Applications of the Arzelà-Ascoli and the Baire Category Theorems

Math 113 - Spring 2015

PROBLEM SET \#2

Problem 1 (Hölder maps).
A function $f \in C([0,1], \mathbb{R})$ is said to be α-Hölder if

$$
h_{\alpha}(f)=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}
$$

is finite. For $M>0$ and $0<\alpha \leq 1$, denote

$$
H_{\alpha, M}=\left\{f \in C([0,1], \mathbb{R}), h_{\alpha}(f) \leq M \text { and }\|f\|_{\infty} \leq M\right\}
$$

Prove that $H_{\alpha, M}$ is compact in $\left(C([0,1], \mathbb{R}),\|\cdot\|_{\infty}\right)$.
Solution. The Arzelà-Ascoli Theorem implies that it suffices to check that $H_{\alpha, M}$ is closed, bounded and equicontinuous. The set in question is the intersection of the closed ball $B_{c}(0, M)$ and $F=\left\{f \in C([0,1]), h_{\alpha}(f) \leq M\right\}$, so it is automatically bounded and it is enough to check that F is closed. To do so, consider a sequence $\left\{f_{n}\right\}$ of functions in F, that converges to f in $C([0,1])$. The pointwise convergence of the sequence implies that $\frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \leq M$ for every $x \neq y$ so F is closed. To establish equicontinuity, let $\varepsilon>0$ and verify that $\delta=\left(\frac{\varepsilon}{M}\right)^{\frac{1}{\alpha}}$ is an appropriate modulus of continuity.

Problem 2. Show that a normed linear space over \mathbb{R} that has a countable algebraic basis cannot be complete.

Solution. Let E be a normed space with an algebraic basis $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ and $F_{n}=$ $\operatorname{span}\left(e_{1}, \ldots, e_{n}\right)$. Each F_{n} is finite-dimensional, hence closed. Moreover, if F_{n} contained an open ball of radius $r>0$ it would also contain $B(0, r)$, which generates E, so E would be contained in F_{n}. Therefore, each F_{n} has empty interior and Baire's Theorem ensures that $\bigcup_{n \geq 1} F_{n}$ has empty interior too, which contradicts the fact that $\bigcup_{n \geq 1} F_{n}=E$.

Problem 3. Let $f:[0,+\infty) \longrightarrow \mathbb{R}$ be continuous and assume that for all $x>0$,

$$
\lim _{n \rightarrow \infty} f(n x)=0
$$

Prove that $\lim _{x \rightarrow \infty} f(x)=0$.
Hint: for $\varepsilon>0$ and $n \in \mathbb{N}$, consider $F_{n, \varepsilon}=\{x \geq 0, \forall p \geq n,|f(p x)| \leq \varepsilon\}$.
Solution. Each $F_{n, \varepsilon}$ is closed as the intersection of inverse images of the closed subset $[0, \varepsilon]$ of \mathbb{R} by the continuous functions $f(p \cdot)$ for $p \in \mathbb{N}, p \geq n$. The hypothesis on f implies that $(0,+\infty) \subset \bigcup_{n \geq 1} F_{n}$. Being locally compact, $(0,+\infty)$ is a Baire space so that there exists $n_{0} \in \mathbb{N}$ such that ${ }_{~_{n}} \neq \varnothing$. In other words, there exist $0<\alpha<\beta$ such that $(\alpha, \beta) \subset F_{n_{0}}$, which means that

$$
\forall x \in(\alpha, \beta), \forall p \geq n_{0} \quad, \quad|f(p x)| \leq \varepsilon
$$

The result then follows from the fact that, for p large enough, the intervals $(p \alpha, p \beta)$ overlap. More precisely, the condition $(p+1) \alpha<p \beta$ is equivalent to $p>\frac{\alpha}{\beta-\alpha}$ so that if $N>\max \left(n_{0}, \frac{\alpha}{\beta-\alpha}\right)$, one has $|f(x)| \leq \varepsilon$ for x in $\bigcup_{p \geq N}(p \alpha, p \beta)=(N \alpha,+\infty)$.

Problem 4. Show that nowhere differentiable functions are dense in $E=C([0,1], \mathbb{R})$ equipped with its ordinary norm.

Hint: consider, for $\varepsilon>0$ and $n \in \mathbb{N}$,
$U_{n, \varepsilon}=\left\{f \in E, \forall x \in[0,1], \exists y \in[0,1],|x-y|<\varepsilon \quad\right.$ and $\left.\quad\left|\frac{f(y)-f(x)}{y-x}\right|>n\right\}$.
Solution. We first prove that each set $U_{n, \varepsilon}$ is open because its complement $U_{n, \varepsilon}^{c}$ is closed. Observe that
$U_{n, \varepsilon}^{c}=\left\{f \in E, \exists x \in[0,1], \forall y \in[0,1],|x-y|<\varepsilon \Rightarrow\left|\frac{f(y)-f(x)}{y-x}\right| \leq n\right\}$.
and let $\left\{f_{k}\right\}$ be a sequence in $U_{n, \varepsilon}^{c}$ that converges to f in E. For each k, there exists $x_{k} \in[0,1]$ such that $\left|x_{k}-y\right|<\varepsilon \Rightarrow\left|\frac{f(y)-f\left(x_{k}\right)}{y-x_{k}}\right| \leq n$. Since $[0,1]$ is compact, $\left\{x_{k}\right\}$ has a convergent subsequence $\left\{x_{\varphi(k)}\right\}$. Denote x its limit and let y in $[0,1]$ be such that $0<|x-y|<\varepsilon$. For k large enough, one has $0<\left|x_{\varphi(k)}-y\right|<\varepsilon$ so that $\left|\frac{f_{\varphi(k)}(y)-f_{\varphi(k)}\left(x_{\varphi(k)}\right)}{y-x_{\varphi(k)}}\right| \leq n$ and the uniform convergence $f_{\varphi(k)} \rightarrow f$ implies that $\left|\frac{f(y)-f(x)}{y-x}\right| \leq n$, so that f belongs to $U_{n, \varepsilon}^{c}$.

Now we prove that $U_{n, \varepsilon}$ is dense in E. Polynomials are dense in E, so it suffices to prove that functions of class C^{1} can be approximated by elements of $U_{n, \varepsilon}$.
For $p \geq 1$ integer, let v_{p} be a continuous function on $[0,1]$, affine on each interval $\left[\frac{k}{2 p}, \frac{k+1}{2 p}\right]$ and such that $v_{p}\left(\frac{k}{2 p}\right)=0$ (resp. $=1$) if k is even (resp. odd). Let f be a function of class C^{1} on $[0,1]$ and $g_{p}=f+\lambda v_{p}$. By construction, $\left\|f-g_{p}\right\|_{\infty} \leq \lambda$ so g_{p} can be chosen arbitrarily close to f. If $x \neq y$ in $[0,1]$, then

$$
\begin{aligned}
\left|\frac{g_{p}(x)-g_{p}(y)}{x-y}\right| & \geq \lambda\left|\frac{v_{p}(x)-v_{p}(y)}{x-y}\right|-\left|\frac{f(x)-f(y)}{x-y}\right| \\
& \geq \lambda\left|\frac{v_{p}(x)-v_{p}(y)}{x-y}\right|-\left\|f^{\prime}\right\|_{\infty}
\end{aligned}
$$

Let $p>\frac{1}{2 \lambda}\left(n+\left\|f^{\prime}\right\|_{\infty}\right)$. For any $x \in[0,1]$, there exists $y \in[0,1]$ within ε of x and in the same interval $\left[\frac{k}{2 p}, \frac{k+1}{2 p}\right]$. By definition of v_{p}, the latter implies that
$\left|\frac{v_{p}(x)-v_{p}(y)}{x-y}\right|=2 p$. Then

$$
\left|\frac{g_{p}(x)-g_{p}(y)}{x-y}\right| \geq 2 p \lambda-\left\|f^{\prime}\right\|_{\infty}>n
$$

so that $g_{p} \in U_{n, \varepsilon}$.
The Baire Category Theorem ensures that $U=\bigcap_{n \geq 1} U_{\frac{1}{n}, n}$ is dense in E. Let $f \in U$ and $x \in[0,1]$. Then there is a sequence $\left\{x_{n}\right\}$ such that $0<\left|x_{n}-x\right|<\frac{1}{n}$ and $\left|\frac{f\left(x_{n}\right)-f(y)}{x_{n}-y}\right|>n$, which prevents f from being differentiable at x.

