WEAK TOPOLOGIES

MATH 113 - SPRING 2015

PROBLEM SET #5

Problem 1. Let E a Banach space, D a dense subset, $\{\varphi_n\}_{n\in\mathbb{N}}$ a sequence in E^* and $\varphi\in E^*$.

1. Prove that
$$\varphi_n \xrightarrow[n \to \infty]{w^*} \varphi \Leftrightarrow \begin{cases} \{\varphi_n\}_{n \in \mathbb{N}} \text{ is bounded and} \\ \forall x \in D, \ \langle \varphi_n, x \rangle \xrightarrow[n \to \infty]{} \langle \varphi, x \rangle \end{cases}$$
.

2. Can the boundedness assumption on $\{\varphi_n\}_{n\in\mathbb{N}}$ be removed?

Problem 2. For $n \ge 1$ and $a \le x \le b$, let $f_n(x) = \sin(nx)$.

- 1. Prove that the sequence $\{f_n\}_{n\in\mathbb{N}}$ converges weakly to 0 in $L^2([a,b])$.
- 2. Does $\{f_n\}_{n\in\mathbb{N}}$ converge in $L^2([a,b])$?

Hint: 1. All bounded linear forms on $L^2([a,b])$ are of the form $f \mapsto \int_a^b f(x)g(x) \, dx$ with $g \in L^2([a,b])$ and step functions are dense in $L^2([a,b])$.

Problem 3. Let
$$C_0(\mathbb{R}) = \{ f \in C(\mathbb{R}) , \lim_{|x| \to \infty} f(x) = 0 \}.$$

- 1. Prove that $C_0(\mathbb{R})$ is closed in $L^{\infty}(\mathbb{R})$.
- 2. Describe how $L^1(\mathbb{R})$ can be seen as a subspace of $C_0(\mathbb{R})^*$.
- 3. Prove that every bounded sequence $\{u_n\}_{n\in\mathbb{N}}$ in $L^1(\mathbb{R})$ has a subsequence $\{u_{\varphi(n)}\}_{n\in\mathbb{N}}$ such that,

$$\forall f \in C_0(\mathbb{R}) , \lim_{n \to \infty} \int_{\mathbb{R}} u_{\varphi(n)}(x) f(x) dx \text{ exists.}$$

4. Find the w^* -limit in $C_0(\mathbb{R})^*$ of the sequence $\{n\chi_n\}_{n\geq 1}$, where χ_n is the indicator of the interval $\left[-\frac{1}{n},\frac{1}{n}\right]$.

Hint: 2. Remember the duality between L^p -spaces.