MATH 123 WINTER 2016 AUTOMORPHIC FORMS, REPRESENTATIONS AND C*-ALGEBRAS

DIARY

References

[B] Automorphic forms and representations, by D. Bump.

[K] Introduction to the representation theory of groups, by E. Kowalski.

[tfb²] Crossed products of C*-algebras, by D. P. Williams.

[R] Functional analysis, by W. Rudin.

Other sources were used, including P. Garett's vignettes and W. Casselman's essays.

Syllabus

I. Overview of representation theory, automorphic forms and applications

- 3 lectures + 1 guest lecture
- 1. Group representations and harmonic analysis on homogeneous spaces
- 2. Selberg's $\frac{1}{4}$ Conjecture
- 3. L-functions and applications

II. Waveforms for cocompact lattices of $SL(2, \mathbb{R})$ - 14 lectures

- 4. Maass forms and the spectral problem, unbounded operators
- 5. Differential operators and Lie algebras
- 6. The Cartan decomposition and K-bi-invariant functions
- 7. Discreteness of the spectrum

III. Admissible and unitary representations of $SL(2, \mathbb{R})$ - 7 lectures

- 8. Admissible (\mathfrak{g}, K) -modules
- 9. Irreducible (\mathfrak{g}, K) -modules for $SL(2, \mathbb{R})$
- 10. Unitarizability of admissible representations
- 12. The unitary dual of $SL(2, \mathbb{R})$ and the solution of the spectral problem

IV. The noncommutative geometry point of view - 3 lectures

- 11. Induced representations and Frobenius reciprocity for finite groups
- 13. Parabolic induction in the C*-algebraic framework and applications

Updated: March 7, 2016.

Week 1

Lecture 1. Topological groups: Haar measure(s), modular function.

Group representations: examples, unitary representations, continuous representations. The left regular representation λ_G is unitary and continuous. Irreducible representations. Case of the torus: $\widehat{\mathbb{T}} = \{\chi_n, n \in \mathbb{Z}\}$ with χ_n acting on $\mathbb{C}_n = \mathbb{C}$ for every n. The L^2 -theory of Fourier series gives a decomposition of the regular representation into irreducibles:

$$L^2(\mathbb{T}) \simeq \sum_{n \in \mathbb{Z}} \oplus \mathbb{C}_n.$$

References: $[tfb^2, \S1.3]$ and $[K, \S3.3-3.4]$.

Lecture 2. Fourier transform: $L^2(\mathbb{R}) \simeq \int_{\xi \in \mathbb{R}}^{\oplus} \mathbb{C}_{\xi} d\xi$ as a unitary representation of \mathbb{R} . General case of locally compact abelian groups: unirreps are one-dimensional, form a locally compact group (the Pontrjagyn dual \widehat{G}) and Fourier theory yields:

$$L^2(G) \simeq \int_{\chi \in \widehat{G}}^{\oplus} \mathbb{C}_{\chi} d\chi$$

Definition of unitary equivalence, the unitary dual of a locally compact group:

 $\widehat{G}_u = \{ \text{irreducible continuous unitary representations of } G \} / \text{unitary equivalence.}$

Example: $\widehat{SO(3)} = \{\mathcal{H}_{\ell}, \ell \in \mathbb{N}\}$ where dim $\mathcal{H}_{\ell} = 2\ell + 1$. Summary of Peter-Weyl theory: for G compact, the regular representation decomposes as

$$L^2(G) \simeq \sum_{\pi \in \widehat{G}}^{\oplus} \dim(\mathcal{H}_{\pi})\mathcal{H}_{\pi}$$

and the inversion formula reads

$$f = \sum_{\pi \in \widehat{G}} \dim(\mathcal{H}_{\pi}) \left(\operatorname{Tr} \pi * f \right).$$

General case of real reductive groups: Harish-Chandra proved the existence of (and determined) a measure μ on \widehat{G} such that, for $f \in C_c(G)$,

$$f = \int_{\pi \in \widehat{G}} \left(\Theta_{\pi} * f \right) \, d\mu(\pi)$$

where each Θ_{π} is a distribution on G, generalizing the trace. Case of $SL(2, \mathbb{R})$ (Bargmann, 1947): the unitary dual consists of

- the discrete series;
- the principal series and the limits of discrete series;
- the complementary series and the trivial representation.

[PICTURE]

The concrete Plancherel formula for $f \in C_c(SL(2,\mathbb{R}))$ is

$$f = \sum_{n \in \mathbb{Z}} |n| \left(\Theta_n * f\right) + \frac{1}{4} \int_{-\infty}^{+\infty} \left(\Theta_{\nu_1} * f\right) \nu_1 \tanh\left(\frac{\pi\nu_1}{2}\right) \, d\nu_1 + \frac{1}{4} \int_{-\infty}^{+\infty} \left(\Theta_{\nu_2} * f\right) \nu_2 \coth\left(\frac{\pi\nu_2}{2}\right) \, d\nu_2$$

Some representations (the complementary series) do not appear in the Plancherel formula. The ones that do are called *tempered* and form a closed subspace $\hat{G}_r \subset \hat{G}$.

The discrete series behave like representations of compact groups: the factor |n| should be interpreted as a *formal dimension* for these representations, which are characterised by the fact that they are actual subrepresentations of the regular and that their matrix coefficients are square-integrable. The other tempered representations are only weakly contained in the regular and have almost square-integrable matrix coefficients.

Lecture 3. Quasi-regular representations: if G acts on a space X that carries a G-invariant Borel measure μ , then $L^2(X,\mu)$ is a unitary representation of G. Criterion for the existence of a G-invariant measure on a homogeneous space G/H: $\Delta_G|_H = \Delta_H$. In particular, this is satisfied when G is reductive and H is discrete. Case of $G = SL(2,\mathbb{R})$ and $H = \Gamma(N)$ or a congruence subgroup.

Theorem (Gelfand, Graev, Piatetski-Shapiro). As a unitary representation of G,

$$L^2(\Gamma \setminus G) \simeq \mathcal{H}_1 \oplus \mathcal{H}_2$$

where

- \mathcal{H}_1 is a direct sum indexed by a countable subset of \widehat{G} :

$$\mathcal{H}_1 = \sum_{\pi}^{\oplus} m_{\pi} \mathcal{H}_{\pi}$$

- \mathcal{H}_2 is a direct integral of principal series representations of G:

$$\mathcal{H}_2 = \int_{\nu \in \mathbb{R}}^{\oplus} m_{\Gamma} \mathcal{H}_{\nu} \, d\nu$$

where m_{Γ} only depends on Γ . In fact, $m_{\Gamma} = 0$ is Γ is a cocompact lattice. In general, it is equal to the number of cusps of Γ .

Selberg conjectured in 1965 that no complementary series occurs in \mathcal{H}_1 if $\Gamma = \Gamma(N)$. *K*-fixed vectors in spherical representations are smooth and eigenfunctions of the hyperbolic Laplace operator. Conversely, to an automorphic form *f* with eigenvalue λ , one can associate a representation π_f and π_f is in the complementary series if and only if $\lambda < \frac{1}{4}$. Selberg's $\frac{1}{4}$ Conjecture is still open in general but Selberg proved that $\operatorname{Sp} \Delta \subset \left[\frac{3}{16}, +\infty\right)$.

Reference: $[\mathbf{K}, \S7.4].$

Week 2

Lecture 4. Reciprocal sums of primes numbers, Dirichlet's Arithmetic Progression. Euler product for Riemann's ζ function, estimates near 1. Dirichlet characters and associated *L*-series:

$$\sum_{n \ge 1} \frac{\chi(n)}{n^s}.$$

Proof of a special case of Dirichlet's Theorem: $\sum_{p \equiv 1[4]} \frac{1}{p}$ diverges. Maass cusp forms. Periodicity and Fourier expansion:

$$f(z) = \sum_{n \in \mathbb{Z}} a_n(y) e^{2i\pi n x}$$

with $a_n(y) = c_n \sqrt{y} K_{\nu}(2\pi ny)$ where K_{ν} is a Bessel function. The corresponding L-function

$$L(s,f) = \sum_{n \ge 1} \frac{c_n}{n^s}$$

satisfies a functional equation.

References: $[\mathbf{B}, \S 1.9]$.

Lecture 5. Given a weight $k \in \mathbb{Z}$, the *Maass operators* on the Poincaré plane \mathscr{H} are

$$R_k = iy\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + \frac{k}{2} = (z - \bar{z})\frac{\partial}{\partial z} + \frac{k}{2}$$

and

$$L_k = -iy\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} - \frac{k}{2} = -(z - \bar{z})\frac{\partial}{\partial \bar{z}} - \frac{k}{2}$$

The weight k non-Euclidean Laplacian is

$$\Delta_k = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \frac{\partial}{\partial x}$$

They are related via

$$-L_{k+2}R_k - \frac{k}{2}\left(1 + \frac{k}{2}\right) = \Delta_k = -R_{k-2}L_k - \frac{k}{2}\left(1 - \frac{k}{2}\right).$$

For each $k \in \mathbb{Z}$, the group $G = \mathrm{GL}(2, \mathbb{R})^+$ acts on the right on $C^{\infty}(\mathscr{H})$ by

$$f|_k g = \left(\frac{c\bar{z}+d}{|cz+d|}\right)^k f\left(\frac{az+b}{cz+d}\right)$$

where $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. The Maass operators satisfy the following equivariance relations:

$$(R_k f)|_{k+2}g = R_k (f|_k g)$$
$$(L_k f)|_{k-2}g = L_k (f|_k g)$$
$$(\Delta_k f)|_k g = \Delta_k (f|_k g).$$

We will study the operators Δ_k in the context of Hilbert spaces, that is as *unbounded* operators. Adjoint of a densely defined operator.

References: [R, Chap. 13].

Lecture 6. Elementary properties of unbounded operators: domain of a sum, composition, associativity. Distributivity might fail: $T(R+S) \supset TR + TS$ in general. A densely defined operator T is *symmetric* if $T \subset T^*$, that is

$$\langle Tx, y \rangle = \langle x, Ty \rangle$$

for all $x, y \in \mathcal{D}(T)$. It is *self-adjoint* if $T = T^*$.

Symmetric operators may or may not have self-adjoint extensions: example of $i\frac{d}{dx}$ on $L^2([0,1])$, with various domains, after Rudin [**R**, Chap. 13], [**B**, §2.1]. The measure $\frac{dx \wedge dy}{y^2}$ is SL(2, \mathbb{R})-invariant (use Bruhat decomposition to shorten the

verification). Green's formula for the Euclidean Laplacian $\Delta^e = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$:

$$\int_{\Omega} \left(g \Delta^e f - f \Delta^e g \right) \, dx \wedge dy = \int_{\partial \Omega} g \left(\frac{\partial f}{\partial x} dy - \frac{\partial f}{\partial y} dx \right) - f \left(\frac{\partial g}{\partial x} dy - \frac{\partial g}{\partial y} dx \right).$$

References: [**R**, Chap. 13], [**B**, §2.1].

Week 3

Lecture 7. The hyperbolic Laplacian $(\Delta_k, C_c^{\infty}(\mathscr{H}))$ is a symmetric operator on $L^2(\mathscr{H})$. Let Γ be a subgroup of $SL(2, \mathbb{R})$ acting discontinuously on $\mathscr{H}, \chi \in Hom(\Gamma, \mathbb{T})$ a character, $k \in \mathbb{Z}$ a weight and define $C^{\infty}(\Gamma \setminus \mathscr{H}, \chi, k)$ as

$$\left\{ f \in C^{\infty}(\mathscr{H}) \quad , \quad \forall \gamma = \left[\begin{array}{c} a & b \\ c & d \end{array} \right] \in \Gamma \quad , \quad f(\gamma \cdot z) = \chi(\gamma) \left(\frac{c\bar{z} + d}{|cz + d|} \right)^{-k} f(z) \right\}$$

with the compatibility assumption $\chi(-I_2) = (-1)^k$. If $f, g \in C^{\infty}(\Gamma \setminus \mathscr{H}, \chi, k)$, then $f\bar{g}$ is Γ -invariant and one can define

$$\langle f,g \rangle = \int_{\Gamma \setminus \mathscr{H}} f(z)\overline{g(z)} \, \frac{dx \, dy}{y^2}$$

and complete $C^{\infty}(\Gamma \setminus \mathscr{H}, \chi, k)$ into a Hilbert space, denoted by $L^{2}(\Gamma \setminus \mathscr{H}, \chi, k)$. Behaviour of the Maass operators:

$$R_k : C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k) \longrightarrow C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k+2)$$
$$L_k : C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k) \longrightarrow C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k-2)$$
$$\Delta_k : C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k) \longrightarrow C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k)$$

and

 $\langle R_k f, g \rangle = \langle f, -L_k g \rangle$

for f and g in spaces with appropriate weights. It follows that Δ_k is a symmetric operator on $L^2(\Gamma \setminus \mathscr{H}, \chi, k)$.

Spectral problem (v.1): determine the spectrum of Δ_k on $L^2(\Gamma \setminus \mathscr{H}, \chi, k)$.

References: $[\mathbf{B}, \S 2.1]$.

Lecture 8. Definition of Maass forms of weight k as elements of $C^{\infty}(\Gamma \setminus \mathscr{H}, \chi, k) \cap \operatorname{Sp}(\Delta_k)$. Generalities on Iwasawa decomposition and decompositions of Haar measure. In the case of $G = \operatorname{SL}(2, \mathbb{R})$, every element g can be written uniquely as

(1)
$$g = \begin{bmatrix} \sqrt{y} & x/\sqrt{y} \\ 0 & 1/\sqrt{y} \end{bmatrix} \underbrace{\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}}_{R_{\theta}}$$

with $\theta \in \mathbb{R}/2\pi\mathbb{Z}$, $x \in \mathbb{R}$ and $y \in \mathbb{R}_+^{\times}$ and the Haar measure decomposes accordingly in these coordinates:

$$dg = \frac{dx \, dy}{y^2} \, d\theta.$$

Given a character $\chi \in \text{Hom}(\Gamma, \mathbb{T})$, consider

$$L^{2}(\Gamma \backslash G, \chi) = \left\{ f \in L^{2}(G) \quad , \quad \forall \gamma \in \Gamma \; , \; f(\gamma \cdot z) = \chi(\gamma)f(z) \right\}.$$

It is a Hilbert space for the inner product

$$\langle f_1, f_2 \rangle = \int_{\Gamma \setminus G} f_1(g) \overline{f_2(g)} \, d\dot{g}$$

and smooth functions constitute a dense subspace. Moreover, letting G act by right translation, $L^2(\Gamma \setminus G, \chi)$ is a continuous unitary representation of G.

Spectral problem (v.2): decompose $L^2(\Gamma \setminus G, \chi)$ into irreducibles.

References: [B, §2.1]. See also Knapp's books for Iwasawa decomposition and the corresponding decomposition of measures.

Week 4

Lecture 9. *K*-isotypic decomposition of a unitary representation, proof in the case of $SL(2, \mathbb{R})$, by means of Fejér's kernel.

Admissible representations. Harish-Chandra's Admissibility Theorem: unitary irreducible representations of reductive groups are admissible. Consider the K-isotypic decomposition of $L^2(\Gamma \setminus G, \chi)$:

$$L^{2}(\Gamma \backslash G, \chi) = \sum_{k \in \mathbb{Z}}^{\oplus} L^{2}(\Gamma \backslash G, \chi, k)$$

where

$$L^{2}(\Gamma \backslash G, \chi, k) = \left\{ f \in L^{2}(G) , \, \forall \gamma \in \Gamma, \forall \theta \in \mathbb{R}/2\pi\mathbb{Z} , \, f(\gamma g R_{\theta}) = \chi(\gamma)e^{ik\theta}f(g) \right\}.$$

The map σ_k defined on $C^{\infty}(\Gamma \setminus \mathscr{H}, \chi, k)$ by

$$\sigma_k f(g) = (f|_k g) (i)$$

is an isometric isomorphism of Hilbert spaces:

$$\sigma_k: L^2(\Gamma \backslash \mathscr{H}, \chi, k) \xrightarrow{\sim} L^2(\Gamma \backslash G, \chi, k).$$

References: [B, §2.1]. See also Katznelson for details about the Fejér Kernel.

Lecture 10. Image of Maass operators under the isomorphisms σ_k :

$$\sigma_{k+2} \circ R_k = R \circ \sigma_k$$
$$\sigma_{k-2} \circ L_k = L \circ \sigma_k$$
$$\sigma_k \circ \Delta_k = \Delta \circ \sigma_k$$

where R, L and Δ are given in the coordinates x, y, θ of the Iwasawa decomposition (1) by:

$$R = iy\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + \frac{1}{2i}\frac{\partial}{\partial \theta}$$
$$L = -iy\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} - \frac{1}{2i}\frac{\partial}{\partial \theta}$$
$$\Delta = -y^2\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + y\frac{\partial^2}{\partial x\partial \theta}.$$

Lie algebras: definition, Lie algebra Lie(A) associated with an associative algebra A:

$$[a,b] = ab - ba$$

The Lie algebra of a closed subgroup G of $GL(n, \mathbb{R})$:

$$\mathfrak{g} = \left\{ x \in M_n(\mathbb{R}) , \, \forall t \in \mathbb{R}, e^{tx} \in G \right\}.$$

Examples: using the relation $det(e^x) = e^{\operatorname{Tr} x}$, one proves that

$$\mathfrak{so}(n,\mathbb{R}) = \{x \in M_n(\mathbb{R}), x^{\mathsf{T}} + x = 0\}$$

$$\mathfrak{sl}(n,\mathbb{R}) = \{x \in M_n(\mathbb{R}), \operatorname{Tr} x = 0\}$$

 $\mathfrak{gl}(n,\mathbb{R}) = M_n(\mathbb{R}).$

References: [B, §2.2] and P. Garett's notes on Invariant differential operators.

Lecture 11. If a Lie group G acts smoothly on the right of a manifold \mathcal{M} , then it acts on $C^{\infty}(\mathcal{M})$ via

$$g \cdot f(m) = f(m \cdot g)$$

and $\mathfrak g$ acts by the differential operators X_x where

$$X_x f(m) = \left. \frac{d}{dt} \right|_{t=0} f(m \cdot e^{tx}).$$

These two actions do not commute but they satisfy, for $g \in G$ and $x \in \mathfrak{g}$,

$$gX_xg^{-1} = X_{\mathrm{Ad}(g)x}$$

where the adjoint representation $\operatorname{Ad} : G \to \operatorname{End}(\mathfrak{g})$ is defined by $\operatorname{Ad}(g)x = gxg^{-1}$. We admit (for now) the important fact that $x \mapsto X_x$ is a Lie algebra morphism, that is,

$$X_{[x,y]} = X_x X_y - X_y X_x.$$

The universal enveloping algebra: there is an (associative) algebra $\mathcal{U}(\mathfrak{g})$ such that for every algebra A,

$$\operatorname{Hom}_{\operatorname{assoc.}}(\mathcal{U}(\mathfrak{g}), A) = \operatorname{Hom}_{\operatorname{Lie}}(\mathfrak{g}, \operatorname{Lie}(A)).$$

In other words, the functor $\mathcal{U}(-)$ is a left adjoint for Lie(-).

Construction of $\mathcal{U}(\mathfrak{g})$: consider the ideal I in the tensor algebra $\mathcal{T}(\mathfrak{g})$ generated by elements of the form $x \otimes y - y \otimes x - [x, y]$ and let

$$\mathcal{U}(\mathfrak{g}) = \mathcal{T}(\mathfrak{g})/I.$$

The adjoint action $G \curvearrowright \mathfrak{g}$ extends to an action $G \curvearrowright \mathcal{U}(\mathfrak{g})$ and the map $x \mapsto X_x$ also extends to $\mathcal{U}(\mathfrak{g})$ by the universal property.

Killing form κ , Cartan's criterion for semisimplicity:

$$\kappa(x, y) = 2n \operatorname{Tr}(xy) - 2 \operatorname{Tr}(x) \operatorname{Tr}(y)$$

on $\mathfrak{gl}(n,\mathbb{R})$ (degenerate) and $\mathfrak{sl}(n,\mathbb{R})$ (non-degenerate) so $\mathfrak{sl}(n,\mathbb{R})$ is semisimple, and $\mathfrak{gl}(n,\mathbb{R})$ is not. In addition, κ is *G*-invariant:

$$\kappa (\operatorname{Ad}(g)x, \operatorname{Ad}(g)y) = \kappa(x, y)$$

hence defines a *G*-equivariant identification $\mathfrak{g} \simeq \mathfrak{g}^*$, where *G* acts on \mathfrak{g}^* via the contragredient of Ad. Since \mathfrak{g} is finite-dimensional, one can consider the composition

$$\alpha: \operatorname{End}(\mathfrak{g}) \xrightarrow{\sim} \mathfrak{g} \otimes \mathfrak{g}^* \xrightarrow{\kappa} \mathfrak{g} \otimes \mathfrak{g} \longrightarrow \mathcal{T}(\mathfrak{g}) \longrightarrow \mathcal{U}(\mathfrak{g}).$$

The Casimir element is

$$\Omega = \alpha(\mathrm{Id}_{\mathfrak{q}}).$$

Since α is *G*-equivariant, it is an element of $\mathcal{Z}(\mathfrak{g})$, that is, a *G*-invariant element in $\mathcal{U}(\mathfrak{g})$.

References: [**B**, §2.2] and P. Garett's notes on **Invariant differential operators**. See also S. Sternberg's notes on Lie algebras.

Week 5

Lecture 12. Elements in the center of the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$,

$$\mathcal{Z}(\mathfrak{g}) = \{ A \in \mathcal{U}(\mathfrak{g}) , \operatorname{Ad}(G)A = A \}$$

define G-left-invariant differential operators on manifolds of the form G/H. Case of $SL(2, \mathbb{R})$: the matrices

$$H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad , \quad X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad , \quad Y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

constitute a basis of $\mathfrak{sl}(2,\mathbb{R})$ and satisfy the relations

$$[H, X] = 2X$$
 , $[H, Y] = -2Y$, $[X, Y] = 0$.

Under the identification $\mathfrak{sl}(2,\mathbb{R})^* \simeq \mathfrak{sl}(2,\mathbb{R})$, the dual basis of $\{H, X, Y\}$ is $\{\frac{1}{2}H, Y, X\}$. Therefore, the Casimir element can be expressed as

$$\Omega = \frac{1}{2}H^2 + XY + YX$$

where **products are taken in** $\mathcal{U}(\mathfrak{g})$. Observe that $X - Y \in \mathfrak{so}(2)$ so

$$(X - Y) \cdot f = 0$$

for any SO(2)-invariant function f on SL(2, \mathbb{R}).

References: P. Garett's notes on Invariant differential operators.

Lecture 13. The Casimir operator $\Omega \in \mathcal{Z}(\mathfrak{g})$ acts as $2y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$. *KAK* and $K \exp(\mathfrak{p})$ (Cartan) decompositions for $\operatorname{GL}(n, \mathbb{R})$ and $\operatorname{SL}(n, \mathbb{R})$.

References: $[\mathbf{B}, \S 2.2]$. See also Knapp's book.

Lecture 14. Comments on the Cartan motion group $K \ltimes \mathfrak{g}/\mathfrak{k}$ associated with G and the Mackey-Higson-Afgoustidis analogy.

The convolution ring $C_c^{\infty}(K \setminus G/K)$ of K-bi-invariant functions on G is commutative (Gelfand). If $(G, K) = (SL(2, \mathbb{R}), SO(2))$ and $\sigma \in Hom(K, \mathbb{C}^{\times})$, the convolution ring

$$C_c^{\infty}(K \setminus G/K, \sigma) = \{ f \in C_c^{\infty}(G) , f(k_1gk_2) = \sigma(k_1)f(g)\sigma(k_2) \}$$

is also commutative.

The Spectral Theorem: if T is a compact self-adjoint operators on a Hilbert space \mathcal{H} , there exists a Hilbert basis of \mathcal{H} of eigenvectors and the eigenvalues λ_i satisfy $\lim \lambda_i = 0$.

References: $[\mathbf{B}, \S 2.2]$.

Week 6

Lecture 15. Compact operators are the limits of finite-rank operators. They form a closed two-sided ideal in $\mathcal{B}(\mathcal{H})$. Hilbert-Schmidt operators: if $K(x, y) \in L^2(X \times X)$, then the operator T defined on $L^2(X)$ by

$$Tf(x) = \int_X K(x,y)f(y) \, dy$$

is compact. Every unitary representation (π, \mathcal{H}) of G, yields a *-representation $\tilde{\pi}$ of the convolution algebra $C_c^{\infty}(G)$:

$$\tilde{\pi}(\varphi)\xi = \int_{G} \varphi(g)\pi(g)\xi \, dg$$

satisfies

$$\tilde{\pi}(\varphi_1 * \varphi_2) = \tilde{\pi}(\varphi_1)\tilde{\pi}(\varphi_2)$$
 and $\tilde{\pi}(\varphi^*) = \tilde{\pi}(\varphi)^*$

where $\varphi^*(g) = \overline{\varphi(g^{-1})}$. In the case of the right quasi-regular representation ρ on $L^2(\Gamma \setminus G, \chi)$,

$$\rho(\varphi)f(g) = \int_G f(h)\varphi(g^{-1}h) \, dh.$$

This is a Hilbert-Schmidt operator with kernel

$$K(g,h) = \sum_{\gamma \in \Gamma} \chi(\gamma) \varphi(g^{-1}\gamma h).$$

Moreover,

$$\rho(\varphi)\left(L^2(\Gamma\backslash G,\chi)\right) \subset C^\infty(\Gamma\backslash G,\chi)$$

and, if $\varphi(R_{\theta}g) = e^{-ik\theta}\varphi(g)$, then

$$\rho(\varphi)\left(L^2(\Gamma\backslash G,\chi)\right) \subset C^{\infty}(\Gamma\backslash G,\chi,k).$$

References: $[\mathbf{B}, \S 2.3]$.

Lecture 16. Guest lecture by J. Voight: On the arithmetic significance of $\lambda = \frac{1}{4}$.

References: see also [**B**, §Chap. I].

Lecture 17. Let F is a closed G-invariant space of $L^2(\Gamma \setminus G, \chi)$, with K-isotypical decomposition

$$F = \sum_{k \in \mathbb{Z}}^{\oplus} F_k.$$

If $F_k \neq \{0\}$, then Δ has a non-zero eigenvector in $F_k^{\infty} = F_k \cap C^{\infty}(\Gamma \setminus G, \chi)$. The representation $L^2(\Gamma \setminus G, \chi)$ of G is semisimple: it decomposes as the direct sum of unitary irreducible representations of G.

References: $[\mathbf{B}, \S 2.3]$.

Week 7

Lecture 18. For $\sigma \in \widehat{SO(2)}$ and ξ character of $C_c^{\infty}(K \setminus G/K, \sigma)$, let

$$\mathcal{H}(\xi) = \left\{ f \in L^2(\Gamma \backslash G, \chi, k) , \, \rho(\varphi) f = \xi(\varphi) f \quad \text{for all} \quad \varphi \in C^\infty_c(K \backslash G/K, \sigma) \right\}.$$

The spaces $\mathcal{H}(\xi)$ are finite-dimensional, mutually orthogonal and

$$L^{2}(\Gamma \backslash G, \chi, k) = \sum_{\xi}^{\oplus} \mathcal{H}(\xi).$$

It follows that $L^2(\Gamma \setminus \mathscr{H}, \chi, k)$ decomposes as the Hilbert direct sum of eigenspaces for the weight k Laplacian Δ_k . One can also prove that

$$\sum_{\lambda \in \operatorname{Sp}(\Delta_k)} \lambda^{-2}$$

converges, from which it follows that Δ_k has a self-adjoint extension to $L^2(\Gamma \setminus \mathscr{H}, \chi, k)$.

References: $[\mathbf{B}, \S 2.3]$.

Lecture 19. Construction of smooth vectors: if (π, \mathcal{H}) is a representation on a Hilbert space and $\xi \in \mathcal{H}$, then $\tilde{\pi}(\varphi)\xi \in \mathcal{H}^{\infty}$ for $\varphi \in C_c^{\infty}(G)$. Using a Dirac sequence, it follows that smooth vectors are dense in \mathcal{H} .

Overview of the representation theory of compact groups: a locally compact group is compact if and only if it has finite Haar measure, which can be assumed equal to 1.

All representations on Hilbert spaces can unitarized: if (π, \mathcal{H}) is a representation on a Hilbert space, then π is unitary for the inner product

$$\langle \xi, \eta \rangle = \int_G \langle \pi(g)\xi, \pi(g)\eta \rangle_{\mathcal{H}} dg,$$

which defines the same topology.

If (π_1, \mathcal{H}_1) and $(\pi_2 \mathcal{H}_2)$ are unitary representations of a compact group G that possess matrix coefficients f_1 and f_2 which are not orthogonal in $L^2(G)$, then there exists a nontrivial intertwiner $L : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$, namely, if $f_i(g) = \langle \pi_i(g)\xi_i, \eta_i \rangle$,

$$\xi_1 \longmapsto \int_G \langle \pi_1(g)\xi_1, \eta_1 \rangle \pi_2(g^{-1})\eta_2 \, dg.$$

Peter-Weyl Theorem: if G is a compact group,

- (i) Matrix coefficients of finite dimensional unitary representations are dense in C(G) and L^p(G) for 1 ≤ p ≤ ∞;
- (ii) Unitary irreducible representations of G are finite-dimensional;
- (iii) All unitary representations are semisimple.

In other words,

$$L^2(G) \simeq \sum_{\pi \in \widehat{G}} {}^{\oplus}V_{\pi}^* \otimes V_{\pi} \simeq \sum_{\pi \in \widehat{G}} {}^{\oplus} \dim(V_{\pi})V_{\pi}.$$

A representation π of a (non-compact) group G with maximal compact subgroup K is said *admissible* if all its K-isotypical components are finite-dimensional. In other words,

$$\pi|_K \simeq \sum_{\rho \in \widehat{K}} \oplus m_\rho V_\rho$$

with all multiplicities m_{ρ} finite. A famous theorem of Harish-Chandra says that unitary irreducible representations of Lie groups are admissible. We will prove in the case of $G = \mathrm{SL}(2,\mathbb{R})$ that all the representations that occur in $L^2(\Gamma \setminus G, \chi)$ are admissible.

References: $[\mathbf{B}, \S 2.4].$

Lecture 20. If (π, \mathcal{H}) is a unitary irreducible representation of $G = \mathrm{SL}(2, \mathbb{R})$, then for each $k \in \mathbb{Z} \simeq \widehat{K}$, the isotypical component \mathcal{H}_k is an irreducible $C_c^{\infty}(K \setminus G/K, \sigma_k)$ -module and has dimension at most 1.

Introductory example of (\mathfrak{g}, K) -module: trigonometric polynomials in $L^2(\mathbb{T})$. Action of K, action of \mathfrak{g} . General definition of (\mathfrak{g}, K) -modules.

References: [B, §2.4] and Casselman's essays.

Week 8

Lecture 21. *K*-finite vectors of an admissible representation are smooth and everywhere dense; they form a (\mathfrak{g}, K) -module. Representations with isomorphic (\mathfrak{g}, K) -modules are said *infinitesimally equivalent*.

References: [**B**, §2.4], see also Knapp.

Lecture 22. The complexification $\mathfrak{g}_{\mathbb{C}}$ of $\mathfrak{sl}(2,\mathbb{R})$ is generated by

$$R = \frac{1}{2} \begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix} \quad , \quad L = \frac{1}{2} \begin{bmatrix} 1 & -i \\ -i & -1 \end{bmatrix} \quad , \quad H = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

subject to the relations

$$[H, R] = 2R$$
 , $[H, L] = -2L$, $[R, L] = H$

There is also a Casimir element $\Omega \in \mathcal{Z}(\mathfrak{g}_{\mathbb{C}})$ defined by

$$-4\Omega = H^2 + 2RL + 2LR.$$

This element acts by a scalar on every irreducible admissible (\mathfrak{g}, K) -module. If V is an irreducible admissible (\mathfrak{g}, K) -module and $k \in \mathbb{Z}$, let V(k) denote the isotypical component of V associated with $\sigma_k : R_\theta \mapsto e^{ik\theta}$. Then,

$$V(k) = \{x \in V, Hx = kx\}$$

 $R: V(k) \longrightarrow V(k+2)$ and $L: V(k) \longrightarrow V(k-2)$. If $V(k) \ni x \neq 0$, then $\mathbb{C}R^n x = V(k+2n)$, and $\mathbb{C}L^n x = V(k-2n)$ and

$$V = \mathbb{C}x \oplus \bigoplus_{n>0} \mathbb{C}R^n x \oplus \bigoplus_{n>0} \mathbb{C}L^n x.$$

If Ω acts by λ on V, then for $x \in V(k)$

$$LRx = \left(-\lambda - \frac{k}{2}\left(1 + \frac{k}{2}\right)\right)x$$
 and $RLx = \left(-\lambda + \frac{k}{2}\left(1 - \frac{k}{2}\right)\right)x.$

If V(k) contains a non-zero vector x such that Rx = 0 (resp. Lx = 0), then

$$\lambda = -\frac{k}{2}\left(1 + \frac{k}{2}\right) \qquad \left(\operatorname{resp.}\lambda = \frac{k}{2}\left(1 - \frac{k}{2}\right)\right).$$

It follows that all the K-types of a given admissible irreducible (\mathfrak{g}, K) -module have the same parity, giving a dichotomy between *even* and *odd* modules.

Uniqueness results:

If λ is not of the form ^k/₂ (1 - ^k/₂) with k even (resp. odd), then there exists at most one isomorphism class of even (resp. odd) (g, K)-modules on which Ω acts by λ. The K-types of such a module are all the even (resp. odd) integers.

• If $\lambda = \frac{k}{2} \left(1 - \frac{k}{2}\right)$ with $k \in \mathbb{Z}$, then the K-types of an irreducible admissible (\mathfrak{g}, K) module with parity $k \mod 2$ on which Ω acts by λ must be one of the following:

$$\Sigma^{+}(k) = \{\ell \in \mathbb{Z} \quad , \quad l = k \mod 2 \quad , \quad \ell \ge k\}$$
$$\Sigma^{-}(k) = \{\ell \in \mathbb{Z} \quad , \quad l = k \mod 2 \quad , \quad \ell \le -k\}$$
$$\Sigma^{0}(k) = \{\ell \in \mathbb{Z} \quad , \quad l = k \mod 2 \quad , \quad |\ell| < k\}$$

and there exists at most one isomorphism class of irreducible admissible (\mathfrak{g}, K) module with a given set of such K-types.

It remains to prove the existence and study the realizability of (\mathfrak{g}, K) -modules corresponding to these situations.

References: $[\mathbf{B}, \S 2.5]$.

Lecture 23. (Generalized, non-unitary) principal series: for $(\varepsilon, s) \in \{0, 1\} \times \mathbb{C}$,

$$H^{\infty}(\varepsilon,s) = \left\{ f \in C^{\infty}(G) , \ f\left(\begin{bmatrix} u & t \\ 0 & u^{-1} \end{bmatrix} g \right) = [u]^{\varepsilon} |u|^{\nu+1} f(g) \right\} \subset \operatorname{Ind}_{MAN}^{G} \sigma_{\varepsilon} \otimes \chi_{\nu} \otimes 1_{N}$$

where $s = \frac{\nu+1}{2}$ and $\sigma_{\epsilon}(m) = m^{\varepsilon}$ for $m \in \{\pm 1\} \simeq M$, $\chi_{\nu}(a) = a^{\nu}$ for $a \in \mathbb{R}^{\times} \simeq A$ and 1_N is the trivial representation of N. A function in $H^{\infty}(\varepsilon, s)$ is determined by its restriction to K, which must be even or odd. Conversely, any even or odd function f on \mathbb{T} extends to an element of $H^{\infty}(\varepsilon, s)$ by

$$\tilde{f}\left(\left[\begin{array}{cc}\sqrt{y} & \frac{x}{\sqrt{y}}\\ 0 & \frac{1}{\sqrt{y}}\end{array}\right]R_{\theta}\right) = y^{s}f(\theta).$$

Complete $H^{\infty}(\varepsilon, s)$ into a Hilbert space $\mathcal{H}(\varepsilon, s)$ for the norm associated with

 $\langle f_1, f_2 \rangle = \langle f_1 |_K, f_2 |_K \rangle_{L^2(K)}.$

Action of \mathfrak{g} on K-finite vectors: $\mathcal{H}(\varepsilon, s)_{(K)}$ is generated by functions of the form

$$f_{\ell}\left(\left[\begin{array}{cc}\sqrt{y} & \frac{x}{\sqrt{y}}\\ 0 & \frac{1}{\sqrt{y}}\end{array}\right]R_{\theta}\right) = y^{s}e^{i\ell\theta}$$

which satisfy

$$Hf_{\ell} = \ell f_{\ell} \quad , \quad Rf_{\ell} = \left(s + \frac{\ell}{2}\right) f_{\ell+2} \quad , \quad Lf_{\ell} = \left(s - \frac{\ell}{2}\right) f_{\ell-2} \quad , \quad \Delta f_{\ell} = s(1-s)f_{\ell}.$$

It follows that the irreducible admissible (\mathfrak{g}, K) -modules of $SL(2, \mathbb{R})$ can be realized as subquotients of $\mathcal{H}(\varepsilon, s)_{(K)}$ for some $(\varepsilon, s) \in \{0, 1\} \times \mathbb{C}$:

• If $\lambda = s(1-s)$ is not of the form $\frac{k}{2}\left(1-\frac{k}{2}\right)$ with $k = \varepsilon \mod 2$, then $\mathcal{H}(\varepsilon, s)_{(K)}$ is the unique irreducible admissible (\mathfrak{g}, K) -module on which Δ acts by λ . Its set of K-types is $2\mathbb{Z} + \varepsilon$. We denote by $\mathcal{P}(\lambda, \varepsilon)$ its isomorphism class and call it *principal series representation*.

• If $\lambda = \frac{k}{2} \left(1 - \frac{k}{2}\right)$ with $1 < k = \varepsilon \mod 2$, there exists three irreducible subquotients of $\mathcal{H}(\varepsilon, s)_{(K)}$ on which Δ acts by λ , with respective sets of K-types $\Sigma^+(k)$, $\Sigma^-(k)$ and $\Sigma^0(k)$. The isomorphism classes corresponding to $\Sigma^{\pm}(k)$ are denoted by $\mathcal{D}^{\pm}(k)$ and called *discrete series representations*. The corresponding modules $\mathcal{D}^{\pm}(1)$ for k = 1 are called *limits of the discrete series*.

References: $[\mathbf{B}, \S 2.5]$.

Week 9

Lecture 24. Unitarizability of the principal series: if $\lambda \geq \frac{1}{4}$, then $\mathcal{P}(\lambda, \varepsilon)$ contains a unitary representative. Conversely, if (π, \mathcal{H}) is a unitary admissible representation of $SL(2, \mathbb{R})$ on which Ω acts by λ , then $\lambda \in \mathbb{R}$. Moreover,

- if $(\pi, \mathcal{H}) \in \mathcal{P}(\lambda, 0)$, then $\lambda > 0$; - if $(\pi, \mathcal{H}) \in \mathcal{P}(\lambda, 1)$, then $\lambda > \frac{1}{4}$.

This shows that the unitarizable principal series are the $\pi_{\varepsilon,\nu} = \operatorname{Ind}_{MAN}^G \sigma_{\varepsilon} \otimes \chi_{\nu} \otimes 1_N$ with $\nu \in i\mathbb{R}$ and possibly $\pi_{0,\nu}$ with $-1 < \nu < 1$. These can be shown to be unitarizable, using intertwining integrals. They are called the *complementary series*.

Finite dimensional representations: the only finite-dimensional unitary irreducible representations of $\operatorname{GL}(n,\mathbb{R})^+$ are one-dimensional, of the form \det^r with $r \in i\mathbb{R}$. As a by-product of the proof, $\operatorname{SL}(2,\mathbb{R})$ has no non-trivial finite dimensional unitary irreducible representation.

Unitary irreducible representations that are infinitesimally equivalent, *i.e.* have isomorphic (\mathfrak{g}, K) -modules, are unitarily equivalent.

References: $[\mathbf{B}, \S 2.6]$.

Lecture 25. Induced representations of finite groups: we consider G finite group, H subgroup of G and V a representation of G. Restricting V to a representation of H gives a functor $\operatorname{Res}_{H}^{G}$: $\operatorname{Rep}(G) \longrightarrow \operatorname{Rep}(H)$.

If $V \in \operatorname{Rep}(G)$ and $W \subset V$ is an *H*-invariant subspace, then $W \in \operatorname{Rep}(H)$ and for $g \in G$, the space $g \cdot W$ only depends on gH. We say that V is *induced by* W if

$$V = \bigoplus_{\sigma \in G/H} \sigma \cdot W.$$

Example: the left regular representation of G is induced by the left regular representation of H. For every $W \in \text{Rep}(H)$ there exists a unique representation of G induced by W. We denote it by $\text{Ind}_{H}^{G}W$.

Example: the regular representation of G is induced by the regular representation of H. Frobenius Reciprocity is the fact that the functors $\operatorname{Ind}_{H}^{G}$ and $\operatorname{Res}_{H}^{G}$ are adjoint to each other:

 $\operatorname{Hom}_{H}(W, \operatorname{Res}_{H}^{G} U) \simeq \operatorname{Hom}_{G}(\operatorname{Ind}_{H}^{G} W, U).$

Other pictures of induced representations: for $W \in \operatorname{Rep}(H)$, consider

$$\operatorname{Ind}_{H}^{G} W = \{ f: G \longrightarrow V, \ f(gh) = h^{-1}f(g) \text{ for all } g \in G, \ h \in H \}$$

with a left action of G by $g \cdot f = f(g^{-1} \cdot)$.

One can also consider $\mathbb{C}[G]$ as a $\mathbb{C}[G] - \mathbb{C}[H]$ -bimodule. Then, there is a G-equivariant specialization isomorphism

$$\alpha: \mathbb{C}[G] \otimes_{\mathbb{C}[H]} W \xrightarrow{\sim} \operatorname{Ind}_{H}^{G} W$$

defined by

$$\alpha(a,\xi)(g) = \sum_{h \in H} a(gh) h \cdot w$$

References: Fulton-Harris.

Lecture 26. Unitarizability of the discrete series: for $k \ge 2$, the infinitesimal class $\mathcal{D}^{\pm}(k)$ admits a unitary representative, namely the space of holomorphic functions f on \mathscr{H} such that

$$\int_{\mathscr{H}} |f(z)|^2 y^k \, \frac{dx \, dy}{y^2} < \infty$$

with $G = SL(2, \mathbb{R})$ acting by

$$\pi^{\pm}(g)f(z) = (\mp bz + d)^{-k} f\left(\frac{az \mp c}{\mp bz + d}\right).$$

These representations can also be realized as irreducible subrepresentations of the left regular $L^2(G)$.

Solution of the spectral problem: summary of the correspondence between automorphic forms and unitary irreducible representations of $SL(2, \mathbb{R})$. Holomorphic modular forms occur in the discrete series.

References: [B, §2.6, 2.7].

Lecture 27. Abstract and concrete C*-algebras, commutative C*-algebras are algebras of continuous functions (Gelfand isomorphism) and all C*-algebras can be seen as algebras of bounded operators on a Hilbert space.

For G locally compact group, consider the convolution *-algebra $C_c(G)$:

$$f * g(s) = \int_G f(t)g(t^{-1}s) dt$$
 , $f^*(t) = \Delta_G(t)^{-1}\overline{f(t^{-1})}$

and equip it with the norm

$$\|f\|_r = \|\tilde{\lambda}_G(f)\|_{\text{op}}$$

where $\tilde{\lambda}_G(f)$ is the operator of convolution by f on the left, acting on $L^2(G)$. More generally, if π is a unitary representation of G, define $\tilde{\pi}(f)$ acting on \mathcal{H}_{π} as in Lecture 15 and consider

$$||f||_{\max} = \sup_{\pi} ||\tilde{\pi}(f)||_{\text{op}}.$$

The completions of $C_c(G)$ with respect to these norms are C*-algebras, respectively denoted by $C_r^*(G)$ and $C^*(G)$. The correspondence $\pi \mapsto \tilde{\pi}$ induced a bijection between unitary (resp. tempered) representations of G and non-degenerate representations of $C^*(G)$ (resp. $C_r^*(G)$). In other words, the study of unitary representations of G is equivalent to the study of Hilbert spaces that are modules over the C*-algebra(s) of G. Hilbert C^{*}-modules and bounded adjointable operators. If A and B are C^{*}-algebras, an (A, B)-correspondence is a Hilbert module E over B together with a *-morphism

$$\varphi: A \longrightarrow \mathcal{L}_B(E).$$

Given such a bimodule ${}_{A}E_{B}$ and a *-representation \mathcal{H} of B, one can equip the tensor product $E \otimes_{B} \mathcal{H}$ with the inner product defined by

$$\langle e_1 \otimes \xi_1, e_2 \otimes \xi_2 \rangle = \langle \xi_1, \langle e_1, e_2 \rangle \xi_2 \rangle.$$

It carries a left action of A via φ and the Hilbert completion gives a *-representation, denoted $\operatorname{Ind}_B^A \mathcal{H}$.

Week 10

Lecture 28. Mackey induction for locally compact groups: induces unitary representations to unitary representations. Rieffel's construction: if H is a closed subgroup of G, there exists a C^{*}-correspondence

$$C^{*}(G)E(G)C^{*}(H)$$

such that for every unitary representation \mathcal{H} of H, there is a specialization isomorphism

$$E(G) \otimes_{\mathbf{C}^*(H)} \mathcal{H} \longrightarrow \mathrm{Ind}_H^G \mathcal{H}$$

that intertwines the left $C^*(G)$ actions.

If $P = L \ltimes N$ is a parabolic subgroup of a real reductive group G, there exists a $(C_r^*(G), C_r^*(L))$ -correspondence $\mathcal{E}(G/N)$ that realizes parabolic induction: there is a specialization isomorphism of $C_r^*(G)$ -modules

$$\mathcal{E}(G/N) \otimes_{\mathbf{C}_r^*(L)} \mathcal{H}_{\sigma \otimes \chi} \xrightarrow{\sim} \mathrm{Ind}_P^G \sigma \otimes \chi \otimes 1_N = \pi_{\sigma,\chi}.$$

Adjoint of the functor $\mathcal{E}(G/N) \otimes_{C_r^*(L)} ?$ Case of *p*-adic groups: Frobenius reciprocity and Bernstein's Second Adjoint Theorem.