MATH 23 Exam 2 Review Problems

Problem 1. Use the method of reduction of order to find a second solution of the given differential equation

$$
x^{2} y^{\prime \prime}-(x-0.1875) y=0, \quad x>0, \quad y_{1}(x)=x^{1 / 4} e^{2 \sqrt{x}}
$$

Problem 2. Consider the initial value problem

$$
4 y^{\prime \prime}+4 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

(a) Solve the initial value problem and plot the solution.
(b) Determine the coordinates $\left(t_{M}, y_{M}\right)$ of the maximum point.
(c) Change the second initial condition to $y^{\prime}(0)=b>0$ and find the solution as a function of b.
(d) Find the coordinates $\left(t_{M}, y_{M}\right)$ of the maximum point in terms of b. Describe the dependence of t_{M} and y_{M} on b as b increases.

Problem 3. Solve the given initial value problem. Sketch the graph of the solution and describe its behaviour for increasing t.

$$
9 y^{\prime \prime}+6 y^{\prime}+82 y=0, \quad y(0)=-1, \quad y^{\prime}(0)=2
$$

Problem 4. Find the general solution of the given differential equation

$$
u^{\prime \prime}+\omega_{0}^{2} u=\cos \omega t, \quad \omega^{2} \neq \omega_{0}^{2}
$$

Problem 5. Determine a suitable form of particular solution $Y(t)$ using the method of undetermined coefficients

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{t}\left(t^{2}+1\right) \sin 2 t+3 e^{-t} \cos t+4 e^{t}
$$

Problem 6. Verify that the given functions y_{1} and y_{2} satisfy the corresponding homogenous equation; then find a particular solution of the given nonhomogeneous equation.

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=x^{2} \ln x, \quad x>0, \quad y_{1}(x)=x^{2}, \quad y_{2}(x)=x^{2} \ln x
$$

Problem 7. Verify that the given functions y_{1} and y_{2} satisfy the corresponding homogenous equation; then find a particular solution of the given nonhomogeneous equation.
$x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-0.25\right) y=g(x), \quad x>0 ; \quad y_{1}(x)=x^{-1 / 2} \sin x, \quad y_{2}(x)=x^{-1 / 2} \cos x$
Problem 8. A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting the spring a distance of 1 in, and then set in motion with a downward velocity of $2 \mathrm{ft} / \mathrm{s}$, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period, amplitude, and phase of the motion.

Problem 9. A $1 / 4-k g$ mass is attached to a spring with a stiffness $4 \mathrm{~N} / \mathrm{m}$. The damping constant b for the system is 1 N -sec/m. If the mass is displaced $1 / 2 \mathrm{~m}$ to the left and an initial velocity of $1 \mathrm{~m} / \mathrm{sec}$ to the left, find the equation of motion. What is the maximum displacement that the mass will attain?

Problem 10. Verify that the given vector satisfies the given differential equation

$$
x^{\prime}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] x, \quad x=\left[\begin{array}{c}
6 \\
-8 \\
-4
\end{array}\right] e^{-t}+2\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] e^{-2 t}
$$

Problem 11. Verify that the given matrix satisfies the given differential equation

$$
\psi^{\prime}=\left[\begin{array}{ccc}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & 1
\end{array}\right] \psi, \quad \psi(t)=\left[\begin{array}{ccc}
e^{t} & e^{-2 t} & e^{3 t} \\
-4 e^{t} & -e^{-2 t} & 2 e^{3 t} \\
-e^{t} & -e^{-2 t} & e^{3 t}
\end{array}\right]
$$

Problem 12. Verify that the given functions are solutions of the differential equation, and determine the Wronskian

$$
x y^{\prime \prime \prime}-y^{\prime \prime}=0 ; \quad 1, \quad x, \quad x^{3}
$$

Problem 13. Determine intervals in which solutions are sure to exist

$$
(x-1) y^{(4)}+(x+1) y^{\prime \prime}+(\tan x) y=0
$$

Problem 14. Find the general solution of the given differential equation

$$
y^{(6)}-y^{\prime \prime}=0
$$

Problem 15. Find the general solution of the given differential equation

$$
y^{(8)}+8 y^{(4)}+16 y=0
$$

Problem 16. Determine a suitable form for the particular solution $(Y(t))$ if the method of undetermined coefficients is to be used. Do not evaluate the constants.

$$
y^{(4)}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 e^{t}+2 t e^{-t}+e^{-t} \sin t
$$

Problem 17. Find the solution of the initial value problem

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=t+e^{t} ; \quad y(0)=1, \quad y^{\prime}(0)=-1 / 4, \quad y^{\prime \prime}(0)=-3 / 2
$$

Problem 18. Given that x, x^{2}, and $1 / x$ are solutions of the homogeneous equation corresponding to

$$
x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=2 x^{4}, \quad x>0
$$

determine a particular solution.
Problem 19. Find the solution of the given initial value problem

$$
y^{\prime \prime \prime}+y^{\prime}=\sec t ; \quad y(0)=2, \quad y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=-2
$$

Problem 20. Find all eigenvalues and eigenvectors of the given matrix

$$
\left[\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right]
$$

Problem 21. Find all eigenvalues and eigenvectors of the given matrix

$$
\left[\begin{array}{ccc}
11 / 9 & -2 / 9 & 8 / 9 \\
-2 / 9 & 2 / 9 & 10 / 9 \\
8 / 9 & 10 / 9 & 5 / 9
\end{array}\right]
$$

