(PRE-)HILBERT SPACES

Math 113 - Spring 2015

PROBLEM SET \#7

Problem 1 (Gram-Schmidt orthonormalization). Let $\mathcal{X}=\left\{x_{n}\right\}_{n \geq 0}$ be a countable family of linearly independent vectors in a Hilbert space. Prove the existence of a countable orthonormal family $\mathcal{Y}=\left\{y_{n}\right\}_{n \geq 0}$ such that

$$
\operatorname{Span}\left(x_{0}, \ldots, x_{p}\right)=\operatorname{Span}\left(y_{0}, \ldots, y_{p}\right)
$$

for all $p \geq 0$.
Problem 2 (Orthogonal polynomials). Let I be an interval of \mathbb{R} and $w: I \rightarrow \mathbb{R}$ a continuous positive function such that $x \mapsto x^{n} w(x)$ is integrable on I for any integer $n \geq 0$. Denote by \mathcal{C} the set of continuous functions $f: I \rightarrow \mathbb{R}$ such that $x \mapsto f^{2}(x) w(x)$ is integrable. Finally, for f and g real-valued functions on I, we define

$$
\langle f, g\rangle_{w}=\int_{I} f(x) g(x) w(x) d x
$$

1. Verify that $\mathbb{R}[X] \subset \mathcal{C}$ and that $\langle\cdot, \cdot\rangle_{w}$ is an inner product on \mathcal{C}. Denote by $\|\cdot\|_{w}$ the corresponding norm. Is $\left(\mathcal{C},\|\cdot\|_{w}\right)$ a Hilbert space?
2. Prove the existence of an orthonormal basis $\left\{P_{n}\right\}_{n \geq 0}$ of $\mathbb{R}[X]$ such that the degree of P_{n} is n and its leading coefficient γ_{n} is positive.
3. Verify that the polynomials P_{n} satisfy a relation of the form

$$
P_{n}=\left(a_{n} X+b_{n}\right) P_{n-1}+c_{n} P_{n-2}
$$

and determine the sequences $\left\{a_{n}\right\}_{n \in \mathbb{N}},\left\{b_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{c_{n}\right\}_{n \in \mathbb{N}}$.
4. Prove that P_{n} has n distinct roots in I.
5. Assume I compact.
(a) Find a constant C such that $\|f\|_{w} \leq C\|f\|_{\infty}$ for all $f \in \mathcal{C}$.
(b) For f in \mathcal{C}, let $p_{n}(f)$ be the orthogonal projection of f on $\mathbb{R}_{n}[X]$. Prove that $p_{n}(f) \xrightarrow[n \rightarrow \infty]{\|\cdot\|_{w}} f$.

Hint: 1. You may choose a concrete w to study completeness. 3. Project (\dagger) and express a_{n} in terms of γ_{n} and γ_{n-1}. 4. Compute $\left\langle P_{n}, \prod_{\alpha}(X-\alpha)\right\rangle_{w}$ where the product is taken over roots of P_{n} with odd order.
Problem 3. Let G be a group acting on a countable set X. Let $\mathcal{H}=\ell^{2}(X)$ be the Hilbert space of square-integrable functions on X for the counting measure.

1. Let A and B be subsets of X, with indicators denoted by χ_{A} and χ_{B}.
(a) Give a condition on A, equivalent to $\chi_{A} \in \mathcal{H}$.
(b) Give a condition on A and B, equivalent to $\chi_{A} \perp \chi_{B}$ in \mathcal{H}.
2. For $f \in \mathcal{H}$ and $g \in G$, define $\pi(g) f=x \mapsto f\left(g^{-1} \cdot x\right)$.
(a) Prove that each $\pi(g)$ is a unitary operator on \mathcal{H}.
(b) Prove that $\pi: G \longrightarrow \mathrm{U}(\mathcal{H})$ is a group homomorphism.

From now on, we assume that for every $x \in X$, the G-orbit $\{g \cdot x, g \in G\}$ is infinite.
3. Let $A \subset X$ be such that $\chi_{A} \in \mathcal{H}$ and denote by C be the closure of the convex hull ${ }^{1}$ of $C_{0}=\left\{\pi(g) \chi_{A}, g \in G\right\}$.
(a) Prove the existence of a unique element ξ of minimal norm in C.
(b) Verify that C is stable by each of the operators $\pi(g)$.
(c) Prove that $\pi(g) \xi=\xi$ for all $g \in G$.
(d) Deduce that ξ is constant on each G-orbit and conclude.
4. Let A, B be non-empty finite subsets of X and assume that $(g \cdot A) \cap B \neq \varnothing$ for all g in G.
(a) Prove that $\left\langle f, \chi_{B}\right\rangle \geq 1$ for all $f \in C$.
(b) Apply the previous result to ξ and conclude.

[^0]
[^0]: ${ }^{1}$ the convex hull of a set S is the family of all possible convex combinations of elements of S.

