(PRE-)HILBERT SPACES

Math 113 - Spring 2015

PROBLEM SET \#7

Problem 1 (Gram-Schmidt orthonormalization). Let $\mathcal{X}=\left\{x_{n}\right\}_{n \geq 0}$ be a countable family of linearly independent vectors in a Hilbert space. Prove the existence of a countable orthonormal family $\mathcal{Y}=\left\{y_{n}\right\}_{n \geq 0}$ such that

$$
\operatorname{Span}\left(x_{0}, \ldots, x_{p}\right)=\operatorname{Span}\left(y_{0}, \ldots, y_{p}\right)
$$

for all $p \geq 0$.
Solution. Let $y_{0}=\frac{1}{\left\|x_{0}\right\|} x_{0}$. Assume constructed y_{0}, \ldots, y_{n} satisfying the requirements. The projection of x_{n+1} on $\operatorname{Span}\left(y_{0}, \ldots, y_{n}\right)$ is $\sum_{k=0}^{n}\left\langle x_{n+1}, y_{k}\right\rangle y_{k}$ so

$$
y_{n+1}^{\prime}=x_{n+1}-\sum_{k=0}^{n}\left\langle x_{n+1}, y_{k}\right\rangle y_{k}
$$

is orthogonal to all the vectors y_{k} for $k \leq n$. Switching y_{n+1}^{\prime} and x_{n+1} accross the equality symbol and the induction hypothesis show the equality of the generated subspaces, and it suffices to define $y_{n+1}=\frac{1}{\left\|y_{n+1}^{\prime}\right\|} y_{n+1}^{\prime}$.

Problem 2 (Orthogonal polynomials). Let I be an interval of \mathbb{R} and $w: I \rightarrow \mathbb{R}$ a continuous positive function such that $x \mapsto x^{n} w(x)$ is integrable on I for any integer $n \geq 0$. Denote by \mathcal{C} the set of continuous functions $f: I \rightarrow \mathbb{R}$ such that $x \mapsto f^{2}(x) w(x)$ is integrable. Finally, for f and g real-valued functions on I, we define

$$
\langle f, g\rangle_{w}=\int_{I} f(x) g(x) w(x) d x
$$

1. Verify that $\mathbb{R}[X] \subset \mathcal{C}$ and that $\langle\cdot, \cdot\rangle_{w}$ is an inner product on \mathcal{C}. Denote by $\|\cdot\|_{w}$ the corresponding norm. Is $\left(\mathcal{C},\|\cdot\|_{w}\right)$ a Hilbert space?
2. Prove the existence of an orthonormal basis $\left\{P_{n}\right\}_{n \geq 0}$ of $\mathbb{R}[X]$ such that the degree of P_{n} is n and its leading coefficient γ_{n} is positive.
3. Verify that the polynomials P_{n} satisfy a relation of the form

$$
P_{n}=\left(a_{n} X+b_{n}\right) P_{n-1}+c_{n} P_{n-2}
$$

and determine the sequences $\left\{a_{n}\right\}_{n \in \mathbb{N}},\left\{b_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{c_{n}\right\}_{n \in \mathbb{N}}$.
4. Prove that P_{n} has n distinct roots in I.
5. Assume I compact.
(a) Find a constant C such that $\|f\|_{w} \leq C\|f\|_{\infty}$ for all $f \in \mathcal{C}$.
(b) For f in \mathcal{C}, let $p_{n}(f)$ be the orthogonal projection of f on $\mathbb{R}_{n}[X]$. Prove that $p_{n}(f) \xrightarrow[n \rightarrow \infty]{\|\cdot\|_{w}} f$.

Hint: 1. You may choose a concrete w to study completeness. 3. Project (\dagger) and express a_{n} in terms of γ_{n} and γ_{n-1}. 4. Compute $\left\langle P_{n}, \prod_{\alpha}(X-\alpha)\right\rangle_{w}$ where the product is taken over roots of P_{n} with odd order.

Solution. 1. Bilinearity comes from properties of the integral, positivity and definiteness result from the assumptions on the weight w. However, $(\mathcal{C}, \|$ • $\left.\|_{w}\right)$ is not complete as discontinuous functions with finite $\|\cdot\|_{w}$ norm can be obtained as limits of Cauchy sequences in \mathcal{C}.
2. Apply the Gram-Schmidt procedure to the canonical basis of $\mathbb{R}[X]$ and multiply by -1 if necessary to guarantee that $\gamma_{n}>0$.
3. First assume that such a relation exists. Then, projecting onto the lines generated by P_{n}, P_{n-1} and P_{n-2} leads to
$1=a_{n}\left\langle X P_{n-1}, P_{n}\right\rangle_{w} \quad 0=a_{n}\left\langle X P_{n-1}, P_{n-1}\right\rangle_{w}+b_{n} \quad 0=a_{n}\left\langle X P_{n-1}, P_{n-2}\right\rangle_{w}+c_{n}$.
A direct computation shows that $a_{n}=\frac{\gamma_{n}}{\gamma_{n-1}}$. Similarly, $b_{n}=-\frac{\gamma_{n}}{\gamma_{n-1}}\left\langle X P_{n-1}, P_{n-1}\right\rangle$ and $c_{n}=-\frac{\gamma_{n-2}}{\gamma_{n-1}^{2}}$. Choosing these values for a_{n}, b_{n} and c_{n} guarantees that
$P_{n}-\left(\left(a_{n} X+b_{n}\right) P_{n-1}+c_{n} P_{n-2}\right)$ has degree at most $n-3$. This polynomial is a combination of P_{n}, P_{n-2} and $X P_{n-1}$. The first two are orthogonal to any P_{k} with $k \leq n-3$ by construction. For the last one, observe that $\left\langle X P_{n-1}, P_{k}\right\rangle=\left\langle P_{n-1}, X P_{k}\right\rangle=0$ since $X P_{k} \in \operatorname{span}\left(P_{0}, \ldots, P_{n-2}\right)$. This implies that $P_{n}-\left(\left(a_{n} X+b_{n}\right) P_{n-1}+c_{n} P_{n-2}\right)=0$.
4. Let $Q=\prod_{\alpha}(X-\alpha)$ where α runs over the roots odd order of P_{n}, with the convention that $Q=1$ if there are no such roots. If Q has degree $<n$, then $P_{n} \perp Q$ by definition of the family $\left\{P_{n}\right\}$. On the other hand the function $x \mapsto P_{n}(x) Q(x) w(x)$ is non-negative so its integral is 0 only if it is constantly 0 , which it is not. Therefore Q has degree n and P_{n} has n distinct roots in I.
5. (a) A direct estimate gives $C=\sqrt{\int_{I} w}$. (b) Let $\varepsilon>0$. By StoneWeierstrass there exists a polynomial S such that $\|f-S\|_{\infty}<\frac{\varepsilon}{C}$. Let N be its degree. By optimality of the orthogonal projection, $\left\|f-p_{N}(f)\right\|_{w} \leq$ $\|f-S\|_{w} \leq C\|f-S\|_{\infty}<\varepsilon$. Bessel's Inequality implies that $\{\| f-$ $\left.p_{n}(f) \|_{w}\right\}$ is a decreasing sequence and the result follows.

Note: families of orthogonal polynomials for various weights have many applications in a variety of contexts. In the case of $I=(-1,1)$ with $w(x)=\left(1-x^{2}\right)^{-\frac{1}{2}}$, one obtains the Chebyshev polynomials of the first kind. They are subject to the relation $P_{n}=2 x P_{n-1}-P_{n-2}$ and satisfy the relation $P_{n}(\cos \theta)=\cos n \theta$. They are very useful in Approximation Theory. Legendre polynomials correspond to the case of $I=[-1,1]$ with $w(x)=1$, Hermite polynomials to the case of $I=\mathbb{R}$ with $w(x)=e^{-x^{2}}$ and Laguerre polynomials to the case of $I=[0, \infty)$ with $w(x)=e^{-x}$.

Problem 3. Let G be a group acting on a countable set X. Let $\mathcal{H}=\ell^{2}(X)$ be the Hilbert space of square-integrable functions on X for the counting measure.

1. Let A and B be subsets of X, with indicators denoted by χ_{A} and χ_{B}.
(a) Give a condition on A, equivalent to $\chi_{A} \in \mathcal{H}$.
(b) Give a condition on A and B, equivalent to $\chi_{A} \perp \chi_{B}$ in \mathcal{H}.
2. For $f \in \mathcal{H}$ and $g \in G$, define $\pi(g) f=x \mapsto f\left(g^{-1} \cdot x\right)$.
(a) Prove that each $\pi(g)$ is a unitary operator on \mathcal{H}.
(b) Prove that $\pi: G \longrightarrow \mathrm{U}(\mathcal{H})$ is a group homomorphism.

From now on, we assume that for every $x \in X$, the G-orbit $\{g \cdot x, g \in G\}$ is infinite.
3. Let $A \subset X$ be such that $\chi_{A} \in \mathcal{H}$ and denote by C be the closure of the convex hull ${ }^{1}$ of $C_{0}=\left\{\pi(g) \chi_{A}, g \in G\right\}$.
(a) Prove the existence of a unique element ξ of minimal norm in C.
(b) Verify that C is stable by each of the operators $\pi(g)$.
(c) Prove that $\pi(g) \xi=\xi$ for all $g \in G$.
(d) Deduce that ξ is constant on each G-orbit and conclude.
4. Let A, B be non-empty finite subsets of X and assume that $(g \cdot A) \cap B \neq \varnothing$ for all g in G.
(a) Prove that $\left\langle f, \chi_{B}\right\rangle \geq 1$ for all $f \in C$.
(b) Apply the previous result to ξ and conclude.

Solution. 1. Observe that $\left\langle\chi_{A}, \chi_{B}\right\rangle=\operatorname{Card} A \cap B$ so that $\chi_{A} \in \mathcal{H}$ if and only if A is finite and $\chi_{A} \perp \chi_{B}$ if and only if A and B are disjoint.
2. Each map $x \mapsto g \cdot x$ is a bijection so the sums defining $\|f\|_{2}^{2}$ and $\|\pi(g) f\|_{2}^{2}$ only differ by the order of the terms. The morphism property follows from the fact that $(g h)^{-1}=h^{-1} g^{-1}$ in any group.
3. (a) The set C is convex as the closure of a convex set and ξ is the projection of 0 on C.
(b) By construction, C_{0} is stable by each $\pi(g)$. These maps are continuous so C is stable too.
(c) Since $\pi(g)$ is an isometry, $\|\pi(g) \xi\|=\|\xi\|$. Now ξ is the only element in C with norm $\|\xi\|$ so $\pi(g) \xi=\xi$.
(d) We have $\xi\left(g^{-1} \cdot x\right)=\pi(g) \xi(x)=\xi(x)$ for all $x \in X$ and $g \in G$ so ξ is constant on the orbits. The only constant square-integrable function on an infinite discrete space is 0 so $\xi=0$.

[^0]4. The hypothesis on A and B implies that $\left\langle f, \chi_{B}\right\rangle \geq 1$ for all f of the form $\pi(g) \chi_{A}$. It extends to f in C_{0} by convex combinations and to all of C by continuity of the inner product. In particular, we should have $\left\langle\xi, \chi_{B}\right\rangle \geq 1$, which contradicts the fact that $\xi=0$.

[^0]: ${ }^{1}$ the convex hull of a set S is the family of all possible convex combinations of elements of S.

