(PRE-)HILBERT SPACES

MATH 113 - SPRING 2015

PROBLEM SET #7

Problem 1 (Gram-Schmidt orthonormalization). Let $\mathcal{X} = \{x_n\}_{n \ge 0}$ be a countable family of linearly independent vectors in a Hilbert space. Prove the existence of a countable orthonormal family $\mathcal{Y} = \{y_n\}_{n \ge 0}$ such that

$$\operatorname{Span}(x_0,\ldots,x_p) = \operatorname{Span}(y_0,\ldots,y_p)$$

for all $p \ge 0$.

Solution. Let $y_0 = \frac{1}{\|x_0\|} x_0$. Assume constructed y_0, \dots, y_n satisfying the requirements. The projection of x_{n+1} on $\text{Span}(y_0, \dots, y_n)$ is $\sum_{k=0}^n \langle x_{n+1}, y_k \rangle y_k$ so

$$y'_{n+1} = x_{n+1} - \sum_{k=0}^{n} \langle x_{n+1}, y_k \rangle y_k$$

is orthogonal to all the vectors y_k for $k \le n$. Switching y'_{n+1} and x_{n+1} accross the equality symbol and the induction hypothesis show the equality of the generated subspaces, and it suffices to define $y_{n+1} = \frac{1}{\|y'_{n+1}\|}y'_{n+1}$.

Problem 2 (Orthogonal polynomials). Let I be an interval of \mathbb{R} and $w : I \to \mathbb{R}$ a continuous positive function such that $x \mapsto x^n w(x)$ is integrable on I for any integer $n \ge 0$. Denote by C the set of continuous functions $f : I \to \mathbb{R}$ such that $x \mapsto f^2(x)w(x)$ is integrable. Finally, for f and g real-valued functions on I, we define

$$\langle f,g \rangle_w = \int_I f(x)g(x)w(x) \, dx$$

- 1. Verify that $\mathbb{R}[X] \subset \mathcal{C}$ and that $\langle \cdot, \cdot \rangle_w$ is an inner product on \mathcal{C} . Denote by $\|\cdot\|_w$ the corresponding norm. Is $(\mathcal{C}, \|\cdot\|_w)$ a Hilbert space?
- 2. Prove the existence of an orthonormal basis $\{P_n\}_{n\geq 0}$ of $\mathbb{R}[X]$ such that the degree of P_n is n and its leading coefficient γ_n is positive.
- 3. Verify that the polynomials P_n satisfy a relation of the form

$$P_n = (a_n X + b_n) P_{n-1} + c_n P_{n-2} \tag{(\dagger)}$$

and determine the sequences $\{a_n\}_{n\in\mathbb{N}}, \{b_n\}_{n\in\mathbb{N}}$ and $\{c_n\}_{n\in\mathbb{N}}$.

- 4. Prove that P_n has n distinct roots in I.
- 5. Assume *I* compact.
 - (a) Find a constant C such that $||f||_w \leq C ||f||_\infty$ for all $f \in C$.

Hint: 1. You may choose a concrete w to study completeness. 3. Project (†) and express a_n in terms of γ_n and γ_{n-1} . 4. Compute $\langle P_n, \prod_{\alpha} (X - \alpha) \rangle_w$ where the product is taken over roots of P_n with odd order.

- Solution.
 1. Bilinearity comes from properties of the integral, positivity and definiteness result from the assumptions on the weight w. However, (C, || · ||_w) is not complete as discontinuous functions with finite || · ||_w norm can be obtained as limits of Cauchy sequences in C.
 - 2. Apply the Gram-Schmidt procedure to the canonical basis of $\mathbb{R}[X]$ and multiply by -1 if necessary to guarantee that $\gamma_n > 0$.
 - 3. First assume that such a relation exists. Then, projecting onto the lines generated by P_n , P_{n-1} and P_{n-2} leads to

$$1 = a_n \langle XP_{n-1}, P_n \rangle_w \quad 0 = a_n \langle XP_{n-1}, P_{n-1} \rangle_w + b_n \quad 0 = a_n \langle XP_{n-1}, P_{n-2} \rangle_w + c_n$$

A direct computation shows that $a_n = \frac{\gamma_n}{\gamma_{n-1}}$. Similarly, $b_n = -\frac{\gamma_n}{\gamma_{n-1}} \langle XP_{n-1}, P_{n-1} \rangle$ and $c_n = -\frac{\gamma_{n-2}}{\gamma_{n-1}^2}$. Choosing these values for a_n , b_n and c_n guarantees that $P_n - ((a_nX + b_n)P_{n-1} + c_nP_{n-2})$ has degree at most n - 3. This polynomial is a combination of P_n , P_{n-2} and XP_{n-1} . The first two are orthogonal to any P_k with $k \le n - 3$ by construction. For the last one, observe that $\langle XP_{n-1}, P_k \rangle = \langle P_{n-1}, XP_k \rangle = 0$ since $XP_k \in \text{span}(P_0, \dots, P_{n-2})$. This implies that $P_n - ((a_nX + b_n)P_{n-1} + c_nP_{n-2}) = 0$.

- 4. Let Q = Π_α(X − α) where α runs over the roots odd order of P_n, with the convention that Q = 1 if there are no such roots. If Q has degree < n, then P_n ⊥ Q by definition of the family {P_n}. On the other hand the function x → P_n(x)Q(x)w(x) is non-negative so its integral is 0 only if it is constantly 0, which it is not. Therefore Q has degree n and P_n has n distinct roots in I.
- 5. (a) A direct estimate gives $C = \sqrt{\int_I w}$. (b) Let $\varepsilon > 0$. By Stone-Weierstrass there exists a polynomial S such that $||f S||_{\infty} < \frac{\varepsilon}{C}$. Let N be its degree. By optimality of the orthogonal projection, $||f p_N(f)||_w \le ||f S||_w \le C ||f S||_{\infty} < \varepsilon$. Bessel's Inequality implies that $\{||f p_n(f)||_w\}$ is a decreasing sequence and the result follows.

Note: families of orthogonal polynomials for various weights have many applications in a variety of contexts. In the case of I = (-1, 1) with $w(x) = (1 - x^2)^{-\frac{1}{2}}$, one obtains the **Chebyshev polynomials of the first kind**. They are subject to the relation $P_n = 2xP_{n-1} - P_{n-2}$ and satisfy the relation $P_n(\cos\theta) = \cos n\theta$. They are very useful in Approximation Theory. Legendre polynomials correspond to the case of I = [-1, 1] with w(x) = 1, Hermite polynomials to the case of $I = \mathbb{R}$ with $w(x) = e^{-x^2}$ and Laguerre polynomials to the case of $I = [0, \infty)$ with $w(x) = e^{-x}$.

Problem 3. Let G be a group acting on a countable set X. Let $\mathcal{H} = \ell^2(X)$ be the Hilbert space of square-integrable functions on X for the counting measure.

- 1. Let A and B be subsets of X, with indicators denoted by χ_A and χ_B .
 - (a) Give a condition on A, equivalent to $\chi_A \in \mathcal{H}$.
 - (b) Give a condition on A and B, equivalent to $\chi_A \perp \chi_B$ in \mathcal{H} .
- 2. For $f \in \mathcal{H}$ and $g \in G$, define $\pi(g)f = x \mapsto f(g^{-1} \cdot x)$.
 - (a) Prove that each $\pi(g)$ is a unitary operator on \mathcal{H} .

(b) Prove that $\pi: G \longrightarrow U(\mathcal{H})$ is a group homomorphism.

From now on, we assume that for every $x \in X$, the G-orbit $\{g \cdot x, g \in G\}$ is infinite.

- 3. Let $A \subset X$ be such that $\chi_A \in \mathcal{H}$ and denote by C be the closure of the convex hull¹ of $C_0 = \{\pi(g)\chi_A, g \in G\}$.
 - (a) Prove the existence of a unique element ξ of minimal norm in C.
 - (b) Verify that C is stable by each of the operators $\pi(g)$.
 - (c) Prove that $\pi(g)\xi = \xi$ for all $g \in G$.
 - (d) Deduce that ξ is constant on each G-orbit and conclude.
- 4. Let A, B be non-empty finite subsets of X and assume that $(g \cdot A) \cap B \neq \emptyset$ for all g in G.
 - (a) Prove that $\langle f, \chi_B \rangle \ge 1$ for all $f \in C$.
 - (b) Apply the previous result to ξ and conclude.
- Solution. 1. Observe that $\langle \chi_A, \chi_B \rangle = \operatorname{Card} A \cap B$ so that $\chi_A \in \mathcal{H}$ if and only if A is finite and $\chi_A \perp \chi_B$ if and only if A and B are disjoint.
 - 2. Each map $x \mapsto g \cdot x$ is a bijection so the sums defining $||f||_2^2$ and $||\pi(g)f||_2^2$ only differ by the order of the terms. The morphism property follows from the fact that $(gh)^{-1} = h^{-1}g^{-1}$ in any group.
 - 3. (a) The set C is convex as the closure of a convex set and ξ is the projection of 0 on C.
 - (b) By construction, C_0 is stable by each $\pi(g)$. These maps are continuous so C is stable too.
 - (c) Since $\pi(g)$ is an isometry, $\|\pi(g)\xi\| = \|\xi\|$. Now ξ is the only element in *C* with norm $\|\xi\|$ so $\pi(g)\xi = \xi$.
 - (d) We have $\xi(g^{-1} \cdot x) = \pi(g)\xi(x) = \xi(x)$ for all $x \in X$ and $g \in G$ so ξ is constant on the orbits. The only constant square-integrable function on an infinite discrete space is 0 so $\xi = 0$.

¹the convex hull of a set S is the family of all possible convex combinations of elements of S.

4. The hypothesis on A and B implies that $\langle f, \chi_B \rangle \geq 1$ for all f of the form $\pi(g)\chi_A$. It extends to f in C_0 by convex combinations and to all of C by continuity of the inner product. In particular, we should have $\langle \xi, \chi_B \rangle \geq 1$, which contradicts the fact that $\xi = 0$.