DUALITY

MATH 113 - SPRING 2015

PROBLEM SET #4

Problem 1. Let *E* and *F* be Banach spaces and $T : E \longrightarrow F$ a linear map such that

$$\forall \varphi \in F^* \quad , \quad \varphi \circ T \in E^*.$$

Prove that T is bounded.

Problem 2 (Closed convex sets that cannot be separated). Let E_0 and F be the subsets of $\ell^1(\mathbb{N})$ defined by

$$E_0 = \{ u \in \ell^1(\mathbb{N}), \, \forall n \ge 0, \, u_{2n} = 0 \}$$

and

$$F = \left\{ u \in \ell^1(\mathbb{N}), \, \forall n \ge 1, \, u_{2n} = 2^{-n} u_{2n-1} \right\}.$$

- 1. Verify that E_0 and F are closed subspaces and that $\overline{E_0 + F} = \ell^1(\mathbb{N})$.
- 2. Let v be the sequence defined by $v_{2n} = 2^{-n}$ and $v_{2n-1} = 0$.
 - (a) Verify that v is in $\ell^1(\mathbb{N})$ and that $v \notin E_0 + F$.
 - (b) Let $E = E_0 v$. Prove that E and F are closed disjoint convex subsets of $\ell^1(\mathbb{N})$ that cannot be separated in the sense that there exists no couple $(\varphi, \alpha) \in (\ell^1(\mathbb{N}))^* \times \mathbb{R}$ such that $\varphi \neq 0$ and

$$\varphi(e) \le \alpha \le \varphi(f)$$

for all $e \in E$, $f \in F$.

Hints: 1. Finitely supported sequences are dense in $\ell^1(\mathbb{N})$. (See 4.(a) in Prob. 3.) 2.(b) What can be said of a functional that remains bounded on a linear subspace?

Problem 3 (Dual of $\ell^p(\mathbb{N})$). In this problem, we assume the sequences to be realvalued. Let $p \in [1, +\infty)$ and denote by q the only element of $(1, +\infty)$ such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

The purpose of this problem is to identify $\ell^p(\mathbb{N})^*$ with $\ell^q(\mathbb{N})$. To this end, we shall prove that the map Φ defined on ℓ^q by

$$\Phi(u)v = \sum_{n \ge 0} u_n v_n$$

is an isometry.

- 1. Verify that $\Phi(u)$ is a linear functional on $\ell^p(\mathbb{N})$ for each $u \in \ell^q(\mathbb{N})$ and that Φ is linear.
- 2. Let $u \in \ell^q(\mathbb{N})$. Prove that $\Phi(u) \in \ell^p(\mathbb{N})^*$ and that $\|\Phi(u)\| \le \|u\|_q$.
- 3. Let $u \in \ell^q(\mathbb{N})$ be fixed.
 - (a) Assume p > 1. Verify that the sequence v defined by

$$v_n = \|u\|_q^{1-q} \operatorname{sign}(u_n) |u_n|^{q-1}$$

is in ℓ^p and compute $\Phi(u)v$.

- (b) Let p = 1. For $\varepsilon > 0$, find v on the unit sphere of $\ell^1(\mathbb{N})$ such that $|\Phi(u)v| > ||u||_{\infty} \varepsilon$.
- (c) What have we proved so far?
- 4. (a) Prove that finitely supported sequences are dense in $\ell^p(\mathbb{N})$ for $p \ge 1$.
 - (b) Does the result hold in $\ell^{\infty}(\mathbb{N})$?
- 5. For $n \in \mathbb{N}$, define the sequence e^n by $e_k^n = \delta_{k,n}$, that is $e^n = \{\overbrace{0,0,\ldots,0}^n, 1,0,0,\ldots\}$. Let $\varphi \in \ell^p(\mathbb{N})^*$ and $\gamma_n = \varphi(e^n)$. For $N \in \mathbb{N}$, define a sequence δ^N by

$$\delta^{N} = \{\gamma_{0}|\gamma_{0}|^{q-2}, \gamma_{1}|\gamma_{1}|^{q-2}, \dots, \gamma_{N}|\gamma_{N}|^{q-2}, 0, 0, \dots\}.$$

(a) Compute $\varphi(\delta^N)$.

- (b) Prove that $\sum_{n=0}^{N} |\gamma_n|^q \le \|\varphi\| \left(\sum_{n=0}^{N} |\gamma_n|^q\right)^{\frac{1}{p}}$
- (c) Deduce that the *N*-truncation of the sequence $\gamma = {\gamma_n}_{n \in \mathbb{N}}$ has norm less than $\|\varphi\|$ in $\ell^q(\mathbb{N})$.
- (d) Conclude that γ is in $\ell^q(\mathbb{N})$.
- 6. Verify that $\varphi(u) = \Phi(\gamma)(u)$ if u is finitely supported and conclude.
- 7. Prove the existence of a bounded linear functional on l[∞](N) that is not of the form Φ(u) with u ∈ l¹(N). *Hint:* consider the subspace C of convergent sequences and study the map λ : v ↦ lim_{n→∞} v_n.