
WEAK TOPOLOGIES

MATH 113 - SPRING 2015

PROBLEM SET #5

Problem 1. Let E a Banach space, D a dense subset, {ϕn}n∈N a sequence in E∗

and ϕ ∈ E∗.

1. Prove that ϕn
w∗
−→
n→∞

ϕ⇔

{
{ϕn}n∈N is bounded and
∀x ∈ D , 〈ϕn, x〉 −→

n→∞
〈ϕ, x〉 .

2. Can the boundedness assumption on {ϕn}n∈N be removed?

Solution. 1. (⇒) The Uniform Boundedness principle implies thatw∗-convergent
sequences are bounded. (⇐) Since the sequence {ϕn}n∈N is bounded, Alaoglu’s
Theorem implies the existence of a subsequence that converges to some
ψ ∈ E∗, which, by the other assumption, coincides with ϕ on a dense sub-
set.

2. No. Consider for instance E = c0(N), with dense subset D the subspace of
finitely supported sequences and ϕn = n · evaln. Then ϕn converges to 0
pointwise on D but not on E.

Problem 2. For n ≥ 1 and a ≤ x ≤ b, let fn(x) = sin(nx).

1. Prove that the sequence {fn}n∈N converges weakly to 0 in L2([a, b]).

2. Does {fn}n∈N converge in L2([a, b])?

Hint: 1. All bounded linear forms onL2([a, b]) are of the form f 7→
∫ b
a
f(x)g(x) dx

with g ∈ L2([a, b]) and step functions are dense in L2([a, b]).
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Solution. 1. This result goes by the name Riemann-Lebesgue Lemma. The

equality lim
n→∞

∫ b

a

sin(nx)f(x) dx = 0 is obvious if f is a step function and

the result follows by density.

2. If the sequence converged in L2([a, b]) to some f , then it would converge
weakly to the same limit, so f must be 0. However, the computation shows

that ‖fn‖22 =
∫ b

a

sin2(nx) dx =
b− a
2

+
sin(2an)− sin(2bn)

4n
9
n→∞

0.

Problem 3. Let C0(R) = {f ∈ C(R) , lim|x|→∞ f(x) = 0}.

1. Prove that C0(R) is closed in L∞(R).

2. Describe how L1(R) can be seen as a subspace of C0(R)∗.

3. Prove that every bounded sequence {un}n∈N in L1(R) has a subsequence
{uϕ(n)}n∈N such that,

∀f ∈ C0(R) , lim
n→∞

∫
R
uϕ(n)(x)f(x) dx exists.

4. Find the w∗-limit in C0(R)∗ of the sequence {nχn}n≥1, where χn is the
indicator of the interval

[
− 1
n
, 1
n

]
.

Hint: 2. Remember the duality between Lp-spaces.

Solution. 1. Let {fn}n∈N be a sequence in C0(R) that converges to some f in
L∞. The sequence being Cauchy in L∞ and the fn’s being continuous, the
sequence is also Cauchy in every (C([a, b]), ‖ · ‖∞), from which it follows
that f can be assumed continuous, up to changing of representative, and that
the convergence is uniform. To prove that f vanishes at infinity, fix ε > 0
and chose n large enough to have ‖fn− f‖∞ < ε

2
. Since fn ∈ C0(R), there

is a compact outside of which |fn(x)| < ε
2

so that |f(x)| cannot exceed ε
outside of that same compact.

2. The general idea is that taking dual spaces reverts inclusions:

C0(R) ⊂ L∞(R)
∗ ↓ ↓ ∗

C0(R)∗ ⊃ L∞(R)∗ ←
T
L1(R).
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Concretely, consider for u ∈ L1(R) the map Tu(f) =
∫
R u(x)f(x) dx for

u ∈ C0(R), then |Tu(f)| ≤ ‖u‖1‖f‖∞, so that Tu ∈ C0(R)∗.

3. With Tu defined as before for u ∈ L1(R), observe that ‖Tu‖ ≤ ‖u‖1. So
the sequence Tun is bounded and Alaoglu’s Theorem implies that it admits
a w∗-convergent subsequence, which is exactly the expected result.

4. Let f ∈ C0(R). By continuity, for any ε > 0 there is an interval [−δ, δ]
on which |f(x) − f(0)| ≤ ε. For n > δ−1, the average value of f on[
− 1
n
, 1
n

]
(a.k.a 1

2
Tnχn(f)) is within ε of f(0). It follows that the w∗-limit of

{Tnχn}n∈N is 2δ where δ denotes the Dirac measure at 0.
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