{~d} x$
\square 6. Let $A(x)=\int_{2}^{x} e^{t^{3}} d t$. Calculate:
(a) $A(2)$
(b) $A^{\prime}(x)$

Page 7
\square
7. Calculate:
(a) $\int_{-1}^{1} \frac{1}{1+x^{2}} d x$. Hint: it may help to recall that $\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}$.
(b) $\int_{-\pi / 3}^{\pi / 3} \sin (x)-x^{3} d x$

Page 8
\qquad 8. Let $f(x)=\sqrt{x}$ for $0 \leq x \leq 4$.
(a) Sketch the area that represents the 2-rectangle left-endpoint approximation to $\int_{0}^{4} f(x) d x$
(b) Sketch the area that represents the 2-rectangle right-endpoint approximation to $\int_{0}^{4} f(x) d x$.
(c) Fill in the gaps in the following statements:

- The \qquad -endpoint approximation is an overestimate because $f(x)$ is
- The \qquad -endpoint approximation is an underestimate because $f(x)$ is
(d) We can form a new approximation to the area called the trapezoidal approximation by joining the left- and right-endpoints of each subinterval.
Sketch this for $\int_{0}^{4} f(x) d x$ and fill in the blanks in the following:
The \qquad -endpoint approximation is an \qquad estimate because $f(x)$ is \qquad

