FOURIER SERIES

MATH 113 - SPRING 2015

PROBLEM SET #8

Problem 1 (Pointwise and uniform convergence). Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be a 2π -periodic function, piecewise continuous, piecewise of class C^1 . For $x_0 \in \mathbb{R}$, we denote by $f(x_0^\pm)$ the one-sided limit $\lim_{x \to x_0^\pm} f(x)$ and \tilde{f} is the function defined on \mathbb{R}

by

$$\tilde{f}(x) = \frac{f(x^+) + f(x^-)}{2}.$$

The purpose of the problem is to establish the pointwise convergence of the Fourier series of f to \tilde{f} , that is, for any $x_0 \in \mathbb{R}$,

$$\sum_{n\in\mathbb{Z}}\hat{f}(n)e^{inx_0}=\tilde{f}(x_0).$$

1. Verify that for any x_0 in \mathbb{R} , the map $h \mapsto \frac{f(x_0 + h) + f(x_0 - h) - f(x_0^+) - f(x_0^-)}{h}$ is bounded near 0.

First, we consider the case $x_0 = 0$. Denote by $S_N(f)(0)$ the partial sum $\sum_{n=-N}^{N} \hat{f}(n)$.

2. Prove that

$$2\pi S_N(f)(0) = \int_0^{\pi} (f(x) + f(-x)) D_N(x) dx,$$

where $D_N(x)$ is the Dirichlet kernel $\frac{\sin(N+\frac{1}{2})x}{\sin\frac{x}{2}}$.

3. Show that $2\pi(S_N(f)(0) - \tilde{f}(0))$ can be written as $\int_0^\pi g(x) \sin\left(N + \frac{1}{2}\right) x \, dx$ with q piecewise continuous and bounded near 0.

4. Conclude and extend to the case of arbitrary x_0 .

From now on, we assume f continuous and piecewise of class C^1 . We denote by φ the function defined on $\mathbb R$ by

$$\varphi(x) = \left\{ \begin{array}{ll} f'(x) & \text{if } f \text{ is differentiable at } x, \\ \\ \frac{f'(x^+) + f'(x^-)}{2} & \text{otherwise.} \end{array} \right.$$

- 5. Verify the relation $\hat{\varphi}(n) = in \hat{f}(n)$ for all $n \in \mathbb{Z}$.
- 6. Prove that the Fourier series of f converges normally to f.

Hints: 4. Riemann-Lebesgue. Consider $f_{x_0}: x \mapsto f(x+x_0)$. 6. $|ab| \leq \frac{1}{2}(a^2+b^2)$.

Solution. 1. Boundedness follows from the existence of limits on the left and the right for the function and its derivative.

- 2. Partial sums of Fourier series are given by right convolution with Dirichlet's kernel, which is an even function.
- 3. The function $g(x) = \frac{(f(x) + f(-x) f(0^+) f(0^-))}{\sin(\frac{x}{2})}$ is bounded near 0 by the hypotheses and the fact that $\sin(x) \sim_0 x$.
- 4. The integral converges to 0 as $N\to\infty$ by the Riemann-Lebesgue Lemma. For the general case, observe that $\widehat{f_{x_0}}(n)=e^{inx_0}\widehat{f}(n)$.
- 5. Integrate by parts on every interval where the function is of class C^1 .
- 6. For every n, we have $|\hat{f}(n)| = \left|\frac{\hat{\varphi}(n)}{n}\right| \leq \frac{1}{2}\left(|\hat{\varphi}(n)|^2 + \frac{1}{n^2}\right)$, summable by Parseval. Therefore, the series converges normally to its pointwise limit \tilde{f} .

Problem 2 (Application to the computation of sums). Let f be the 2π -periodic function on $\mathbb R$ defined by $f(x)=1-\frac{x^2}{\pi^2}$ for all $x\in [-\pi,\pi]$.

1. Compute the Fourier coefficients of f.

2. Deduce the sums of the series
$$\sum_{n\geq 1} \frac{1}{n^2}$$
, $\sum_{n\geq 1} \frac{(-1)^n}{n^2}$ and $\sum_{n\geq 1} \frac{1}{n^4}$.

Hints: note that only the real part of $\hat{f}(n)$ is useful. Parseval.

Solution. A direct computation shows that $\hat{f}(0) = \frac{2}{3}$ and that the real part of $\hat{f}(n)$ is $\frac{2(-1)^{n+1}}{\pi^2 n^2}$. Since f clearly satisfies the hypotheses of the results proved in the previous problem, we get:

•
$$f(\pi) = 0 = \frac{2}{3} - \frac{2}{\pi^2} \sum_{|n| > 1} \frac{1}{n^2}$$
 so that $\sum_{n \ge 1} \frac{1}{n^2} = \frac{\pi^2}{6}$.

•
$$f(0) = 1 = \frac{2}{3} - \frac{2}{\pi^2} \sum_{|n| > 1} \frac{(-1)^n}{n^2}$$
 so that $\sum_{n > 1} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$.

Finally, Parsevals' Identity gives $\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(1 - \frac{x^2}{\pi^2}\right)^2 dx = \frac{8}{15} = \frac{4}{9} + \frac{4}{\pi^4} \sum_{|n| \ge 1} \frac{1}{n^4}$

so that
$$\sum_{n>1} \frac{1}{n^4} = \frac{\pi^4}{90}$$
.

Problem 3 (Not every function is equal to the sum of its Fourier series). Let $C_{2\pi}$ denote the space of 2π -periodic continuous functions on \mathbb{R} , equipped with $\|\cdot\|_{\infty}$. For $N \in \mathbb{N}$, we define a linear functional φ_N on $C_{2\pi}$ by

$$\varphi_N(f) = S_N(f)(0) = \sum_{n=-N}^{N} \hat{f}(n)$$

- 1. Verify that $\mathcal{C}_{2\pi}$ is a Banach space.
- 2. Prove that $\varphi_N \in \mathcal{C}^*_{2\pi}$ and compute $\|\varphi_N\|$.
- 3. Show that $\|\varphi_N\| \geq \frac{2}{\pi} \int_0^{\frac{(2N+1)\pi}{2}} \left| \frac{\sin u}{u} \right| du$ for any $N \in \mathbb{N}$.
- 4. Prove the existence of a function in $C_{2\pi}$ whose Fourier series diverges at 0.

Hints: 2. Consider $f_{\varepsilon} = \frac{D_N}{|D_N| + \varepsilon}$. 4. Use the Principle of Uniform Boundedness.

- *Solution.* 1. The space $C_{2\pi}$ is a closed subspace of the Banach space of bounded functions on \mathbb{R} .
 - 2. Using the Dirichlet kernel once more, we see that $\varphi_N(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) D_N(x) \, dx$ from which it follows that $\|\varphi_N\| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(x)| \, dx$, so that $\varphi_N \in \mathcal{C}_{2\pi}^*$. To prove the reverse inequality, consider $f_{\varepsilon} = \frac{D_N}{|D_N| + \varepsilon}$ for $\varepsilon > 0$. It is clearly in the unit ball and $\lim_{\varepsilon \to 0} \varphi_N(f_{\varepsilon}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(x)| \, dx$ so finally,

$$\|\varphi_N\| = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(x)| dx.$$

- 3. It follows from the inequality $\left|\sin\left(\frac{x}{2}\right)\right| \leq \left|\frac{x}{2}\right|$ and the change of variables $u = \left(N + \frac{1}{2}\right)x$
- 4. The improper integral $\int_0^\infty \left| \frac{\sin u}{u} \right| du$ is divergent so $\lim_{N \to \infty} \|\varphi_N\| = \infty$. If $\varphi_N(f)$ was convergent for all $f \in \mathcal{C}_{2\pi}$, the Principle of Uniform Boundedness would imply that $\|\varphi_N\|$ is a bounded sequence, so there exist functions whose Fourier series must diverge at 0. Note that such functions can be explicitly constructed, see for instance

Chapter 3 in [Stein - Shakarchi].