(PRE-)HILBERT SPACES

MATH 113 - SPRING 2015

PROBLEM SET #7

Problem 1 (Gram-Schmidt orthonormalization). Let $\mathcal{X} = \{x_n\}_{n\geq 0}$ be a countable family of linearly independent vectors in a Hilbert space. Prove the existence of a countable orthonormal family $\mathcal{Y} = \{y_n\}_{n\geq 0}$ such that

$$\operatorname{Span}(x_0,\ldots,x_p) = \operatorname{Span}(y_0,\ldots,y_p)$$

for all $p \ge 0$.

Problem 2 (Orthogonal polynomials). Let I be an interval of \mathbb{R} and $w : I \to \mathbb{R}$ a continuous positive function such that $x \mapsto x^n w(x)$ is integrable on I for any integer $n \ge 0$. Denote by C the set of continuous functions $f : I \to \mathbb{R}$ such that $x \mapsto f^2(x)w(x)$ is integrable. Finally, for f and g real-valued functions on I, we define

$$\langle f,g \rangle_w = \int_I f(x)g(x)w(x) \, dx$$

- 1. Verify that $\mathbb{R}[X] \subset \mathcal{C}$ and that $\langle \cdot, \cdot \rangle_w$ is an inner product on \mathcal{C} . Denote by $\|\cdot\|_w$ the corresponding norm. Is $(\mathcal{C}, \|\cdot\|_w)$ a Hilbert space?
- 2. Prove the existence of an orthonormal basis $\{P_n\}_{n\geq 0}$ of $\mathbb{R}[X]$ such that the degree of P_n is n and its leading coefficient γ_n is positive.
- 3. Verify that the polynomials P_n satisfy a relation of the form

$$P_n = (a_n X + b_n) P_{n-1} + c_n P_{n-2} \tag{(\dagger)}$$

and determine the sequences $\{a_n\}_{n\in\mathbb{N}}, \{b_n\}_{n\in\mathbb{N}}$ and $\{c_n\}_{n\in\mathbb{N}}$.

4. Prove that P_n has n distinct roots in I.

- 5. Assume *I* compact.
 - (a) Find a constant C such that $||f||_w \leq C ||f||_\infty$ for all $f \in C$.
 - (b) For f in C, let p_n(f) be the orthogonal projection of f on ℝ_n[X]. Prove that p_n(f) ^{||·||w}/_{n→∞} f.

Hint: 1. You may choose a concrete w to study completeness. 3. Project (†) and express a_n in terms of γ_n and γ_{n-1} . 4. Compute $\langle P_n, \prod_{\alpha} (X - \alpha) \rangle_w$ where the product is taken over roots of P_n with odd order.

Problem 3. Let G be a group acting on a countable set X. Let $\mathcal{H} = \ell^2(X)$ be the Hilbert space of square-integrable functions on X for the counting measure.

- 1. Let A and B be subsets of X, with indicators denoted by χ_A and χ_B .
 - (a) Give a condition on A, equivalent to $\chi_A \in \mathcal{H}$.
 - (b) Give a condition on A and B, equivalent to $\chi_A \perp \chi_B$ in \mathcal{H} .
- 2. For $f \in \mathcal{H}$ and $g \in G$, define $\pi(g)f = x \mapsto f(g^{-1} \cdot x)$.
 - (a) Prove that each $\pi(q)$ is a unitary operator on \mathcal{H} .
 - (b) Prove that $\pi: G \longrightarrow U(\mathcal{H})$ is a group homomorphism.

From now on, we assume that for every $x \in X$, the G-orbit $\{g \cdot x , g \in G\}$ is infinite.

- 3. Let $A \subset X$ be such that $\chi_A \in \mathcal{H}$ and denote by C be the closure of the convex hull¹ of $C_0 = \{\pi(g)\chi_A, g \in G\}$.
 - (a) Prove the existence of a unique element ξ of minimal norm in C.
 - (b) Verify that C is stable by each of the operators $\pi(g)$.
 - (c) Prove that $\pi(g)\xi = \xi$ for all $g \in G$.
 - (d) Deduce that ξ is constant on each G-orbit and conclude.
- 4. Let A, B be non-empty finite subsets of X and assume that $(g \cdot A) \cap B \neq \emptyset$ for all g in G.
 - (a) Prove that $\langle f, \chi_B \rangle \ge 1$ for all $f \in C$.
 - (b) Apply the previous result to ξ and conclude.

¹the convex hull of a set S is the family of all possible convex combinations of elements of S.