First Exam

Math 2 — Winter 2014

NAME:

Section: **11 2**

This exam has 8 questions on 9 pages, for a total of 30 points.

You have 120 minutes to answer all questions.

This is a closed book exam.

Use of calculators and other electronic devices is not permitted. Show all your work, justify all your answers.

Question	Points	Score
1	30	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	
8	0	
Total:	30	

30 1. Compute the area of the region in the first quadrant bounded by the functions

$$y = 1 + x^2$$
, $y = 2$, and $x = 0$.

 \Box 2. Compute the volume of the region from Problem 1 rotated about the *x*-axis. Recall that the region is bounded in the first quadrant by the functions

$$y = 1 + x^2$$
, $y = 2$, and $x = 0$.

 $_{\Box}~$ 3. Compute the area between (or bounded by) the given curves.

 $\hfill\square$ 4. Verify that the stated indefinite integrals are valid.

(a)
$$\int xe^{-3x} dx = -\frac{e^{-3x}}{3}\left(x+\frac{1}{3}\right) + C.$$

(b)
$$\int e^x \cos x \, dx = \frac{1}{2} e^x (\sin x + \cos x) + C.$$

 $_{\Box}~$ 5. Evaluate the following indefinite integrals.

(a)
$$\int \sin x \cos x \, \mathrm{d}x$$

(b)
$$\int \frac{x^4 + 9}{3x^2} \,\mathrm{d}x$$

(c)
$$\int \frac{3x^3 + 2x^2 e^x}{x^3 e^x} \,\mathrm{d}x$$

$$\Box \quad 6. \text{ Let } A(x) = \int_{2}^{x} e^{t^{3}} dt. \text{ Calculate:}$$
(a) $A(2)$

(b) A'(x)

\Box 7. Calculate:

(a)
$$\int_{-1}^{1} \frac{1}{1+x^2} dx$$
. Hint: it may help to recall that $\frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2}$.

(b)
$$\int_{-\pi/3}^{\pi/3} \sin(x) - x^3 dx$$

- \Box 8. Let $f(x) = \sqrt{x}$ for $0 \le x \le 4$.
 - (a) Sketch the area that represents the 2-rectangle left-endpoint approximation to $\int_{0}^{4} f(x) \, dx.$

(b) Sketch the area that represents the 2-rectangle right-endpoint approximation to $\int_{0}^{4} f(x) dx.$

- (c) Fill in the gaps in the following statements:
 - The _____-endpoint approximation is an overestimate because f(x) is ______.
 - The ______-endpoint approximation is an underestimate because f(x) is
- (d) We can form a new approximation to the area called the trapezoidal approximation by joining the left- and right-endpoints of each subinterval.

Sketch this for $\int_{0}^{x} f(x) dx$ and fill in the blanks in the following: The ______-endpoint approximation is an ______estimate because f(x) is ______.