
LINEAR OPERATORS ON BANACH SPACES

MATH 113 - SPRING 2015

PROBLEM SET #3

Problem 1. Let E be the space C([0, 1]) equipped with ‖ · ‖∞. If f is differen-
tiable, we write D(f) = f ′.

1. Let F be a closed subspace of E that is included in C1([0, 1]).

(a) Show that D : F −→ E is Lipschitz.

(b) Prove that F is finite dimensional.

2. Let G = (C1([0, 1]), ‖ · ‖∞).

(a) Show that D : G −→ E is closed.

(b) Is it continuous?

Hints: 1.(a) Study the graph of D. - 1.(b) Study the unit ball of F .

Solution. 1. (a) Both E and F are Banach spaces and D is linear so by the
Closed Graph Theorem, it suffices to prove that D is closed. Let {fn}
be a sequence in F such that fn and Dfn = f ′n converge, say to f and
g respectively. This means that fn → f and f ′n → g uniformly, which
implies that f ′ = g, so that (f, g) belongs to the graph of D, which is
therefore continuous, hence Lipschitz.

(b) By Riesz’s Theorem, it is enough to prove that the closed unit ball in
F is compact. It is bounded by definition and closed in E = C([0, 1])
so, it suffices to prove that it is equicontinuous. Let C be a Lipschitz
constant for D. Then ‖f ′‖∞ ≤ C‖f‖∞ ≤ C for all f in the unit ball
of F , which is therefore uniformly equicontinuous.
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2. (a) This was already done in 1.(a): take F = G.

(b) No: consider the sequence {fn : x 7−→ xn} in the unit ball of G and
its image underD. Note that this does not contradict the Closed Graph
Theorem, since G is not closed in E and therefore not complete.

Problem 2. Let E be a normed linear space, F a closed subspace of E and

π : E −→ E/F

the natural surjection.

1. Let x ∈ E and r > 0. Show that π(B(x, r)) = B(π(x), r).

2. Let U be a subset of E/F . Prove that U is open if and only if π−1(U) is
open in E.

3. Prove that π is an open map.

4. Show that the Open Mapping Theorem can be deduced from the Bounded
Inverse Theorem.

Solution. 1. First, observe that translations are isometries that commute to π
so we may assume x = 0. The surjection π is 1-Lipschitz by definition of
the norm on E/F so π(B(0, r)) ⊂ B(π(0), r).
Conversely, assume that y ∈ E/F has norm < r. Choose x ∈ E such
that π(x) = y. Then ‖y‖ = infv∈F ‖x + v‖ < r so there exists v ∈ F
such that ‖x + v‖ < r and y has a preimage in B(0, r), which means that
B(π(0), r) ⊂ π(B(0, r)).

2. Again, π being 1-Lipschitz, it is continuous, which implies that if U is open
in E/F , then π−1(U) is open in E.
For the converse, assume that π−1(U) is open in E and let y ∈ U , with
preimage x ∈ E. Since π−1(U) is open and contains x, there exists r > 0
such that B(x, r) ⊂ π−1(U).
By the result of the previous question, U = π(π−1(U)) contains the ball
B(y, r) so it is a neighborhood of y.
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3. Let U be open in F . By the result of the previous question, in order to prove
that π(U) is open in E/F , it suffices to prove that π−1(π(U)) is open in E,
which follows from the observation that π−1(π(U)) = U+F =

⋃
v∈F U+v.

4. Let T : E −→ F be a surjective continuous linear map between Banach
spaces. Consider the induced map T̃ : E/ kerT −→ F . Apply the Bounded
Inverse Theorem to T̃ and conclude by noticing that T = T̃ ◦ π.

Problem 3 (Bilinear maps). Let E1, E2 and F be normed linear spaces and equip
E1×E2 with the norm ‖(x, y)‖ = max(‖x‖, ‖y‖). A map B : E1×E2 −→ F is
said bilinear if all the maps

Λx : E2 −→ F
y 7−→ B(x, y)

and
Py : E1 −→ F

x 7−→ B(x, y)

are linear. Moreover, B is said

• separately continuous if all the maps Λx and Py are continuous;

• bounded if

‖B‖ := sup {‖B(x, y)‖ , x ∈ E1 , y ∈ E2 , ‖x‖ ≤ 1 , ‖y‖ ≤ 1} <∞.

1. Show that the statements

(a) B is bounded.

(b) There exists a constant C ≥ 0 such that ‖B(x, y)‖ ≤ C‖x‖‖y‖ for all
(x, y) in E1 × E2.

(c) B is continuous.

(d) B is continuous at (0, 0).

are equivalent and that if they hold, ‖B‖ is the smallest C satisfying (b).

Recall that the set of bounded linear maps between linear spaces E and F is
denoted by L(E,F ). The set of bounded bilinear maps from E1 × E2 to F will
be denoted by B(E1 × E2, F ).
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2. Let E and F be normed linear spaces. Show that the map

β : L(E,F )× E −→ F
(T, x) 7−→ T (x)

is in B (L(E,F )× E,F ) and that ‖β‖ ≤ 1.

3. Let E, F and G be normed linear spaces. Show that the map

γ : L(F,G)× L(E,F ) −→ L(E,G)
(S, T ) 7−→ S ◦ T

is in B (L(F,G)× L(E,F ),L(E,G)) and that ‖γ‖ ≤ 1.

4. Show that B(E1 × E2, F ) equipped with the pointwise operations and ‖ · ‖
defined above is a normed linear space.

5. (a) Show thatB(E1×E2, F ) is isometrically isomorphic toL (E1,L(E2, F )).

(b) What can be said of B(E1 × E2, F ) if F is a Banach space?

6. Assume that E1 and E2 are Banach spaces. Show that a bilinear map B :
E1 × E2 −→ F is bounded if and only if it is separately continuous.

7. Consider E = R[X] equipped with the norm ‖P‖ =

∫ 1

0

|P̃ (x)| dx where

P̃ is the function associated with the polynomial P . Show that the bilinear

map α defined on E × E by α(P,Q) =

∫ 1

0

P̃ (x)Q̃(x) dx is separately

continuous but not bounded.

Solution. The equivalences in 1. and the statement in 4. can be proved in the
same fashion as the analogous ones in the case of linear maps. The results in 2.
and 3. are direct consequences of the properties of the operator norm.

5. (a) Consider the map x 7−→ Λx.

(b) It is a Banach space.

6. The implication (bounded⇒ separately continuous) is trivial. Conversely,
assume B separately continuous and fix x in E1 with ‖x‖ ≤ 1. Then
|Λx(y)| = |B(x, y)| ≤ ‖Py‖ for all y in E2. By the Uniform Bounded-
ness Principle, the family {Λx , ‖x‖ ≤ 1} is bounded in L(E2,R) so there
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exists a constant C such that |B(x, y)| = |Λx(y)| ≤ C for all x, y in the
closed unit ball of E1 × E2. Note that it suffices to assume only one of the
Ei to be complete for the argument to work.

7. Separate continuity follows from the fact that ‖ΛP‖ ≤ ‖P‖∞ and the sym-
metry of α. For n ≥ 1, the polynomial nXn lies on the unit sphere of E

and α(nXn, nXn) =
n2

2n+ 1
→

n→∞
+∞ so α is not bounded.
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