LINEAR OPERATORS ON BANACH SPACES

MATH 113 - Spring 2015

PROBLEM SET #3

Problem 1. Let *E* be the space C([0,1]) equipped with $\|\cdot\|_{\infty}$. If *f* is differentiable, we write D(f) = f'.

- 1. Let F be a closed subspace of E that is included in $C^{1}([0, 1])$.
 - (a) Show that $D: F \longrightarrow E$ is Lipschitz.
 - (b) Prove that F is finite dimensional.
- 2. Let $G = (C^1([0,1]), \|\cdot\|_{\infty}).$
 - (a) Show that $D: G \longrightarrow E$ is closed.
 - (b) Is it continuous?

Hints: 1.(a) Study the graph of D. - 1.(b) Study the unit ball of F.

Problem 2. Let E be a normed linear space, F a closed subspace of E and

$$\pi: E \longrightarrow E/F$$

the natural surjection.

- 1. Let $x \in E$ and r > 0. Show that $\pi(B(x, r)) = B(\pi(x), r)$.
- 2. Let \mathcal{U} be a subset of E/F. Prove that \mathcal{U} is open if and only if $\pi^{-1}(\mathcal{U})$ is open in E.
- 3. Prove that π is an open map.
- 4. Show that the Open Mapping Theorem can be deduced from the Bounded Inverse Theorem.

Problem 3 (Bilinear maps). Let E_1 , E_2 and F be normed linear spaces and equip $E_1 \times E_2$ with the norm $||(x, y)|| = \max(||x||, ||y||)$. A map $B : E_1 \times E_2 \longrightarrow F$ is said **bilinear** if all the maps

are linear. Moreover, B is said

- separately continuous if all the maps Λ_x and P_y are continuous;
- **bounded** if

$$|B|| := \sup \{ ||B(x,y)|| , x \in E_1, y \in E_2, ||x|| \le 1, ||y|| \le 1 \} < \infty$$

- 1. Show that the statements
 - (a) B is bounded.
 - (b) There exists a constant $C \ge 0$ such that $||B(x, y)|| \le C ||x|| ||y||$ for all (x, y) in $E_1 \times E_2$.
 - (c) B is continuous.
 - (d) B is continuous at (0, 0).

are equivalent and that if they hold, ||B|| is the smallest C satisfying (b).

Recall that the set of bounded linear maps between linear spaces E and F is denoted by $\mathcal{L}(E, F)$. The set of bounded bilinear maps from $E_1 \times E_2$ to F will be denoted by $\mathcal{B}(E_1 \times E_2, F)$.

2. Let E and F be normed linear spaces. Show that the map

$$\begin{array}{cccc} \beta : \mathcal{L}(E,F) \times E & \longrightarrow & F \\ (T,x) & \longmapsto & T(x) \end{array}$$

is in $\mathcal{B}(\mathcal{L}(E,F) \times E,F)$ and that $\|\beta\| \leq 1$.

3. Let E, F and G be normed linear spaces. Show that the map

$$\begin{array}{ccc} \gamma : \mathcal{L}(F,G) \times \mathcal{L}(E,F) & \longrightarrow & \mathcal{L}(E,G) \\ (S,T) & \longmapsto & S \circ T \end{array}$$

is in $\mathcal{B}(\mathcal{L}(F,G) \times \mathcal{L}(E,F), \mathcal{L}(E,G))$ and that $\|\gamma\| \leq 1$.

- 4. Show that $\mathcal{B}(E_1 \times E_2, F)$ equipped with the pointwise operations and $\|\cdot\|$ defined above is a normed linear space.
- 5. (a) Show that \$\mathcal{B}(E_1 \times E_2, F)\$ is isometrically isomorphic to \$\mathcal{L}(E_1, \mathcal{L}(E_2, F))\$.
 (b) What can be said of \$\mathcal{B}(E_1 \times E_2, F)\$ if \$F\$ is a Banach space?
- 6. Assume that E_1 and E_2 are Banach spaces. Show that a bilinear map $B : E_1 \times E_2 \longrightarrow F$ is bounded if and only if it is separately continuous.
- 7. Consider $E = \mathbb{R}[X]$ equipped with the norm $||P|| = \int_0^1 |\tilde{P}(x)| dx$ where \tilde{P} is the function associated with the polynomial P. Show that the bilinear map α defined on $E \times E$ by $\alpha(P,Q) = \int_0^1 \tilde{P}(x)\tilde{Q}(x) dx$ is separately continuous but not bounded.