APPLICATIONS OF THE ARZELÀ-ASCOLI AND THE BAIRE CATEGORY THEOREMS

MATH 113 - Spring 2015

PROBLEM SET #2

Problem 1 (Hölder maps).

A function $f \in C([0, 1], \mathbb{R})$ is said to be α -Hölder if

$$h_{\alpha}(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$$

is finite. For M > 0 and $0 < \alpha \le 1$, denote

 $H_{\alpha,M} = \{ f \in C([0,1],\mathbb{R}), h_{\alpha}(f) \leq M \text{ and } \|f\|_{\infty} \leq M \}.$

Prove that $H_{\alpha,M}$ is compact in $(C([0,1],\mathbb{R}), \|\cdot\|_{\infty})$.

Solution. The Arzelà-Ascoli Theorem implies that it suffices to check that $H_{\alpha,M}$ is closed, bounded and equicontinuous. The set in question is the intersection of the closed ball $B_c(0, M)$ and $F = \{f \in C([0, 1]), h_\alpha(f) \leq M\}$, so it is automatically bounded and it is enough to check that F is closed. To do so, consider a sequence $\{f_n\}$ of functions in F, that converges to f in C([0, 1]). The pointwise convergence of the sequence implies that $\frac{|f(x)-f(y)|}{|x-y|^\alpha} \leq M$ for every $x \neq y$ so F is closed. To establish equicontinuity, let $\varepsilon > 0$ and verify that $\delta = \left(\frac{\varepsilon}{M}\right)^{\frac{1}{\alpha}}$ is an appropriate modulus of continuity.

Problem 2. Show that a normed linear space over \mathbb{R} that has a countable algebraic basis cannot be complete.

Solution. Let E be a normed space with an algebraic basis $\{e_i\}_{i\in\mathbb{N}}$ and $F_n = \operatorname{span}(e_1,\ldots,e_n)$. Each F_n is finite-dimensional, hence closed. Moreover, if F_n contained an open ball of radius r > 0 it would also contain B(0,r), which generates E, so E would be contained in F_n . Therefore, each F_n has empty interior and Baire's Theorem ensures that $\bigcup_{n\geq 1} F_n$ has empty interior too, which contradicts the fact that $\bigcup_{n>1} F_n = E$.

Problem 3. Let $f : [0, +\infty) \longrightarrow \mathbb{R}$ be continuous and assume that for all x > 0,

$$\lim_{n \to \infty} f(nx) = 0$$

Prove that $\lim_{x \to \infty} f(x) = 0.$

Hint: for $\varepsilon > 0$ and $n \in \mathbb{N}$, consider $F_{n,\varepsilon} = \{x \ge 0, \forall p \ge n, |f(px)| \le \varepsilon\}$.

Solution. Each $F_{n,\varepsilon}$ is closed as the intersection of inverse images of the closed subset $[0, \varepsilon]$ of \mathbb{R} by the continuous functions $f(p \cdot)$ for $p \in \mathbb{N}$, $p \ge n$. The hypothesis on f implies that $(0, +\infty) \subset \bigcup_{n\ge 1} F_n$. Being locally compact, $(0, +\infty)$ is a Baire space so that there exists $n_0 \in \mathbb{N}$ such that $\mathring{F}_{n_0} \neq \emptyset$. In other words, there exist $0 < \alpha < \beta$ such that $(\alpha, \beta) \subset F_{n_0}$, which means that

$$\forall x \in (\alpha, \beta), \forall p \ge n_0 \quad , \quad |f(px)| \le \varepsilon.$$

The result then follows from the fact that, for p large enough, the intervals $(p\alpha, p\beta)$ overlap. More precisely, the condition $(p+1)\alpha < p\beta$ is equivalent to $p > \frac{\alpha}{\beta - \alpha}$ so that if $N > \max(n_0, \frac{\alpha}{\beta - \alpha})$, one has $|f(x)| \le \varepsilon$ for x in $\bigcup_{p \ge N} (p\alpha, p\beta) = (N\alpha, +\infty)$.

Problem 4. Show that nowhere differentiable functions are dense in $E = C([0, 1], \mathbb{R})$ equipped with its ordinary norm.

Hint: consider, for $\varepsilon > 0$ and $n \in \mathbb{N}$,

$$U_{n,\varepsilon} = \left\{ f \in E , \forall x \in [0,1], \exists y \in [0,1], |x-y| < \varepsilon \text{ and } \left| \frac{f(y) - f(x)}{y-x} \right| > n \right\}$$

Solution. We first prove that each set $U_{n,\varepsilon}$ is open because its complement $U_{n,\varepsilon}^c$ is closed. Observe that

$$U_{n,\varepsilon}^{c} = \left\{ f \in E , \exists x \in [0,1], \forall y \in [0,1], |x-y| < \varepsilon \Rightarrow \left| \frac{f(y) - f(x)}{y-x} \right| \le n \right\}.$$

and let $\{f_k\}$ be a sequence in $U_{n,\varepsilon}^c$ that converges to f in E. For each k, there exists $x_k \in [0,1]$ such that $|x_k - y| < \varepsilon \Rightarrow \left|\frac{f(y) - f(x_k)}{y - x_k}\right| \le n$. Since [0,1] is compact, $\{x_k\}$ has a convergent subsequence $\{x_{\varphi(k)}\}$. Denote x its limit and let y in [0,1] be such that $0 < |x - y| < \varepsilon$. For k large enough, one has $0 < |x_{\varphi(k)} - y| < \varepsilon$ so that $\left|\frac{f_{\varphi(k)}(y) - f_{\varphi(k)}(x_{\varphi(k)})}{y - x_{\varphi(k)}}\right| \le n$ and the uniform convergence $f_{\varphi(k)} \to f$ implies that $\left|\frac{f(y) - f(x)}{y - x}\right| \le n$, so that f belongs to $U_{n,\varepsilon}^c$.

Now we prove that $U_{n,\varepsilon}$ is dense in E. Polynomials are dense in E, so it suffices to prove that functions of class C^1 can be approximated by elements of $U_{n,\varepsilon}$. For $p \ge 1$ integer, let v_p be a continuous function on [0, 1], affine on each interval $\left[\frac{k}{2p}, \frac{k+1}{2p}\right]$ and such that $v_p\left(\frac{k}{2p}\right) = 0$ (resp. = 1) if k is even (resp. odd). Let f be a function of class C^1 on [0, 1] and $g_p = f + \lambda v_p$. By construction, $\|f - g_p\|_{\infty} \le \lambda$ so g_p can be chosen arbitrarily close to f. If $x \ne y$ in [0, 1], then

$$\left|\frac{g_p(x) - g_p(y)}{x - y}\right| \geq \lambda \left|\frac{v_p(x) - v_p(y)}{x - y}\right| - \left|\frac{f(x) - f(y)}{x - y}\right|$$
$$\geq \lambda \left|\frac{v_p(x) - v_p(y)}{x - y}\right| - \|f'\|_{\infty}.$$

Let $p > \frac{1}{2\lambda}(n + ||f'||_{\infty})$. For any $x \in [0, 1]$, there exists $y \in [0, 1]$ within ε of x and in the same interval $\left[\frac{k}{2p}, \frac{k+1}{2p}\right]$. By definition of v_p , the latter implies that

 $\left|\frac{v_p(x)-v_p(y)}{x-y}\right|=2p.$ Then

$$\left|\frac{g_p(x) - g_p(y)}{x - y}\right| \ge 2p\lambda - \|f'\|_{\infty} > n$$

so that $g_p \in U_{n,\varepsilon}$.

The Baire Category Theorem ensures that $U = \bigcap_{n \ge 1} U_{\frac{1}{n},n}$ is dense in E. Let $f \in U$ and $x \in [0, 1]$. Then there is a sequence $\{x_n\}$ such that $0 < |x_n - x| < \frac{1}{n}$ and $\left|\frac{f(x_n) - f(y)}{x_n - y}\right| > n$, which prevents f from being differentiable at x.