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Week 1

Lecture 1. Topological groups: Haar measure(s), modular function.
Group representations: examples, unitary representations, continuous representations.
The left regular representation λG is unitary and continuous. Irreducible representations.

Case of the torus: T̂ = {χn , n ∈ Z} with χn acting on Cn = C for every n. The L2-theory
of Fourier series gives a decomposition of the regular representation into irreducibles:

L2(T) '
∑
n∈Z

⊕
Cn.

References: [tfb2, §1.3] and [K, §3.3-3.4].

Lecture 2. Fourier transform: L2(R) '
∫ ⊕
ξ∈R

Cξ dξ as a unitary representation of R.

General case of locally compact abelian groups: unirreps are one-dimensional, form a

locally compact group (the Pontrjagyn dual Ĝ) and Fourier theory yields:

L2(G) '
∫ ⊕
χ∈Ĝ

Cχ dχ.

Definition of unitary equivalence, the unitary dual of a locally compact group:

Ĝu = {irreducible continuous unitary representations of G} /unitary equivalence.

Example: ŜO(3) = {H` , ` ∈ N} where dimH` = 2`+ 1. Summary of Peter-Weyl theory:
for G compact, the regular representation decomposes as

L2(G) '
∑
π∈Ĝ

⊕
dim(Hπ)Hπ

and the inversion formula reads

f =
∑
π∈Ĝ

dim(Hπ) (Tr π ∗ f) .

General case of real reductive groups: Harish-Chandra proved the existence of (and de-

termined) a measure µ on Ĝ such that, for f ∈ Cc(G),

f =

∫
π∈Ĝ

(Θπ ∗ f) dµ(π)

where each Θπ is a distribution on G, generalizing the trace.
Case of SL(2,R)(Bargmann, 1947): the unitary dual consists of

- the discrete series;
- the principal series and the limits of discrete series;
- the complementary series and the trivial representation.

[PICTURE]

The concrete Plancherel formula for f ∈ Cc(SL(2,R)) is

f =
∑
n∈Z

|n| (Θn ∗ f)+
1

4

∫ +∞

−∞
(Θν1 ∗ f) ν1 tanh

(πν1

2

)
dν1+

1

4

∫ +∞

−∞
(Θν2 ∗ f) ν2 coth

(πν2

2

)
dν2.



Some representations (the complementary series) do not appear in the Plancherel formula.

The ones that do are called tempered and form a closed subspace Ĝr ⊂ Ĝ.
The discrete series behave like representations of compact groups: the factor |n| should
be interpreted as a formal dimension for these representations, which are characterised
by the fact that they are actual subrepresentations of the regular and that their matrix
coefficients are square-integrable. The other tempered representations are only weakly
contained in the regular and have almost square-integrable matrix coefficients.

Lecture 3. Quasi-regular representations: if G acts on a space X that carries a G-
invariant Borel measure µ, then L2(X,µ) is a unitary representation of G. Criterion for
the existence of a G-invariant measure on a homogeneous space G/H: ∆G|H = ∆H . In
particular, this is satisfied when G is reductive and H is discrete.
Case of G = SL(2,R) and H = Γ(N) or a congruence subgroup.

Theorem (Gelfand, Graev, Piatetski-Shapiro). As a unitary representation of G,

L2(Γ\G) ' H1 ⊕H2

where

- H1 is a direct sum indexed by a countable subset of Ĝ:

H1 =
∑
π

⊕
mπHπ

- H2 is a direct integral of principal series representations of G:

H2 =

∫ ⊕
ν∈R

mΓHν dν

where mΓ only depends on Γ. In fact, mΓ = 0 is Γ is a cocompact lattice. In
general, it is equal to the number of cusps of Γ.

Selberg conjectured in 1965 that no complementary series occurs in H1 if Γ = Γ(N).
K-fixed vectors in spherical representations are smooth and eigenfunctions of the hyper-
bolic Laplace operator. Conversely, to an automorphic form f with eigenvalue λ, one can
associate a representation πf and πf is in the complementary series if and only if λ < 1

4
.

Selberg’s 1
4

Conjecture is still open in general but Selberg proved that Sp ∆ ⊂
[

3
16
,+∞

)
.

Reference: [K, §7.4].

Week 2

Lecture 4. Reciprocal sums of primes numbers, Dirichlet’s Arithmetic Progression.
Euler product for Riemann’s ζ function, estimates near 1. Dirichlet characters and asso-
ciated L-series: ∑

n≥1

χ(n)

ns
.



Proof of a special case of Dirichlet’s Theorem:
∑
p≡1[4]

1

p
diverges.

Maass cusp forms. Periodicity and Fourier expansion:

f(z) =
∑
n∈Z

an(y)e2iπnx

with an(y) = cn
√
yKν(2πny) where Kν is a Bessel function. The corresponding L-function

L(s, f) =
∑
n≥1

cn
ns

satisfies a functional equation.

References: [B, §1.9].

Lecture 5. Given a weight k ∈ Z, the Maass operators on the Poincaré plane H are

Rk = iy
∂

∂x
+ y

∂

∂y
+
k

2
= (z − z̄)

∂

∂z
+
k

2

and

Lk = −iy ∂
∂x

+ y
∂

∂y
− k

2
= −(z − z̄)

∂

∂z̄
− k

2
.

The weight k non-Euclidean Laplacian is

∆k = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

∂

∂x
.

They are related via

−Lk+2Rk −
k

2

(
1 +

k

2

)
= ∆k = −Rk−2Lk −

k

2

(
1− k

2

)
.

For each k ∈ Z, the group G = GL(2,R)+ acts on the right on C∞(H ) by

f |kg =

(
cz̄ + d

|cz + d|

)k
f

(
az + b

cz + d

)
where g =

[
a b
c d

]
. The Maass operators satisfy the following equivariance relations:

(Rkf) |k+2g = Rk (f |kg)

(Lkf) |k−2g = Lk (f |kg)

(∆kf) |kg = ∆k (f |kg) .

We will study the operators ∆k in the context of Hilbert spaces, that is as unbounded
operators. Adjoint of a densely defined operator.

References: [R, Chap. 13].



Lecture 6. Elementary properties of unbounded operators: domain of a sum, composi-
tion, associativity. Distributivity might fail: T (R + S) ⊃ TR + TS in general.
A densely defined operator T is symmetric if T ⊂ T ∗, that is

〈Tx, y〉 = 〈x, Ty〉
for all x, y ∈ D(T ). It is self-adjoint if T = T ∗.

Symmetric operators may or may not have self-adjoint extensions: example of i
d

dx
on

L2([0, 1]), with various domains, after Rudin [R, Chap. 13], [B, §2.1].

The measure
dx ∧ dy
y2

is SL(2,R)-invariant (use Bruhat decomposition to shorten the

verification). Green’s formula for the Euclidean Laplacian ∆e = ∂2

∂x2
+ ∂2

∂y2
:∫

Ω

(g∆ef − f∆eg) dx ∧ dy =

∫
∂Ω

g

(
∂f

∂x
dy − ∂f

∂y
dx

)
− f

(
∂g

∂x
dy − ∂g

∂y
dx

)
.

References: [R, Chap. 13], [B, §2.1].

Week 3

Lecture 7. The hyperbolic Laplacian (∆k, C
∞
c (H )) is a symmetric operator on L2(H ).

Let Γ be a subgroup of SL(2,R) acting discontinuously on H , χ ∈ Hom(Γ,T) a character,
k ∈ Z a weight and define C∞(Γ\H , χ, k) as{

f ∈ C∞(H ) , ∀γ =

[
a b
c d

]
∈ Γ , f(γ · z) = χ(γ)

(
cz̄ + d

|cz + d|

)−k
f(z)

}
with the compatibility assumption χ(−I2) = (−1)k.
If f, g ∈ C∞(Γ\H , χ, k), then fḡ is Γ-invariant and one can define

〈f, g〉 =

∫
Γ\H

f(z)g(z)
dx dy

y2

and complete C∞(Γ\H , χ, k) into a Hilbert space, denoted by L2(Γ\H , χ, k).
Behaviour of the Maass operators:

Rk : C∞(Γ\H , χ, k) −→ C∞(Γ\H , χ, k + 2)

Lk : C∞(Γ\H , χ, k) −→ C∞(Γ\H , χ, k − 2)

∆k : C∞(Γ\H , χ, k) −→ C∞(Γ\H , χ, k)

and
〈Rk f, g〉 = 〈f,−Lk g〉

for f and g in spaces with appropriate weights.
It follows that ∆k is a symmetric operator on L2(Γ\H , χ, k).

Spectral problem (v.1): determine the spectrum of ∆k on L2(Γ\H , χ, k).



References: [B, §2.1].

Lecture 8. Definition of Maass forms of weight k as elements of C∞(Γ\H , χ, k)∩Sp(∆k).
Generalities on Iwasawa decomposition and decompositions of Haar measure.
In the case of G = SL(2,R), every element g can be written uniquely as

(1) g =

[ √
y x/

√
y

0 1/
√
y

] [
cos θ − sin θ
sin θ cos θ

]
︸ ︷︷ ︸

Rθ

with θ ∈ R/2πZ, x ∈ R and y ∈ R×+ and the Haar measure decomposes accordingly in
these coordinates:

dg =
dx dy

y2
dθ.

Given a character χ ∈ Hom(Γ,T), consider

L2(Γ\G,χ) =
{
f ∈ L2(G) , ∀γ ∈ Γ , f(γ · z) = χ(γ)f(z)

}
.

It is a Hilbert space for the inner product

〈f1, f2〉 =

∫
Γ\G

f1(g)f2(g) dġ

and smooth functions constitute a dense subspace. Moreover, letting G act by right
translation, L2(Γ\G,χ) is a continuous unitary representation of G.

Spectral problem (v.2): decompose L2(Γ\G,χ) into irreducibles.

References: [B, §2.1]. See also Knapp’s books for Iwasawa decomposition and the
corresponding decomposition of measures.

Week 4

Lecture 9. K-isotypic decomposition of a unitary representation, proof in the case of
SL(2,R), by means of Fejér’s kernel.
Admissible representations. Harish-Chandra’s Admissibility Theorem: unitary irreducible
representations of reductive groups are admissible. Consider the K-isotypic decomposition
of L2(Γ\G,χ):

L2(Γ\G,χ) =
∑
k∈Z

⊕
L2(Γ\G,χ, k)

where

L2(Γ\G,χ, k) =
{
f ∈ L2(G) , ∀γ ∈ Γ,∀θ ∈ R/2πZ , f(γgRθ) = χ(γ)eikθf(g)

}
.

The map σk defined on C∞(Γ\H , χ, k) by

σkf(g) = (f |kg) (i)

is an isometric isomorphism of Hilbert spaces:

σk : L2(Γ\H , χ, k)
∼−→ L2(Γ\G,χ, k).



References: [B, §2.1]. See also Katznelson for details about the Fejér Kernel.

Lecture 10. Image of Maass operators under the isomorphisms σk:

σk+2 ◦Rk = R ◦ σk
σk−2 ◦ Lk = L ◦ σk
σk ◦∆k = ∆ ◦ σk

where R, L and ∆ are given in the coordinates x, y, θ of the Iwasawa decomposition (1)
by:

R = iy
∂

∂x
+ y

∂

∂y
+

1

2i

∂

∂θ

L = −iy ∂
∂x

+ y
∂

∂y
− 1

2i

∂

∂θ

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ y

∂2

∂x∂θ
.

Lie algebras: definition, Lie algebra Lie(A) associated with an associative algebra A:

[a, b] = ab− ba.
The Lie algebra of a closed subgroup G of GL(n,R):

g =
{
x ∈Mn(R) , ∀t ∈ R, etx ∈ G

}
.

Examples: using the relation det(ex) = eTrx, one proves that

so(n,R) = {x ∈Mn(R) , xᵀ + x = 0}

sl(n,R) = {x ∈Mn(R) , Tr x = 0}

gl(n,R) = Mn(R).

References: [B, §2.2] and P. Garett’s notes on Invariant differential operators.

Lecture 11. If a Lie group G acts smoothly on the right of a manifold M, then it acts
on C∞(M) via

g · f(m) = f(m · g)

and g acts by the differential operators Xx where

Xxf(m) =
d

dt

∣∣∣∣
t=0

f(m · etx).

These two actions do not commute but they satisfy, for g ∈ G and x ∈ g,

gXxg
−1 = XAd(g)x

where the adjoint representation Ad : G → End(g) is defined by Ad(g)x = gxg−1. We
admit (for now) the important fact that x 7→ Xx is a Lie algebra morphism, that is,

X[x,y] = XxXy −XyXx.

http://www.math.umn.edu/~garrett/m/mfms/notes/12_diffops.pdf


The universal enveloping algebra: there is an (associative) algebra U(g) such that for
every algebra A,

Homassoc.(U(g), A) = HomLie(g,Lie(A)).

In other words, the functor U(−) is a left adjoint for Lie(−).
Construction of U(g): consider the ideal I in the tensor algebra T (g) generated by elements
of the form x⊗ y − y ⊗ x− [x, y] and let

U(g) = T (g)/I.

The adjoint action G y g extends to an action G y U(g) and the map x 7→ Xx also
extends to U(g) by the universal property.
Killing form κ, Cartan’s criterion for semisimplicity:

κ(x, y) = 2nTr(xy)− 2 Tr(x) Tr(y)

on gl(n,R) (degenerate) and sl(n,R) (non-degenerate) so sl(n,R) is semisimple, and
gl(n,R) is not. In addition, κ is G-invariant:

κ (Ad(g)x,Ad(g)y) = κ(x, y)

hence defines a G-equivariant identification g ' g∗, where G acts on g∗ via the contragre-
dient of Ad. Since g is finite-dimensional, one can consider the composition

α : End(g)
∼−→ g⊗ g∗

κ−→ g⊗ g −→ T (g) −→ U(g).

The Casimir element is
Ω = α(Idg).

Since α is G-equivariant, it is an element of Z(g), that is, a G-invariant element in U(g).

References: [B, §2.2] and P. Garett’s notes on Invariant differential operators. See
also S. Sternberg’s notes on Lie algebras.

Week 5

Lecture 12. Elements in the center of the universal enveloping algebra U(g),

Z(g) = {A ∈ U(g) , Ad(G)A = A}
define G-left-invariant differential operators on manifolds of the form G/H.
Case of SL(2,R): the matrices

H =

[
1 0
0 −1

]
, X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
constitute a basis of sl(2,R) and satisfy the relations

[H,X] = 2X , [H, Y ] = −2Y , [X, Y ] = 0.

Under the identification sl(2,R)∗ ' sl(2,R), the dual basis of {H,X, Y } is {1
2
H,Y,X}.

Therefore, the Casimir element can be expressed as

Ω =
1

2
H2 +XY + Y X

where products are taken in U(g). Observe that X − Y ∈ so(2) so

(X − Y ) · f = 0

http://www.math.umn.edu/~garrett/m/mfms/notes/12_diffops.pdf
http://www.math.harvard.edu/~shlomo/docs/lie_algebras.pdf


for any SO(2)-invariant function f on SL(2,R).

References: P. Garett’s notes on Invariant differential operators.

Lecture 13. The Casimir operator Ω ∈ Z(g) acts as 2y2

(
∂2

∂x2
+

∂2

∂y2

)
.

KAK and K exp(p) (Cartan) decompositions for GL(n,R) and SL(n,R).

References: [B, §2.2]. See also Knapp’s book.

Lecture 14. Comments on the Cartan motion group K n g/k associated with G and the
Mackey-Higson-Afgoustidis analogy.
The convolution ring C∞c (K\G/K) of K-bi-invariant functions on G is commutative
(Gelfand). If (G,K) = (SL(2,R), SO(2)) and σ ∈ Hom(K,C×), the convolution ring

C∞c (K\G/K, σ) = {f ∈ C∞c (G) , f(k1gk2) = σ(k1)f(g)σ(k2)}
is also commutative.
The Spectral Theorem: if T is a compact self-adjoint operators on a Hilbert space H,
there exists a Hilbert basis of H of eigenvectors and the eigenvalues λi satisfy limλi = 0.

References: [B, §2.2].

Week 6

Lecture 15. Compact operators are the limits of finite-rank operators. They form a
closed two-sided ideal in B(H). Hilbert-Schmidt operators: if K(x, y) ∈ L2(X ×X), then
the operator T defined on L2(X) by

Tf(x) =

∫
X

K(x, y)f(y) dy

is compact. Every unitary representation (π,H) of G, yields a ∗-representation π̃ of the
convolution algebra C∞c (G):

π̃(ϕ)ξ =

∫
G

ϕ(g)π(g)ξ dg

satisfies

π̃(ϕ1 ∗ ϕ2) = π̃(ϕ1)π̃(ϕ2) and π̃(ϕ∗) = π̃(ϕ)∗

where ϕ∗(g) = ϕ(g−1). In the case of the right quasi-regular representation ρ on L2(Γ\G,χ),

ρ(ϕ)f(g) =

∫
G

f(h)ϕ(g−1h) dh.

This is a Hilbert-Schmidt operator with kernel

K(g, h) =
∑
γ∈Γ

χ(γ)ϕ(g−1γh).

Moreover,

ρ(ϕ)
(
L2(Γ\G,χ)

)
⊂ C∞(Γ\G,χ)

http://www.math.umn.edu/~garrett/m/mfms/notes/12_diffops.pdf


and, if ϕ(Rθg) = e−ikθϕ(g), then

ρ(ϕ)
(
L2(Γ\G,χ)

)
⊂ C∞(Γ\G,χ, k).

References: [B, §2.3].

Lecture 16. Guest lecture by J. Voight: On the arithmetic significance of λ = 1
4
.

References: see also [B, §Chap. I].

Lecture 17. Let F is a closed G-invariant space of L2(Γ\G,χ), with K-isotypical de-
composition

F =
∑
k∈Z

⊕
Fk.

If Fk 6= {0}, then ∆ has a non-zero eigenvector in F∞k = Fk ∩ C∞(Γ\G,χ).
The representation L2(Γ\G,χ) of G is semisimple: it decomposes as the direct sum of
unitary irreducible representations of G.

References: [B, §2.3].

Week 7

Lecture 18. For σ ∈ ŜO(2) and ξ character of C∞c (K\G/K, σ), let

H(ξ) =
{
f ∈ L2(Γ\G,χ, k) , ρ(ϕ)f = ξ(ϕ)f for all ϕ ∈ C∞c (K\G/K, σ)

}
.

The spaces H(ξ) are finite-dimensional, mutually orthogonal and

L2(Γ\G,χ, k) =
∑
ξ

⊕
H(ξ).

It follows that L2(Γ\H , χ, k) decomposes as the Hilbert direct sum of eigenspaces for the
weight k Laplacian ∆k. One can also prove that∑

λ∈Sp(∆k)

λ−2

converges, from which it follows that ∆k has a self-adjoint extension to L2(Γ\H , χ, k).

References: [B, §2.3].



Lecture 19. Construction of smooth vectors: if (π,H) is a representation on a Hilbert
space and ξ ∈ H, then π̃(ϕ)ξ ∈ H∞ for ϕ ∈ C∞c (G). Using a Dirac sequence, it follows
that smooth vectors are dense in H.
Overview of the representation theory of compact groups: a locally compact group is
compact if and only if it has finite Haar measure, which can be assumed equal to 1.
All representations on Hilbert spaces can unitarized: if (π,H) is a representation on a
Hilbert space, then π is unitary for the inner product

〈ξ, η〉 =

∫
G

〈π(g)ξ, π(g)η〉H dg,

which defines the same topology.
If (π1,H1) and (π2H2) are unitary representations of a compact group G that possess
matrix coefficients f1 and f2 which are not orthogonal in L2(G), then there exists a non-
trivial intertwiner L : H1 −→ H2, namely, if fi(g) = 〈πi(g)ξi, ηi〉,

ξ1 7−→
∫
G

〈π1(g)ξ1, η1〉π2(g−1)η2 dg.

Peter-Weyl Theorem: if G is a compact group,

(i) Matrix coefficients of finite dimensional unitary representations are dense in C(G)
and Lp(G) for 1 ≤ p ≤ ∞;

(ii) Unitary irreducible representations of G are finite-dimensional;
(iii) All unitary representations are semisimple.

In other words,

L2(G) '
∑
π∈Ĝ

⊕
V ∗π ⊗ Vπ '

∑
π∈Ĝ

⊕
dim(Vπ)Vπ.

A representation π of a (non-compact) group G with maximal compact subgroup K is
said admissible if all its K-isotypical components are finite-dimensional. In other words,

π|K '
∑
ρ∈K̂

⊕
mρVρ

with all multiplicities mρ finite. A famous theorem of Harish-Chandra says that unitary
irreducible representations of Lie groups are admissible. We will prove in the case of
G = SL(2,R) that all the representations that occur in L2(Γ\G,χ) are admissible.

References: [B, §2.4].

Lecture 20. If (π,H) is a unitary irreducible representation of G = SL(2,R), then for

each k ∈ Z ' K̂, the isotypical component Hk is an irreducible C∞c (K\G/K, σk)-module
and has dimension at most 1.
Introductory example of (g, K)-module: trigonometric polynomials in L2(T). Action of
K, action of g. General definition of (g, K)-modules.

References: [B, §2.4] and Casselman’s essays.

http://www.math.ubc.ca/~cass/research/essays.html


Week 8

Lecture 21. K-finite vectors of an admissible representation are smooth and everywhere
dense; they form a (g, K)-module. Representations with isomorphic (g, K)-modules are
said infinitesimally equivalent.

References: [B, §2.4], see also Knapp.

Lecture 22. The complexification gC of sl(2,R) is generated by

R =
1

2

[
1 i
i −1

]
, L =

1

2

[
1 −i
−i −1

]
, H =

[
0 −i
i 0

]
subject to the relations

[H,R] = 2R , [H,L] = −2L , [R,L] = H.

There is also a Casimir element Ω ∈ Z(gC) defined by

−4Ω = H2 + 2RL+ 2LR.

This element acts by a scalar on every irreducible admissible (g, K)-module. If V is an
irreducible admissible (g, K)-module and k ∈ Z, let V (k) denote the isotypical component
of V associated with σk : Rθ 7→ eikθ. Then,

V (k) = {x ∈ V , Hx = kx}

R : V (k) −→ V (k + 2) and L : V (k) −→ V (k − 2).

If V (k) 3 x 6= 0, then CRnx = V (k + 2n), and CLnx = V (k − 2n) and

V = Cx⊕
⊕
n>0

CRnx⊕
⊕
n>0

CLnx.

If Ω acts by λ on V , then for x ∈ V (k)

LRx =

(
−λ− k

2

(
1 +

k

2

))
x and RLx =

(
−λ+

k

2

(
1− k

2

))
x.

If V (k) contains a non-zero vector x such that Rx = 0 (resp. Lx = 0), then

λ = −k
2

(
1 +

k

2

) (
resp.λ =

k

2

(
1− k

2

))
.

It follows that all the K-types of a given admissible irreducible (g, K)-module have the
same parity, giving a dichotomy between even and odd modules.

Uniqueness results:

• If λ is not of the form k
2

(
1− k

2

)
with k even (resp. odd), then there exists at most

one isomorphism class of even (resp. odd) (g, K)-modules on which Ω acts by λ.
The K-types of such a module are all the even (resp. odd) integers.



• If λ = k
2

(
1− k

2

)
with k ∈ Z, then the K-types of an irreducible admissible (g, K)-

module with parity k mod 2 on which Ω acts by λ must be one of the following:

Σ+(k) = {` ∈ Z , l = k mod 2 , ` ≥ k}

Σ−(k) = {` ∈ Z , l = k mod 2 , ` ≤ −k}

Σ0(k) = {` ∈ Z , l = k mod 2 , |`| < k}
and there exists at most one isomorphism class of irreducible admissible (g, K)-
module with a given set of such K-types.

It remains to prove the existence and study the realizability of (g, K)-modules correspond-
ing to these situations.

References: [B, §2.5].

Lecture 23. (Generalized, non-unitary) principal series: for (ε, s) ∈ {0, 1} × C,

H∞(ε, s) =

{
f ∈ C∞(G) , f

([
u t
0 u−1

]
g

)
= [u]ε|u|ν+1f(g)

}
⊂ IndGMAN σε ⊗ χν ⊗ 1N

where s = ν+1
2

and σε(m) = mε for m ∈ {±1} ' M , χν(a) = aν for a ∈ R× ' A and 1N
is the trivial representation of N . A function in H∞(ε, s) is determined by its restriction
to K, which must be even or odd. Conversely, any even or odd function f on T extends
to an element of H∞(ε, s) by

f̃

([ √
y x√

y

0 1√
y

]
Rθ

)
= ysf(θ).

Complete H∞(ε, s) into a Hilbert space H(ε, s) for the norm associated with

〈f1, f2〉 = 〈f1|K , f2|K〉L2(K).

Action of g on K-finite vectors: H(ε, s)(K) is generated by functions of the form

f`

([ √
y x√

y

0 1√
y

]
Rθ

)
= ysei`θ

which satisfy

Hf` = `f` , Rf` =

(
s+

`

2

)
f`+2 , Lf` =

(
s− `

2

)
f`−2 , ∆f` = s(1− s)f`.

It follows that the irreducible admissible (g, K)-modules of SL(2,R) can be realized as
subquotients of H(ε, s)(K) for some (ε, s) ∈ {0, 1} × C:

• If λ = s(1− s) is not of the form k
2

(
1− k

2

)
with k = ε mod 2, then H(ε, s)(K) is

the unique irreducible admissible (g, K)-module on which ∆ acts by λ. Its set of
K-types is 2Z+ε. We denote by P(λ, ε) its isomorphism class and call it principal
series representation.



• If λ = k
2

(
1− k

2

)
with 1 < k = ε mod 2, there exists three irreducible subquotients

of H(ε, s)(K) on which ∆ acts by λ, with respective sets of K-types Σ+(k), Σ−(k)
and Σ0(k). The isomorphism classes corresponding to Σ±(k) are denoted by D±(k)
and called discrete series representations. The corresponding modules D±(1) for
k = 1 are called limits of the discrete series.

References: [B, §2.5].

Week 9

Lecture 24. Unitarizability of the principal series: if λ ≥ 1
4
, then P(λ, ε) contains a

unitary representative. Conversely, if (π,H) is a unitary admissible representation of
SL(2,R) on which Ω acts by λ, then λ ∈ R. Moreover,

- if (π,H) ∈ P(λ, 0), then λ > 0;
- if (π,H) ∈ P(λ, 1), then λ > 1

4
.

This shows that the unitarizable principal series are the πε,ν = IndGMAN σε⊗χν ⊗ 1N with
ν ∈ iR and possibly π0,ν with −1 < ν < 1. These can be shown to be unitarizable, using
intertwining integrals. They are called the complementary series.
Finite dimensional representations: the only finite-dimensional unitary irreducible rep-
resentations of GL(n,R)+ are one-dimensional, of the form detr with r ∈ iR. As a
by-product of the proof, SL(2,R) has no non-trivial finite dimensional unitary irreducible
representation.
Unitary irreducible representations that are infinitesimally equivalent, i.e. have isomor-
phic (g, K)-modules, are unitarily equivalent.

References: [B, §2.6].

Lecture 25. Induced representations of finite groups: we consider G finite group, H
subgroup of G and V a representation of G. Restricting V to a representation of H gives
a functor ResGH : Rep(G) −→ Rep(H).
If V ∈ Rep(G) and W ⊂ V is an H-invariant subspace, then W ∈ Rep(H) and for g ∈ G,
the space g ·W only depends on gH. We say that V is induced by W if

V =
⊕

σ∈G/H

σ ·W.

Example: the left regular representation of G is induced by the left regular representation
of H. For every W ∈ Rep(H) there exists a unique representation of G induced by W .
We denote it by IndGHW .
Example: the regular representation of G is induced by the regular representation of H.
Frobenius Reciprocity is the fact that the functors IndGH and ResGH are adjoint to each
other:

HomH(W,ResGH U) ' HomG(IndGHW,U).

Other pictures of induced representations: for W ∈ Rep(H), consider

IndGHW = {f : G −→ V , f(gh) = h−1f(g) for all g ∈ G, h ∈ H}
with a left action of G by g · f = f(g−1·).



One can also consider C[G] as a C[G] − C[H]-bimodule. Then, there is a G-equivariant
specialization isomorphism

α : C[G]⊗C[H] W
∼−→ IndGHW

defined by

α(a, ξ)(g) =
∑
h∈H

a(gh)h · w

References: Fulton-Harris.

Lecture 26. Unitarizability of the discrete series: for k ≥ 2, the infinitesimal class D±(k)
admits a unitary representative, namely the space of holomorphic functions f on H such
that ∫

H

|f(z)|2yk dx dy
y2

<∞

with G = SL(2,R) acting by

π±(g)f(z) = (∓bz + d)−kf

(
az ∓ c
∓bz + d

)
.

These representations can also be realized as irreducible subrepresentations of the left
regular L2(G).
Solution of the spectral problem: summary of the correspondence between automorphic
forms and unitary irreducible representations of SL(2,R). Holomorphic modular forms
occur in the discrete series.

References: [B, §2.6, 2.7].

Lecture 27. Abstract and concrete C∗-algebras, commutative C∗-algebras are algebras
of continuous functions (Gelfand isomorphism) and all C∗-algebras can be seen as algebras
of bounded operators on a Hilbert space.
For G locally compact group, consider the convolution ∗-algebra Cc(G):

f ∗ g(s) =

∫
G

f(t)g(t−1s) dt , f ∗(t) = ∆G(t)−1f(t−1)

and equip it with the norm

‖f‖r = ‖λ̃G(f)‖op

where λ̃G(f) is the operator of convolution by f on the left, acting on L2(G). More
generally, if π is a unitary representation of G, define π̃(f) acting on Hπ as in Lecture 15
and consider

‖f‖max = sup
π
‖π̃(f)‖op.

The completions of Cc(G) with respect to these norms are C∗-algebras, respectively de-
noted by C∗r(G) and C∗(G). The correspondence π 7→ π̃ induced a bijection between uni-
tary (resp. tempered) representations of G and non-degenerate representations of C∗(G)
(resp. C∗r(G)). In other words, the study of unitary representations of G is equivalent to
the study of Hilbert spaces that are modules over the C∗-algebra(s) of G.



Hilbert C∗-modules and bounded adjointable operators. If A and B are C∗-algebras, an
(A,B)-correspondence is a Hilbert module E over B together with a ∗-morphism

ϕ : A −→ LB(E).

Given such a bimodule AEB and a ∗-representation H of B, one can equip the tensor
product E ⊗B H with the inner product defined by

〈e1 ⊗ ξ1, e2 ⊗ ξ2〉 = 〈ξ1, 〈e1, e2〉ξ2〉.
It carries a left action of A via ϕ and the Hilbert completion gives a ∗-representation,
denoted IndABH.

Week 10

Lecture 28. Mackey induction for locally compact groups: induces unitary representa-
tions to unitary representations. Rieffel’s construction: if H is a closed subgroup of G,
there exists a C∗-correspondence

C∗(G)E(G)C∗(H)

such that for every unitary representation H of H, there is a specialization isomorphism

E(G)⊗C∗(H) H −→ IndGH H
that intertwines the left C∗(G) actions.
If P = L n N is a parabolic subgroup of a real reductive group G, there exists a
(C∗r(G),C∗r(L))-correspondence E(G/N) that realizes parabolic induction: there is a spe-
cialization isomorphism of C∗r(G)-modules

E(G/N)⊗C∗
r(L) Hσ⊗χ

∼−→ IndGP σ ⊗ χ⊗ 1N = πσ,χ.

Adjoint of the functor E(G/N)⊗C∗
r(L) · ? Case of p-adic groups: Frobenius reciprocity and

Bernstein’s Second Adjoint Theorem.
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