
C∗-ALGEBRAS

MATH 113 - SPRING 2015

PROBLEM SET #6

Problem 1 (Positivity in C∗-algebras). The purpose of this problem is to establish
the following result:
Theorem. Let A be a unital C∗-algebra. For a ∈ A, the following statements are
equivalent.

(a) a is hermitian and SpA(a) ⊂ [0,∞)

(b) There exists b in A such that a = b∗b

(c) There exists b hermitian in A such that a = b2

An element satisfying (a) is said positiveand we write a ≥ 0.

1. What are the positive elements in C? Verify that the theorem holds in this
case.

2. Let a ∈ A be hermitian. Prove that there exist positive elements u, v in A
such that a = u− v and uv = vu = 0.

3. Let a ≥ 0 in A and n ∈ N∗. Prove the existence of b ≥ 0 such that a = bn.

4. Verify that (a)⇒ (c)⇒ (b) in the theorem.

5. We want to prove that the elements u, v and b in 2. and 3. are unique.
Assume that a = u′ − v′ with u′, v′ positive and u′v′ = v′u′ = 0.

(a) Prove that P (a) = P (u′) + P (−v′) for any polynomial P .

(b) Let f be the function defined on R by f(t) = max(t, 0). Prove that
u = f(u′) + f(−v′).

(c) Show that f(u′) = u′ and f(−v′) = 0 and conclude.
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(d) Use a similar method to prove that the element b in 3. is unique.

Hints: 2.& 3. Functional Calculus, t 7→ max(t, 0), t 7→ max(−t, 0), t 7→ t
1
n .

5.(a) Start with P (t) = tn.
5.(b) Approach f uniformly on Sp(a)∪ Sp(u′)∪ Sp(v′) by polynomial functions.

Solution. 1. Non-negative real numbers.

2. Consider the continuous functions f and g defined on R by f(t) = max(t, 0)
and g(t) = max(−t, 0). Since a is hermitian, Sp(a) is included in R so
f(a) and g(a) are defined by the Functional Calculus and the Spectral Map-
ping Theorem implies that u = f(a) and v = g(a) are positive. Moreover,
f(t)−g(t) = t and f(t)g(t) = 0for all t ∈ R so a = u−v and uv = vu = 0
since the Functional Calculus map is a morphism of algebras.

3. Similarly, consider h(t) = t
1
n on R+ and verify that h(a) is a solution.

4. (a)⇒ (c) follows from 3. with n = 2 and (c)⇒ (b) is tautological. A proof
of the remaining implication can be found in Proposition 1.3.6 of Conway’s
book: A Course in Abstract Analysis.

5. (a) The condition u′v′ = v′u′ = 0 implies that an = u′n + (−v′)n for
n ∈ N. The result follows by linear combination.

(b) The subset S = Sp(a) ∪ Sp(u′) ∪ Sp(v′) is a compact of R. By
Stone-Weierstrass, there is a sequence {Pn}n∈N of polynomials that
converges uniformly to f on S. By continuity of the functional calcu-
lus map and the definition of u, the sequence {Pn(a)}n∈N converges
to u in A. Since Pn(a) = Pn(u′) +Pn(−v′), the result of the previous
question implies that u = f(u′) + f(−v′).

(c) The relations f(u′) = u′ and f(−v′) = 0 directly follow from the
definition of f . They imply that u = u′, which in turn implies that
v = v′.

(d) Assume that a = b′n and consider a sequence of polynomial functions
Qk converging to h uniformly on Sp(a) ∪ Sp(b′). Passing to the limit
in k in Qk(a) = Qk(b′n), we get b = h(b′n) = (h ◦ k)(b′) where
k(t) = tn so that h ◦ k(t) = t on R+ ⊃ Sp(b′) and b = b′.
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Problem 2 (Non-commutative topology). IfX
ϕ→ Y is a continuous map between

two topological spaces, we denote by ϕ] the map from C(Y ) to C(X) defined by

ϕ](f) = f ◦ ϕ.

1. Prove that X 7→ C(X), ϕ 7→ ϕ] is a contravariant functor from the cate-
gory of compact Hausdorff spaces with continuous maps to the category of
commutative unital C∗-algebras with ∗-morphisms.

2. What does the Gelfand-Naimark Theorem say about this functor?
What more can be said?

A map ϕ between locally compact Hausdorff spaces X and Y is said proper if
the inverse image of a compact in Y is a compact of X .

3. Show thatC0 is a contravariant functor from the category of locally compact
Hausdorff spaces to the category of commutative C∗-algebras. Specify the
morphisms.

4. Prove that C0(X) is ∗-isomorphic to C0(Y ) if and only if X and Y are
homeomorphic.

5. Assume X compact and X0 ⊂ X open.

(a) Prove that C0(X0) is an ideal of C(X).

(b) Show that all ideals in C(X) are of this form.

6. Complete the following ‘dictionary’ translating properties of topological
spaces in terms of properties of algebras, commutative or not. You may
restrict to the case of compact spaces whenever it makes sense.

Spaces Algebras
. . . unital

points . . .
. . . ideals
. . . quotients
. . . ∗-morphism
. . . ∗-isomorphism

disjoint union . . .
connected component . . .
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Hints: maximal ideals in C(X) are of the form Jx0 = {f ∈ C(X) , f(x0) = 0}.
The spectrum of C0(X) is homeomorphic to X .
A projection in a C∗-algebra is an element a that satisfies a2 = a∗ = a.

Solution. 2. The functor X 7→ C(X) is essentially surjective by the Gelfand-
Naimark Theorem and it is clearly faithful. It is also full: given a ∗-
morphism Φ : C(Y ) −→ C(X), consider the map between the maxi-
mal ideal spaces · ◦ Φ : ΣC(X) −→ ΣC(Y ) and use the homeomorphism
ΣC(X) ' X . To sum up, C(·) is a contravariant equivalence of categories
between compact Hausdorff spaces and commutative unital C∗-algebras.

3. The main point is that if f is in C0(Y ) and ϕ is proper, then f ◦ ϕ is in
C0(X). Consider, for ε > 0, a compact Kε of Y outside of which |f | does
not exceed ε. Then, the same holds for |f ◦ ϕ| outside of ϕ−1(Kε) which is
compact by properness of ϕ.

4. One direction follows from the fact that ΣC0(X) is homeomorphic to X .
For the other, let X

ϕ→ Y be a homeomorphism and verify that ϕ] is a
∗-isomorphism.

5. (a) Let Y be the complement of X0 in X . The kernel of the restriction
morphism f 7→ f |Y is exactly C0(X0).

(b) LetJ be an ideal inC(X). ThenC(X)/J is a commutative unital C∗-
algebra, hence of the form C(Z) for some compact Hausdorff space Z
by Gelfand-Naimark. Let π denote the natural projection C(X) −→
C(Z). As in 2., there exists a map ρ : Z −→ X such that ρ] = π. The
surjectivity of π implies the injectivity of ρ and J = ker π ' C0(Y )
where Y is the complement of ρ(Z) in X .
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6. The last line in the table can be filled by remembering that a topological
space X is connected if and only if any continuous function with values in
{0, 1} is constant and observing that a projection inC(X) is such a function.

Spaces Algebras
compact unital
points maximal ideals

open subsets ideals
closed subsets quotients

proper map ∗-morphism
homeomorphism ∗-isomorphism

disjoint union direct sum
connected component projection
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