MATH 123 WINTER 2016

 AUTOMORPHIC FORMS, REPRESENTATIONS AND C*-ALGEBRASDIARY

References

[B] Automorphic forms and representations, by D. Bump.
$[\mathrm{K}]$ Introduction to the representation theory of groups, by E. Kowalski.
[$\mathbf{f f b}^{2}$] Crossed products of C^{*}-algebras, by D. P. Williams.
[R] Functional analysis, by W. Rudin.
Other sources were used, including P. Garett's vignettes and W. Casselman's essays.

Syllabus

I. Overview of representation theory, automorphic forms and applications - 3 lectures +1 guest lecture

1. Group representations and harmonic analysis on homogeneous spaces
2. Selberg's $\frac{1}{4}$ Conjecture
3. L-functions and applications

II. Waveforms for cocompact lattices of $\operatorname{SL}(2, \mathbb{R})$ - 14 lectures

4. Maass forms and the spectral problem, unbounded operators
5. Differential operators and Lie algebras
6. The Cartan decomposition and K-bi-invariant functions
7. Discreteness of the spectrum
III. Admissible and unitary representations of $\mathrm{SL}(2, \mathbb{R})$ - 7 lectures
8. Admissible (\mathfrak{g}, K)-modules
9. Irreducible (\mathfrak{g}, K)-modules for $\operatorname{SL}(2, \mathbb{R})$
10. Unitarizability of admissible representations
11. The unitary dual of $\operatorname{SL}(2, \mathbb{R})$ and the solution of the spectral problem
IV. The noncommutative geometry point of view - 3 lectures
12. Induced representations and Frobenius reciprocity for finite groups
13. Parabolic induction in the C^{*}-algebraic framework and applications

Week 1

Lecture 1. Topological groups: Haar measure(s), modular function.
Group representations: examples, unitary representations, continuous representations. The left regular representation λ_{G} is unitary and continuous. Irreducible representations. Case of the torus: $\widehat{\mathbb{T}}=\left\{\chi_{n}, n \in \mathbb{Z}\right\}$ with χ_{n} acting on $\mathbb{C}_{n}=\mathbb{C}$ for every n. The L^{2}-theory of Fourier series gives a decomposition of the regular representation into irreducibles:

$$
L^{2}(\mathbb{T}) \simeq \sum_{n \in \mathbb{Z}}{ }^{\oplus} \mathbb{C}_{n}
$$

References: $\left[\mathbf{t f b}^{2}, \S 1.3\right]$ and $[\mathbf{K}, \S 3.3-3.4]$.
Lecture 2. Fourier transform: $L^{2}(\mathbb{R}) \simeq \int_{\xi \in \mathbb{R}}^{\oplus} \mathbb{C}_{\xi} d \xi$ as a unitary representation of \mathbb{R}. General case of locally compact abelian groups: unirreps are one-dimensional, form a locally compact group (the Pontrjagyn dual \widehat{G}) and Fourier theory yields:

$$
L^{2}(G) \simeq \int_{\chi \in \widehat{G}}^{\oplus} \mathbb{C}_{\chi} d \chi
$$

Definition of unitary equivalence, the unitary dual of a locally compact group:
$\widehat{G}_{u}=\{$ irreducible continuous unitary representations of $G\} /$ unitary equivalence.
Example: $\widehat{\mathrm{SO}(3)}=\left\{\mathcal{H}_{\ell}, \ell \in \mathbb{N}\right\}$ where $\operatorname{dim} \mathcal{H}_{\ell}=2 \ell+1$. Summary of Peter-Weyl theory: for G compact, the regular representation decomposes as

$$
L^{2}(G) \simeq \sum_{\pi \in \widehat{G}}^{\oplus} \operatorname{dim}\left(\mathcal{H}_{\pi}\right) \mathcal{H}_{\pi}
$$

and the inversion formula reads

$$
f=\sum_{\pi \in \widehat{G}} \operatorname{dim}\left(\mathcal{H}_{\pi}\right)(\operatorname{Tr} \pi * f) .
$$

General case of real reductive groups: Harish-Chandra proved the existence of (and determined) a measure μ on \widehat{G} such that, for $f \in C_{c}(G)$,

$$
f=\int_{\pi \in \widehat{G}}\left(\Theta_{\pi} * f\right) d \mu(\pi)
$$

where each Θ_{π} is a distribution on G, generalizing the trace.
Case of $\operatorname{SL}(2, \mathbb{R})$ (Bargmann, 1947): the unitary dual consists of

- the discrete series;
- the principal series and the limits of discrete series;
- the complementary series and the trivial representation.
[PICTURE]

The concrete Plancherel formula for $f \in C_{c}(\mathrm{SL}(2, \mathbb{R}))$ is

$$
f=\sum_{n \in \mathbb{Z}}|n|\left(\Theta_{n} * f\right)+\frac{1}{4} \int_{-\infty}^{+\infty}\left(\Theta_{\nu_{1}} * f\right) \nu_{1} \tanh \left(\frac{\pi \nu_{1}}{2}\right) d \nu_{1}+\frac{1}{4} \int_{-\infty}^{+\infty}\left(\Theta_{\nu_{2}} * f\right) \nu_{2} \operatorname{coth}\left(\frac{\pi \nu_{2}}{2}\right) d \nu_{2}
$$

Some representations (the complementary series) do not appear in the Plancherel formula. The ones that do are called tempered and form a closed subspace $\widehat{G}_{r} \subset \widehat{G}$.
The discrete series behave like representations of compact groups: the factor $|n|$ should be interpreted as a formal dimension for these representations, which are characterised by the fact that they are actual subrepresentations of the regular and that their matrix coefficients are square-integrable. The other tempered representations are only weakly contained in the regular and have almost square-integrable matrix coefficients.

Lecture 3. Quasi-regular representations: if G acts on a space X that carries a G invariant Borel measure μ, then $L^{2}(X, \mu)$ is a unitary representation of G. Criterion for the existence of a G-invariant measure on a homogeneous space $G / H:\left.\Delta_{G}\right|_{H}=\Delta_{H}$. In particular, this is satisfied when G is reductive and H is discrete. Case of $G=\mathrm{SL}(2, \mathbb{R})$ and $H=\Gamma(N)$ or a congruence subgroup.

Theorem (Gelfand, Graev, Piatetski-Shapiro). As a unitary representation of G,

$$
L^{2}(\Gamma \backslash G) \simeq \mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

where

- \mathcal{H}_{1} is a direct sum indexed by a countable subset of \widehat{G} :

$$
\mathcal{H}_{1}=\sum_{\pi}^{\oplus} m_{\pi} \mathcal{H}_{\pi}
$$

- \mathcal{H}_{2} is a direct integral of principal series representations of G :

$$
\mathcal{H}_{2}=\int_{\nu \in \mathbb{R}}^{\oplus} m_{\Gamma} \mathcal{H}_{\nu} d \nu
$$

where m_{Γ} only depends on Γ. In fact, $m_{\Gamma}=0$ is Γ is a cocompact lattice. In general, it is equal to the number of cusps of Γ.

Selberg conjectured in 1965 that no complementary series occurs in \mathcal{H}_{1} if $\Gamma=\Gamma(N)$.
K-fixed vectors in spherical representations are smooth and eigenfunctions of the hyperbolic Laplace operator. Conversely, to an automorphic form f with eigenvalue λ, one can associate a representation π_{f} and π_{f} is in the complementary series if and only if $\lambda<\frac{1}{4}$. Selberg's $\frac{1}{4}$ Conjecture is still open in general but Selberg proved that $\operatorname{Sp} \Delta \subset\left[\frac{3}{16},+\infty\right)$.

Reference: [K, §7.4].

Week 2

Lecture 4. Reciprocal sums of primes numbers, Dirichlet's Arithmetic Progression.
Euler product for Riemann's ζ function, estimates near 1. Dirichlet characters and associated L-series:

$$
\sum_{n \geq 1} \frac{\chi(n)}{n^{s}}
$$

Proof of a special case of Dirichlet's Theorem: $\sum_{p \equiv 1[4]} \frac{1}{p}$ diverges.
Maass cusp forms. Periodicity and Fourier expansion:

$$
f(z)=\sum_{n \in \mathbb{Z}} a_{n}(y) e^{2 i \pi n x}
$$

with $a_{n}(y)=c_{n} \sqrt{y} K_{\nu}(2 \pi n y)$ where K_{ν} is a Bessel function. The corresponding L-function

$$
L(s, f)=\sum_{n \geq 1} \frac{c_{n}}{n^{s}}
$$

satisfies a functional equation.
References: [B, §1.9].
Lecture 5. Given a weight $k \in \mathbb{Z}$, the Maass operators on the Poincaré plane \mathscr{H} are

$$
R_{k}=i y \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+\frac{k}{2}=(z-\bar{z}) \frac{\partial}{\partial z}+\frac{k}{2}
$$

and

$$
L_{k}=-i y \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}-\frac{k}{2}=-(z-\bar{z}) \frac{\partial}{\partial \bar{z}}-\frac{k}{2} .
$$

The weight k non-Euclidean Laplacian is

$$
\Delta_{k}=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+i k y \frac{\partial}{\partial x}
$$

They are related via

$$
-L_{k+2} R_{k}-\frac{k}{2}\left(1+\frac{k}{2}\right)=\Delta_{k}=-R_{k-2} L_{k}-\frac{k}{2}\left(1-\frac{k}{2}\right) .
$$

For each $k \in \mathbb{Z}$, the group $G=\mathrm{GL}(2, \mathbb{R})^{+}$acts on the right on $C^{\infty}(\mathscr{H})$ by

$$
\left.f\right|_{k} g=\left(\frac{c \bar{z}+d}{|c z+d|}\right)^{k} f\left(\frac{a z+b}{c z+d}\right)
$$

where $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. The Maass operators satisfy the following equivariance relations:

$$
\begin{gathered}
\left.\left(R_{k} f\right)\right|_{k+2} g=R_{k}\left(\left.f\right|_{k} g\right) \\
\left.\left(L_{k} f\right)\right|_{k-2} g=L_{k}\left(\left.f\right|_{k} g\right) \\
\left.\left(\Delta_{k} f\right)\right|_{k} g=\Delta_{k}\left(\left.f\right|_{k} g\right)
\end{gathered}
$$

We will study the operators Δ_{k} in the context of Hilbert spaces, that is as unbounded operators. Adjoint of a densely defined operator.

References: [R, Chap. 13].

Lecture 6. Elementary properties of unbounded operators: domain of a sum, composition, associativity. Distributivity might fail: $T(R+S) \supset T R+T S$ in general. A densely defined operator T is symmetric if $T \subset T^{*}$, that is

$$
\langle T x, y\rangle=\langle x, T y\rangle
$$

for all $x, y \in \mathcal{D}(T)$. It is self-adjoint if $T=T^{*}$.
Symmetric operators may or may not have self-adjoint extensions: example of $i \frac{d}{d x}$ on $L^{2}([0,1])$, with various domains, after Rudin [R, Chap. 13], $[\mathbf{B}, \S 2.1]$.
The measure $\frac{d x \wedge d y}{y^{2}}$ is $\mathrm{SL}(2, \mathbb{R})$-invariant (use Bruhat decomposition to shorten the verification). Green's formula for the Euclidean Laplacian $\Delta^{e}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$:

$$
\int_{\Omega}\left(g \Delta^{e} f-f \Delta^{e} g\right) d x \wedge d y=\int_{\partial \Omega} g\left(\frac{\partial f}{\partial x} d y-\frac{\partial f}{\partial y} d x\right)-f\left(\frac{\partial g}{\partial x} d y-\frac{\partial g}{\partial y} d x\right)
$$

References: [R, Chap. 13], [B, §2.1].

Week 3

Lecture 7. The hyperbolic Laplacian $\left(\Delta_{k}, C_{c}^{\infty}(\mathscr{H})\right)$ is a symmetric operator on $L^{2}(\mathscr{H})$. Let Γ be a subgroup of $\operatorname{SL}(2, \mathbb{R})$ acting discontinuously on $\mathscr{H}, \chi \in \operatorname{Hom}(\Gamma, \mathbb{T})$ a character, $k \in \mathbb{Z}$ a weight and define $C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k)$ as

$$
\left\{f \in C^{\infty}(\mathscr{H}) \quad, \quad \forall \gamma=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma \quad, \quad f(\gamma \cdot z)=\chi(\gamma)\left(\frac{c \bar{z}+d}{|c z+d|}\right)^{-k} f(z)\right\}
$$

with the compatibility assumption $\chi\left(-I_{2}\right)=(-1)^{k}$. If $f, g \in C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k)$, then $f \bar{g}$ is Γ-invariant and one can define

$$
\langle f, g\rangle=\int_{\Gamma \backslash \mathscr{H}} f(z) \overline{g(z)} \frac{d x d y}{y^{2}}
$$

and complete $C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k)$ into a Hilbert space, denoted by $L^{2}(\Gamma \backslash \mathscr{H}, \chi, k)$. Behaviour of the Maass operators:

$$
\begin{gathered}
R_{k}: C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k) \longrightarrow C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k+2) \\
L_{k}: C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k) \longrightarrow C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k-2) \\
\Delta_{k}: C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k) \longrightarrow C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k)
\end{gathered}
$$

and

$$
\left\langle R_{k} f, g\right\rangle=\left\langle f,-L_{k} g\right\rangle
$$

for f and g in spaces with appropriate weights.
It follows that Δ_{k} is a symmetric operator on $L^{2}(\Gamma \backslash \mathscr{H}, \chi, k)$.
Spectral Problem (v.1): determine the spectrum of Δ_{k} on $L^{2}(\Gamma \backslash \mathscr{H}, \chi, k)$.

References: [B, §2.1].
Lecture 8. Definition of Maass forms of weight k as elements of $C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k) \cap \operatorname{Sp}\left(\Delta_{k}\right)$. Generalities on Iwasawa decomposition and decompositions of Haar measure. In the case of $G=\mathrm{SL}(2, \mathbb{R})$, every element g can be written uniquely as

$$
g=\left[\begin{array}{cc}
\sqrt{y} & x / \sqrt{y} \tag{1}\\
0 & 1 / \sqrt{y}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]}_{R_{\theta}}
$$

with $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}, x \in \mathbb{R}$ and $y \in \mathbb{R}_{+}^{\times}$and the Haar measure decomposes accordingly in these coordinates:

$$
d g=\frac{d x d y}{y^{2}} d \theta
$$

Given a character $\chi \in \operatorname{Hom}(\Gamma, \mathbb{T})$, consider

$$
L^{2}(\Gamma \backslash G, \chi)=\left\{f \in L^{2}(G) \quad, \quad \forall \gamma \in \Gamma, f(\gamma \cdot z)=\chi(\gamma) f(z)\right\}
$$

It is a Hilbert space for the inner product

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{\Gamma \backslash G} f_{1}(g) \overline{f_{2}(g)} d \dot{g}
$$

and smooth functions constitute a dense subspace. Moreover, letting G act by right translation, $L^{2}(\Gamma \backslash G, \chi)$ is a continuous unitary representation of G.

Spectral Problem (v.2): decompose $L^{2}(\Gamma \backslash G, \chi)$ into irreducibles.
References: [B, §2.1]. See also Knapp's books for Iwasawa decomposition and the corresponding decomposition of measures.

Week 4

Lecture 9. K-isotypic decomposition of a unitary representation, proof in the case of $\mathrm{SL}(2, \mathbb{R})$, by means of Fejér's kernel.
Admissible representations. Harish-Chandra's Admissibility Theorem: unitary irreducible representations of reductive groups are admissible. Consider the K-isotypic decomposition of $L^{2}(\Gamma \backslash G, \chi)$:

$$
L^{2}(\Gamma \backslash G, \chi)=\sum_{k \in \mathbb{Z}}^{\oplus} L^{2}(\Gamma \backslash G, \chi, k)
$$

where

$$
L^{2}(\Gamma \backslash G, \chi, k)=\left\{f \in L^{2}(G), \forall \gamma \in \Gamma, \forall \theta \in \mathbb{R} / 2 \pi \mathbb{Z}, f\left(\gamma g R_{\theta}\right)=\chi(\gamma) e^{i k \theta} f(g)\right\}
$$

The map σ_{k} defined on $C^{\infty}(\Gamma \backslash \mathscr{H}, \chi, k)$ by

$$
\sigma_{k} f(g)=\left(\left.f\right|_{k} g\right)(i)
$$

is an isometric isomorphism of Hilbert spaces:

$$
\sigma_{k}: L^{2}(\Gamma \backslash \mathscr{H}, \chi, k) \xrightarrow{\sim} L^{2}(\Gamma \backslash G, \chi, k) .
$$

References: $[\mathbf{B}, \S 2.1]$. See also Katznelson for details about the Fejér Kernel.
Lecture 10. Image of Maass operators under the isomorphisms σ_{k} :

$$
\begin{gathered}
\sigma_{k+2} \circ R_{k}=R \circ \sigma_{k} \\
\sigma_{k-2} \circ L_{k}=L \circ \sigma_{k} \\
\sigma_{k} \circ \Delta_{k}=\Delta \circ \sigma_{k}
\end{gathered}
$$

where R, L and Δ are given in the coordinates x, y, θ of the Iwasawa decomposition (1) by:

$$
\begin{gathered}
R=i y \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+\frac{1}{2 i} \frac{\partial}{\partial \theta} \\
L=-i y \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}-\frac{1}{2 i} \frac{\partial}{\partial \theta} \\
\Delta=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+y \frac{\partial^{2}}{\partial x \partial \theta} .
\end{gathered}
$$

Lie algebras: definition, Lie algebra $\operatorname{Lie}(A)$ associated with an associative algebra A :

$$
[a, b]=a b-b a
$$

The Lie algebra of a closed subgroup G of $\operatorname{GL}(n, \mathbb{R})$:

$$
\mathfrak{g}=\left\{x \in M_{n}(\mathbb{R}), \forall t \in \mathbb{R}, e^{t x} \in G\right\}
$$

Examples: using the relation $\operatorname{det}\left(e^{x}\right)=e^{\operatorname{Tr} x}$, one proves that

$$
\begin{aligned}
& \mathfrak{s o}(n, \mathbb{R})=\left\{x \in M_{n}(\mathbb{R}), x^{\top}+x=0\right\} \\
& \mathfrak{s l}(n, \mathbb{R})=\left\{x \in M_{n}(\mathbb{R}), \operatorname{Tr} x=0\right\} \\
& \mathfrak{g l l}(n, \mathbb{R})=M_{n}(\mathbb{R})
\end{aligned}
$$

References: $[\mathbf{B}, \S 2.2]$ and P. Garett's notes on Invariant differential operators.
Lecture 11. If a Lie group G acts smoothly on the right of a manifold \mathcal{M}, then it acts on $C^{\infty}(\mathcal{M})$ via

$$
g \cdot f(m)=f(m \cdot g)
$$

and \mathfrak{g} acts by the differential operators X_{x} where

$$
X_{x} f(m)=\left.\frac{d}{d t}\right|_{t=0} f\left(m \cdot e^{t x}\right)
$$

These two actions do not commute but they satisfy, for $g \in G$ and $x \in \mathfrak{g}$,

$$
g X_{x} g^{-1}=X_{\operatorname{Ad}(g) x}
$$

where the adjoint representation $\operatorname{Ad}: G \rightarrow \operatorname{End}(\mathfrak{g})$ is defined by $\operatorname{Ad}(g) x=g x g^{-1}$. We admit (for now) the important fact that $x \mapsto X_{x}$ is a Lie algebra morphism, that is,

$$
X_{[x, y]}=X_{x} X_{y}-X_{y} X_{x}
$$

The universal enveloping algebra: there is an (associative) algebra $\mathcal{U}(\mathfrak{g})$ such that for every algebra A,

$$
\operatorname{Hom}_{\text {assoc. }}(\mathcal{U}(\mathfrak{g}), A)=\operatorname{Hom}_{\text {Lie }}(\mathfrak{g}, \operatorname{Lie}(A))
$$

In other words, the functor $\mathcal{U}(-)$ is a left adjoint for $\operatorname{Lie}(-)$.
Construction of $\mathcal{U}(\mathfrak{g})$: consider the ideal I in the tensor algebra $\mathcal{T}(\mathfrak{g})$ generated by elements of the form $x \otimes y-y \otimes x-[x, y]$ and let

$$
\mathcal{U}(\mathfrak{g})=\mathcal{T}(\mathfrak{g}) / I
$$

The adjoint action $G \curvearrowright \mathfrak{g}$ extends to an action $G \curvearrowright \mathcal{U}(\mathfrak{g})$ and the map $x \mapsto X_{x}$ also extends to $\mathcal{U}(\mathfrak{g})$ by the universal property.
Killing form κ, Cartan's criterion for semisimplicity:

$$
\kappa(x, y)=2 n \operatorname{Tr}(x y)-2 \operatorname{Tr}(x) \operatorname{Tr}(y)
$$

on $\mathfrak{g l}(n, \mathbb{R})$ (degenerate) and $\mathfrak{s l}(n, \mathbb{R})$ (non-degenerate) so $\mathfrak{s l}(n, \mathbb{R})$ is semisimple, and $\mathfrak{g l}(n, \mathbb{R})$ is not. In addition, κ is G-invariant:

$$
\kappa(\operatorname{Ad}(g) x, \operatorname{Ad}(g) y)=\kappa(x, y)
$$

hence defines a G-equivariant identification $\mathfrak{g} \simeq \mathfrak{g}^{*}$, where G acts on \mathfrak{g}^{*} via the contragredient of Ad. Since \mathfrak{g} is finite-dimensional, one can consider the composition

$$
\alpha: \operatorname{End}(\mathfrak{g}) \xrightarrow{\sim} \mathfrak{g} \otimes \mathfrak{g}^{*} \xrightarrow{\kappa} \mathfrak{g} \otimes \mathfrak{g} \longrightarrow \mathcal{T}(\mathfrak{g}) \longrightarrow \mathcal{U}(\mathfrak{g}) .
$$

The Casimir element is

$$
\Omega=\alpha\left(\operatorname{Id}_{\mathfrak{g}}\right)
$$

Since α is G-equivariant, it is an element of $\mathcal{Z}(\mathfrak{g})$, that is, a G-invariant element in $\mathcal{U}(\mathfrak{g})$.
References: $[B, \S 2.2]$ and P. Garett's notes on Invariant differential operators. See also S. Sternberg's notes on Lie algebras.

Week 5

Lecture 12. Elements in the center of the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$,

$$
\mathcal{Z}(\mathfrak{g})=\{A \in \mathcal{U}(\mathfrak{g}), \quad \operatorname{Ad}(G) A=A\}
$$

define G-left-invariant differential operators on manifolds of the form G / H.
Case of $\operatorname{SL}(2, \mathbb{R})$: the matrices

$$
H=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad, \quad X=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad, \quad Y=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

constitute a basis of $\mathfrak{s l}(2, \mathbb{R})$ and satisfy the relations

$$
[H, X]=2 X \quad, \quad[H, Y]=-2 Y \quad, \quad[X, Y]=0
$$

Under the identification $\mathfrak{s l}(2, \mathbb{R})^{*} \simeq \mathfrak{s l}(2, \mathbb{R})$, the dual basis of $\{H, X, Y\}$ is $\left\{\frac{1}{2} H, Y, X\right\}$. Therefore, the Casimir element can be expressed as

$$
\Omega=\frac{1}{2} H^{2}+X Y+Y X
$$

where products are taken in $\mathcal{U}(\mathfrak{g})$. Observe that $X-Y \in \mathfrak{s o}(2)$ so

$$
(X-Y) \cdot f=0
$$

for any $\operatorname{SO}(2)$-invariant function f on $\operatorname{SL}(2, \mathbb{R})$.
References: P. Garett's notes on Invariant differential operators.
Lecture 13. The Casimir operator $\Omega \in \mathcal{Z}(\mathfrak{g})$ acts as $2 y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$.
$K A K$ and $K \exp (\mathfrak{p})$ (Cartan) decompositions for $\mathrm{GL}(n, \mathbb{R})$ and $\mathrm{SL}(n, \mathbb{R})$.
References: [B, §2.2]. See also Knapp's book.
Lecture 14. Comments on the Cartan motion group $K \ltimes \mathfrak{g} / \mathfrak{k}$ associated with G and the Mackey-Higson-Afgoustidis analogy.
The convolution ring $C_{c}^{\infty}(K \backslash G / K)$ of K-bi-invariant functions on G is commutative (Gelfand). If $(G, K)=(\mathrm{SL}(2, \mathbb{R}), \mathrm{SO}(2))$ and $\sigma \in \operatorname{Hom}\left(K, \mathbb{C}^{\times}\right)$, the convolution ring

$$
C_{c}^{\infty}(K \backslash G / K, \sigma)=\left\{f \in C_{c}^{\infty}(G), f\left(k_{1} g k_{2}\right)=\sigma\left(k_{1}\right) f(g) \sigma\left(k_{2}\right)\right\}
$$

is also commutative.
The Spectral Theorem: if T is a compact self-adjoint operators on a Hilbert space \mathcal{H}, there exists a Hilbert basis of \mathcal{H} of eigenvectors and the eigenvalues λ_{i} satisfy $\lim \lambda_{i}=0$.

References: [B, §2.2].

Week 6

Lecture 15. Compact operators are the limits of finite-rank operators. They form a closed two-sided ideal in $\mathcal{B}(\mathcal{H})$. Hilbert-Schmidt operators: if $K(x, y) \in L^{2}(X \times X)$, then the operator T defined on $L^{2}(X)$ by

$$
T f(x)=\int_{X} K(x, y) f(y) d y
$$

is compact. Every unitary representation (π, \mathcal{H}) of G, yields a $*$-representation $\tilde{\pi}$ of the convolution algebra $C_{c}^{\infty}(G)$:

$$
\tilde{\pi}(\varphi) \xi=\int_{G} \varphi(g) \pi(g) \xi d g
$$

satisfies

$$
\tilde{\pi}\left(\varphi_{1} * \varphi_{2}\right)=\tilde{\pi}\left(\varphi_{1}\right) \tilde{\pi}\left(\varphi_{2}\right) \quad \text { and } \quad \tilde{\pi}\left(\varphi^{*}\right)=\tilde{\pi}(\varphi)^{*}
$$

where $\varphi^{*}(g)=\overline{\varphi\left(g^{-1}\right)}$. In the case of the right quasi-regular representation ρ on $L^{2}(\Gamma \backslash G, \chi)$,

$$
\rho(\varphi) f(g)=\int_{G} f(h) \varphi\left(g^{-1} h\right) d h
$$

This is a Hilbert-Schmidt operator with kernel

$$
K(g, h)=\sum_{\gamma \in \Gamma} \chi(\gamma) \varphi\left(g^{-1} \gamma h\right) .
$$

Moreover,

$$
\rho(\varphi)\left(L^{2}(\Gamma \backslash G, \chi)\right) \subset C^{\infty}(\Gamma \backslash G, \chi)
$$

and, if $\varphi\left(R_{\theta} g\right)=e^{-i k \theta} \varphi(g)$, then

$$
\rho(\varphi)\left(L^{2}(\Gamma \backslash G, \chi)\right) \subset C^{\infty}(\Gamma \backslash G, \chi, k)
$$

References: [B, §2.3].
Lecture 16. Guest lecture by J. Voight: On the arithmetic significance of $\lambda=\frac{1}{4}$.

References: see also [B, §Chap. I].

Lecture 17. Let F is a closed G-invariant space of $L^{2}(\Gamma \backslash G, \chi)$, with K-isotypical decomposition

$$
F=\sum_{k \in \mathbb{Z}}^{\oplus} F_{k} .
$$

If $F_{k} \neq\{0\}$, then Δ has a non-zero eigenvector in $F_{k}^{\infty}=F_{k} \cap C^{\infty}(\Gamma \backslash G, \chi)$.
The representation $L^{2}(\Gamma \backslash G, \chi)$ of G is semisimple: it decomposes as the direct sum of unitary irreducible representations of G.

References: [B, §2.3].

Week 7

Lecture 18. For $\sigma \in \widehat{\mathrm{SO}(2)}$ and ξ character of $C_{c}^{\infty}(K \backslash G / K, \sigma)$, let

$$
\mathcal{H}(\xi)=\left\{f \in L^{2}(\Gamma \backslash G, \chi, k), \rho(\varphi) f=\xi(\varphi) f \quad \text { for all } \quad \varphi \in C_{c}^{\infty}(K \backslash G / K, \sigma)\right\}
$$

The spaces $\mathcal{H}(\xi)$ are finite-dimensional, mutually orthogonal and

$$
L^{2}(\Gamma \backslash G, \chi, k)=\sum_{\xi}^{\oplus} \mathcal{H}(\xi)
$$

It follows that $L^{2}(\Gamma \backslash \mathscr{H}, \chi, k)$ decomposes as the Hilbert direct sum of eigenspaces for the weight k Laplacian Δ_{k}. One can also prove that

$$
\sum_{\lambda \in \operatorname{Sp}\left(\Delta_{k}\right)} \lambda^{-2}
$$

converges, from which it follows that Δ_{k} has a self-adjoint extension to $L^{2}(\Gamma \backslash \mathscr{H}, \chi, k)$.

References: [B, §2.3].

Lecture 19. Construction of smooth vectors: if (π, \mathcal{H}) is a representation on a Hilbert space and $\xi \in \mathcal{H}$, then $\tilde{\pi}(\varphi) \xi \in \mathcal{H}^{\infty}$ for $\varphi \in C_{c}^{\infty}(G)$. Using a Dirac sequence, it follows that smooth vectors are dense in \mathcal{H}.
Overview of the representation theory of compact groups: a locally compact group is compact if and only if it has finite Haar measure, which can be assumed equal to 1 .
All representations on Hilbert spaces can unitarized: if (π, \mathcal{H}) is a representation on a Hilbert space, then π is unitary for the inner product

$$
\langle\xi, \eta\rangle=\int_{G}\langle\pi(g) \xi, \pi(g) \eta\rangle_{\mathcal{H}} d g
$$

which defines the same topology.
If $\left(\pi_{1}, \mathcal{H}_{1}\right)$ and $\left(\pi_{2} \mathcal{H}_{2}\right)$ are unitary representations of a compact group G that possess matrix coefficients f_{1} and f_{2} which are not orthogonal in $L^{2}(G)$, then there exists a nontrivial intertwiner $L: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$, namely, if $f_{i}(g)=\left\langle\pi_{i}(g) \xi_{i}, \eta_{i}\right\rangle$,

$$
\xi_{1} \longmapsto \int_{G}\left\langle\pi_{1}(g) \xi_{1}, \eta_{1}\right\rangle \pi_{2}\left(g^{-1}\right) \eta_{2} d g .
$$

Peter-Weyl Theorem: if G is a compact group,
(i) Matrix coefficients of finite dimensional unitary representations are dense in $C(G)$ and $L^{p}(G)$ for $1 \leq p \leq \infty$;
(ii) Unitary irreducible representations of G are finite-dimensional;
(iii) All unitary representations are semisimple.

In other words,

$$
L^{2}(G) \simeq \sum_{\pi \in \widehat{G}}^{\oplus} V_{\pi}^{*} \otimes V_{\pi} \simeq \sum_{\pi \in \widehat{G}}^{\oplus} \operatorname{dim}\left(V_{\pi}\right) V_{\pi}
$$

A representation π of a (non-compact) group G with maximal compact subgroup K is said admissible if all its K-isotypical components are finite-dimensional. In other words,

$$
\left.\pi\right|_{K} \simeq \sum_{\rho \in \widehat{K}}^{\oplus} m_{\rho} V_{\rho}
$$

with all multiplicities m_{ρ} finite. A famous theorem of Harish-Chandra says that unitary irreducible representations of Lie groups are admissible. We will prove in the case of $G=\operatorname{SL}(2, \mathbb{R})$ that all the representations that occur in $L^{2}(\Gamma \backslash G, \chi)$ are admissible.

References: [B, §2.4].
Lecture 20. If (π, \mathcal{H}) is a unitary irreducible representation of $G=\mathrm{SL}(2, \mathbb{R})$, then for each $k \in \mathbb{Z} \simeq \widehat{K}$, the isotypical component \mathcal{H}_{k} is an irreducible $C_{c}^{\infty}\left(K \backslash G / K, \sigma_{k}\right)$-module and has dimension at most 1 .
Introductory example of (\mathfrak{g}, K)-module: trigonometric polynomials in $L^{2}(\mathbb{T})$. Action of K, action of \mathfrak{g}. General definition of (\mathfrak{g}, K)-modules.

References: $[\mathbf{B}, \S 2.4]$ and Casselman's essays.

Week 8

Lecture 21. K-finite vectors of an admissible representation are smooth and everywhere dense; they form a (\mathfrak{g}, K)-module. Representations with isomorphic (\mathfrak{g}, K)-modules are said infinitesimally equivalent.

References: [B, §2.4], see also Knapp.
Lecture 22. The complexification $\mathfrak{g}_{\mathbb{C}}$ of $\mathfrak{s l}(2, \mathbb{R})$ is generated by

$$
R=\frac{1}{2}\left[\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right] \quad, \quad L=\frac{1}{2}\left[\begin{array}{cc}
1 & -i \\
-i & -1
\end{array}\right] \quad, \quad H=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]
$$

subject to the relations

$$
[H, R]=2 R \quad, \quad[H, L]=-2 L \quad, \quad[R, L]=H
$$

There is also a Casimir element $\Omega \in \mathcal{Z}\left(\mathfrak{g}_{\mathbb{C}}\right)$ defined by

$$
-4 \Omega=H^{2}+2 R L+2 L R .
$$

This element acts by a scalar on every irreducible admissible (\mathfrak{g}, K)-module. If V is an irreducible admissible (\mathfrak{g}, K)-module and $k \in \mathbb{Z}$, let $V(k)$ denote the isotypical component of V associated with $\sigma_{k}: R_{\theta} \mapsto e^{i k \theta}$. Then,

$$
\begin{gathered}
V(k)=\{x \in V, H x=k x\} \\
R: V(k) \longrightarrow V(k+2) \quad \text { and } \quad L: V(k) \longrightarrow V(k-2) .
\end{gathered}
$$

If $V(k) \ni x \neq 0$, then $\mathbb{C} R^{n} x=V(k+2 n)$, and $\mathbb{C} L^{n} x=V(k-2 n)$ and

$$
V=\mathbb{C} x \oplus \bigoplus_{n>0} \mathbb{C} R^{n} x \oplus \bigoplus_{n>0} \mathbb{C} L^{n} x
$$

If Ω acts by λ on V, then for $x \in V(k)$

$$
L R x=\left(-\lambda-\frac{k}{2}\left(1+\frac{k}{2}\right)\right) x \quad \text { and } \quad R L x=\left(-\lambda+\frac{k}{2}\left(1-\frac{k}{2}\right)\right) x .
$$

If $V(k)$ contains a non-zero vector x such that $R x=0$ (resp. $L x=0$), then

$$
\lambda=-\frac{k}{2}\left(1+\frac{k}{2}\right) \quad\left(\operatorname{resp} \cdot \lambda=\frac{k}{2}\left(1-\frac{k}{2}\right)\right) .
$$

It follows that all the K-types of a given admissible irreducible (\mathfrak{g}, K)-module have the same parity, giving a dichotomy between even and odd modules.

Uniqueness results:

- If λ is not of the form $\frac{k}{2}\left(1-\frac{k}{2}\right)$ with k even (resp. odd), then there exists at most one isomorphism class of even (resp. odd) (\mathfrak{g}, K)-modules on which Ω acts by λ. The K-types of such a module are all the even (resp. odd) integers.
- If $\lambda=\frac{k}{2}\left(1-\frac{k}{2}\right)$ with $k \in \mathbb{Z}$, then the K-types of an irreducible admissible (\mathfrak{g}, K)module with parity $k \bmod 2$ on which Ω acts by λ must be one of the following:

$$
\left.\left.\begin{array}{cccc}
\Sigma^{+}(k)=\{\ell \in \mathbb{Z} & , \quad l=k & \bmod 2 & , \quad \ell \geq k\} \\
\Sigma^{-}(k)=\{\ell \in \mathbb{Z} & , & l=k & \bmod 2
\end{array}, \quad \ell \leq-k\right\}\right\}
$$

and there exists at most one isomorphism class of irreducible admissible (\mathfrak{g}, K)module with a given set of such K-types.
It remains to prove the existence and study the realizability of (\mathfrak{g}, K)-modules corresponding to these situations.

References: [B, §2.5].
Lecture 23. (Generalized, non-unitary) principal series: for $(\varepsilon, s) \in\{0,1\} \times \mathbb{C}$,

$$
H^{\infty}(\varepsilon, s)=\left\{f \in C^{\infty}(G), f\left(\left[\begin{array}{cc}
u & t \\
0 & u^{-1}
\end{array}\right] g\right)=[u]^{\varepsilon}|u|^{\nu+1} f(g)\right\} \subset \operatorname{Ind}_{M A N}^{G} \sigma_{\epsilon} \otimes \chi_{\nu} \otimes 1_{N}
$$

where $s=\frac{\nu+1}{2}$ and $\sigma_{\epsilon}(m)=m^{\varepsilon}$ for $m \in\{ \pm 1\} \simeq M, \chi_{\nu}(a)=a^{\nu}$ for $a \in \mathbb{R}^{\times} \simeq A$ and 1_{N} is the trivial representation of N. A function in $H^{\infty}(\varepsilon, s)$ is determined by its restriction to K, which must be even or odd. Conversely, any even or odd function f on \mathbb{T} extends to an element of $H^{\infty}(\varepsilon, s)$ by

$$
\tilde{f}\left(\left[\begin{array}{cc}
\sqrt{y} & \frac{x}{\sqrt{y}} \\
0 & \frac{1}{\sqrt{y}}
\end{array}\right] R_{\theta}\right)=y^{s} f(\theta)
$$

Complete $H^{\infty}(\varepsilon, s)$ into a Hilbert space $\mathcal{H}(\varepsilon, s)$ for the norm associated with

$$
\left\langle f_{1}, f_{2}\right\rangle=\left\langle\left. f_{1}\right|_{K},\left.f_{2}\right|_{K}\right\rangle_{L^{2}(K)}
$$

Action of \mathfrak{g} on K-finite vectors: $\mathcal{H}(\varepsilon, s)_{(K)}$ is generated by functions of the form

$$
f_{\ell}\left(\left[\begin{array}{cc}
\sqrt{y} & \frac{x}{\sqrt{y}} \\
0 & \frac{1}{\sqrt{y}}
\end{array}\right] R_{\theta}\right)=y^{s} e^{i \ell \theta}
$$

which satisfy

$$
H f_{\ell}=\ell f_{\ell} \quad, \quad R f_{\ell}=\left(s+\frac{\ell}{2}\right) f_{\ell+2} \quad, \quad L f_{\ell}=\left(s-\frac{\ell}{2}\right) f_{\ell-2} \quad, \quad \Delta f_{\ell}=s(1-s) f_{\ell}
$$

It follows that the irreducible admissible (\mathfrak{g}, K)-modules of $\mathrm{SL}(2, \mathbb{R})$ can be realized as subquotients of $\mathcal{H}(\varepsilon, s)_{(K)}$ for some $(\varepsilon, s) \in\{0,1\} \times \mathbb{C}$:

- If $\lambda=s(1-s)$ is not of the form $\frac{k}{2}\left(1-\frac{k}{2}\right)$ with $k=\varepsilon \bmod 2$, then $\mathcal{H}(\varepsilon, s)_{(K)}$ is the unique irreducible admissible (\mathfrak{g}, K)-module on which Δ acts by λ. Its set of K-types is $2 \mathbb{Z}+\varepsilon$. We denote by $\mathcal{P}(\lambda, \varepsilon)$ its isomorphism class and call it principal series representation.
- If $\lambda=\frac{k}{2}\left(1-\frac{k}{2}\right)$ with $1<k=\varepsilon \bmod 2$, there exists three irreducible subquotients of $\mathcal{H}(\varepsilon, s)_{(K)}$ on which Δ acts by λ, with respective sets of K-types $\Sigma^{+}(k), \Sigma^{-}(k)$ and $\Sigma^{0}(k)$. The isomorphism classes corresponding to $\Sigma^{ \pm}(k)$ are denoted by $\mathcal{D}^{ \pm}(k)$ and called discrete series representations. The corresponding modules $\mathcal{D}^{ \pm}(1)$ for $k=1$ are called limits of the discrete series.

References: [B, §2.5].

Week 9

Lecture 24. Unitarizability of the principal series: if $\lambda \geq \frac{1}{4}$, then $\mathcal{P}(\lambda, \varepsilon)$ contains a unitary representative. Conversely, if (π, \mathcal{H}) is a unitary admissible representation of $\mathrm{SL}(2, \mathbb{R})$ on which Ω acts by λ, then $\lambda \in \mathbb{R}$. Moreover,

- if $(\pi, \mathcal{H}) \in \mathcal{P}(\lambda, 0)$, then $\lambda>0$;
- if $(\pi, \mathcal{H}) \in \mathcal{P}(\lambda, 1)$, then $\lambda>\frac{1}{4}$.

This shows that the unitarizable principal series are the $\pi_{\varepsilon, \nu}=\operatorname{Ind}_{M A N}^{G} \sigma_{\epsilon} \otimes \chi_{\nu} \otimes 1_{N}$ with $\nu \in i \mathbb{R}$ and possibly $\pi_{0, \nu}$ with $-1<\nu<1$. These can be shown to be unitarizable, using intertwining integrals. They are called the complementary series.
Finite dimensional representations: the only finite-dimensional unitary irreducible representations of $\mathrm{GL}(n, \mathbb{R})^{+}$are one-dimensional, of the form det^{r} with $r \in i \mathbb{R}$. As a by-product of the proof, $\mathrm{SL}(2, \mathbb{R})$ has no non-trivial finite dimensional unitary irreducible representation.
Unitary irreducible representations that are infinitesimally equivalent, i.e. have isomorphic (\mathfrak{g}, K)-modules, are unitarily equivalent.

References: [B, §2.6].
Lecture 25. Induced representations of finite groups: we consider G finite group, H subgroup of G and V a representation of G. Restricting V to a representation of H gives a functor $\operatorname{Res}_{H}^{G}: \operatorname{Rep}(G) \longrightarrow \operatorname{Rep}(H)$.
If $V \in \operatorname{Rep}(G)$ and $W \subset V$ is an H-invariant subspace, then $W \in \operatorname{Rep}(H)$ and for $g \in G$, the space $g \cdot W$ only depends on $g H$. We say that V is induced by W if

$$
V=\bigoplus_{\sigma \in G / H} \sigma \cdot W .
$$

Example: the left regular representation of G is induced by the left regular representation of H. For every $W \in \operatorname{Rep}(H)$ there exists a unique representation of G induced by W. We denote it by $\operatorname{Ind}_{H}^{G} W$.
Example: the regular representation of G is induced by the regular representation of H. Frobenius Reciprocity is the fact that the functors $\operatorname{Ind}_{H}^{G}$ and $\operatorname{Res}_{H}^{G}$ are adjoint to each other:

$$
\operatorname{Hom}_{H}\left(W, \operatorname{Res}_{H}^{G} U\right) \simeq \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} W, U\right)
$$

Other pictures of induced representations: for $W \in \operatorname{Rep}(H)$, consider

$$
\operatorname{Ind}_{H}^{G} W=\left\{f: G \longrightarrow V, f(g h)=h^{-1} f(g) \quad \text { for all } g \in G, h \in H\right\}
$$

with a left action of G by $g \cdot f=f\left(g^{-1} \cdot\right)$.

One can also consider $\mathbb{C}[G]$ as a $\mathbb{C}[G]-\mathbb{C}[H]$-bimodule. Then, there is a G-equivariant specialization isomorphism

$$
\alpha: \mathbb{C}[G] \otimes_{\mathbb{C}[H]} W \xrightarrow{\sim} \operatorname{Ind}_{H}^{G} W
$$

defined by

$$
\alpha(a, \xi)(g)=\sum_{h \in H} a(g h) h \cdot w
$$

References: Fulton-Harris.
Lecture 26. Unitarizability of the discrete series: for $k \geq 2$, the infinitesimal class $\mathcal{D}^{ \pm}(k)$ admits a unitary representative, namely the space of holomorphic functions f on \mathscr{H} such that

$$
\int_{\mathscr{H}}|f(z)|^{2} y^{k} \frac{d x d y}{y^{2}}<\infty
$$

with $G=\mathrm{SL}(2, \mathbb{R})$ acting by

$$
\pi^{ \pm}(g) f(z)=(\mp b z+d)^{-k} f\left(\frac{a z \mp c}{\mp b z+d}\right) .
$$

These representations can also be realized as irreducible subrepresentations of the left regular $L^{2}(G)$.
Solution of the spectral problem: summary of the correspondence between automorphic forms and unitary irreducible representations of $\operatorname{SL}(2, \mathbb{R})$. Holomorphic modular forms occur in the discrete series.

References: [B, §2.6, 2.7].
Lecture 27. Abstract and concrete C^{*}-algebras, commutative C^{*}-algebras are algebras of continuous functions (Gelfand isomorphism) and all C^{*}-algebras can be seen as algebras of bounded operators on a Hilbert space.
For G locally compact group, consider the convolution $*$-algebra $C_{c}(G)$:

$$
f * g(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t \quad, \quad f^{*}(t)=\Delta_{G}(t)^{-1} \overline{f\left(t^{-1}\right)}
$$

and equip it with the norm

$$
\|f\|_{r}=\left\|\tilde{\lambda}_{G}(f)\right\|_{\mathrm{op}}
$$

where $\tilde{\lambda}_{G}(f)$ is the operator of convolution by f on the left, acting on $L^{2}(G)$. More generally, if π is a unitary representation of G, define $\tilde{\pi}(f)$ acting on \mathcal{H}_{π} as in Lecture 15 and consider

$$
\|f\|_{\max }=\sup _{\pi}\|\tilde{\pi}(f)\|_{\mathrm{op}}
$$

The completions of $C_{c}(G)$ with respect to these norms are C^{*}-algebras, respectively denoted by $\mathrm{C}_{r}^{*}(G)$ and $\mathrm{C}^{*}(G)$. The correspondence $\pi \mapsto \tilde{\pi}$ induced a bijection between unitary (resp. tempered) representations of G and non-degenerate representations of $\mathrm{C}^{*}(G)$ (resp. $\mathrm{C}_{r}^{*}(G)$). In other words, the study of unitary representations of G is equivalent to the study of Hilbert spaces that are modules over the C^{*}-algebra(s) of G.

Hilbert C^{*}-modules and bounded adjointable operators. If A and B are C^{*}-algebras, an (A, B)-correspondence is a Hilbert module E over B together with a *-morphism

$$
\varphi: A \longrightarrow \mathcal{L}_{B}(E)
$$

Given such a bimodule ${ }_{A} E_{B}$ and a $*$-representation \mathcal{H} of B, one can equip the tensor product $E \otimes_{B} \mathcal{H}$ with the inner product defined by

$$
\left\langle e_{1} \otimes \xi_{1}, e_{2} \otimes \xi_{2}\right\rangle=\left\langle\xi_{1},\left\langle e_{1}, e_{2}\right\rangle \xi_{2}\right\rangle
$$

It carries a left action of A via φ and the Hilbert completion gives a $*$-representation, denoted $\operatorname{Ind}_{B}^{A} \mathcal{H}$.

Week 10

Lecture 28. Mackey induction for locally compact groups: induces unitary representations to unitary representations. Rieffel's construction: if H is a closed subgroup of G, there exists a C^{*}-correspondence

$$
{ }_{\mathrm{C}^{*}(G)} E(G)_{\mathrm{C}^{*}(H)}
$$

such that for every unitary representation \mathcal{H} of H, there is a specialization isomorphism

$$
E(G) \otimes_{\mathrm{C}^{*}(H)} \mathcal{H} \longrightarrow \operatorname{Ind}_{H}^{G} \mathcal{H}
$$

that intertwines the left $\mathrm{C}^{*}(G)$ actions.
If $P=L \ltimes N$ is a parabolic subgroup of a real reductive group G, there exists a $\left(\mathrm{C}_{r}^{*}(G), \mathrm{C}_{r}^{*}(L)\right)$-correspondence $\mathcal{E}(G / N)$ that realizes parabolic induction: there is a specialization isomorphism of $\mathrm{C}_{r}^{*}(G)$-modules

$$
\mathcal{E}(G / N) \otimes_{\mathrm{C}_{r}^{*}(L)} \mathcal{H}_{\sigma \otimes \chi} \xrightarrow{\sim} \operatorname{Ind}_{P}^{G} \sigma \otimes \chi \otimes 1_{N}=\pi_{\sigma, \chi} .
$$

Adjoint of the functor $\mathcal{E}(G / N) \otimes_{\mathrm{C}_{r}^{*}(L)} \cdot$? Case of p-adic groups: Frobenius reciprocity and Bernstein's Second Adjoint Theorem.

