METRIC SPACES

MATH 113 - SPRING 2015

PROBLEM SET #1

Problem 1 (Distance to a subset and metric Urysohn's Lemma). Let (E, d) be a metric space. For any subset $A \subset E$ and any point $x \in E$, the *distance* between x and A is defined by

$$d(x,A) = \inf_{a \in A} d(x,a).$$

- 1. Show that $d(x, A) = d(x, \bar{A})$.
- 2. Show that $d(\cdot, A)$ is 1-Lipschitz.
- 3. Let A and B be disjoint closed subsets of E. Prove the existence of a continuous function $f: E \longrightarrow \mathbb{R}$ such that:
 - (a) $0 \le f(x) \le 1$ for all $x \in E$;
 - (b) f(x) = 0 for all $x \in A$;
 - (c) f(x) = 1 for all $x \in B$.
- Solution. 1. Observe that $A \subset \bar{A}$ so $d(x,A) \geq d(x,\bar{A})$. For the other inequality, consider α in \bar{A} . There exists a sequence $\{a_n\} \in A^{\mathbb{N}}$ that converges to α . Given x fixed, the function $d(x,\cdot)$ is continuous so $\lim_{n \to \infty} d(x,a_n) = d(x,\alpha)$. Since $d(x,a_n) \geq d(x,A)$ for every n, it follows that $d(x,\alpha) \geq d(x,A)$. This is true for every α in \bar{A} so $d(x,\bar{A}) \geq d(x,A)$.
 - 2. For $x,y\in E$ and $a\in A$, the triangle inequality and the definition of d(x,A) imply that $d(x,A)\leq d(x,y)+d(y,a)$. This is true for every $a\in A$ so $d(x,A)\leq d(x,y)+d(y,A)$ and we get $d(x,A)-d(y,A)\leq d(x,y)$. The same argument gives $d(y,A)-d(x,A)\leq d(x,y)$ hence the result.

3. Consider
$$x \mapsto \frac{d(x,A)}{d(x,A) + d(x,B)}$$
.

Problem 2 (Completeness is not a topological property).

Let
$$E=(0,+\infty)$$
 and for $x,y\in E$, consider $\delta(x,y)=\left|\frac{1}{x}-\frac{1}{y}\right|$.

- 1. Prove that δ is a distance on E and that it induces the same topology as the Euclidean distance d.
- 2. Is the map $x \mapsto x^{-1}$ uniformly continuous as a map from (E, d) to itself? As a map from (E, d) to (E, δ) ?
- 3. Is (E, δ) complete? What about ((0, 1], d) and $((0, 1], \delta)$?
- Solution. 1. Method 1: prove that every open d-ball contains a δ -ball with the same center and vice versa. Method 2: prove that $(E,d) \xrightarrow{\mathrm{Id}} (E,\delta)$ is a homeomorphism. To see this, it is convenient to decompose the identity map as $(E,d) \xrightarrow{\varphi} (E,d) \xrightarrow{\varphi} (E,\delta)$ where $\varphi(x) = x^{-1}$ and prove that both are homeomorphisms. Note that both methods boil down to the fact that φ is a homeomorphism from $(E,d \text{ or } \delta)$ to $(E,d \text{ or } \delta)$.
 - 2. No. Yes.
 - 3. No: $u_n = n$ is Cauchy but it does not converge (argue by contradiction). No: it is not closed in (\mathbb{R}, d) . Alternatively, consider $u_n = \frac{1}{n}$, Cauchy but not convergent in (0, 1].

Yes. Method 1: show that a Cauchy sequence $\{u_n\}$ for δ is also Cauchy for d hence converges for d in the closure of (0,1]. If the d-limit is >0, it is also the δ -limit because d and δ induce the same topology (or check it directly with balls) so the sequence converges. Assume the limit is 0. Then $\delta(1,u_n)$ diverges to $+\infty$ so $\{u_n\}$ is not bounded which is impossible since it is Cauchy. Method 2: $x\mapsto x^{-1}$ is an isometry (hence uniformly continuous) between $((0,1],\delta)$ and $([1,+\infty),d)$, which is closed in (\mathbb{R},d) complete, so is complete.

Problem 3 (The Banach Contraction Principle).

Let (E, d) be a complete metric space and $f: E \longrightarrow E$.

- 1. Show that if f is k-Lipschitz with k < 1, the equation f(x) = x has a unique solution in E.
- 2. Show that if E is compact, it is enough to have d(f(x), f(y)) < d(x, y) for all x, y to obtain the same result.

Solution. 1. Think triangle inequality and geometric series.

2. The real-valued function $x\mapsto d(x,f(x))$ is continuous on a compact set so it is bounded and the extrema are attained.

Problem 4 (Completeness of $\ell^2(\mathbb{N})$).

Show that the set of sequences $U = \{u_n\}$ such that $\sum_{n\geq 0} |u_n|^2$ converges is com-

plete for the norm
$$\|U\|_2 = \left(\sum_{n=0}^\infty |u_n|^2\right)^{\frac{1}{2}}$$

Solution. The skeleton of the proof we studied for the space of bounded functions with values in a complete space carries over. \Box

Problem 5 (Cantor's Intersection Theorem).

Let (E,d) be a metric space and $A\subset E$ a non-empty subset. The *diameter* of A is defined by

$$\operatorname{diam}(A) = \sup_{x,y \in A} d(x,y).$$

Prove that E is complete if and only if for every decreasing sequence $\{F_n\}_{n\in\mathbb{N}}$ of closed subsets of E such that $\lim_{n\to\infty} \operatorname{diam}(F_n)=0$, there is a point x such that

$$\bigcap_{n\in\mathbb{N}} F_n = \{x\}.$$

Solution. See Section 9.4 of [Royden-Fitzpatrick].

Problem 6 (Characterizations of compactness for metric spaces). Let (E,d) be a metric space. Prove that the following conditions are equivalent.

- (i) *E* has the *Borel-Lebesgue* property, *i.e.* is topologically compact.
- (ii) If $\mathcal F$ is a family of closed subsets of E such that every subfamily has nonempty intersection, then $\bigcap_{F\in\mathcal F} F \neq \varnothing$.
- (iii) E is complete and *totally bounded i.e.* can be covered by finitely many open balls of radius ε , for any $\varepsilon > 0$.
- (iv) E has the Bolzano-Weierstrass property, i.e. is sequentially compact.

Solution. The equivalence between (i) and (ii) holds in topological (non-necessarily metric) spaces. See Propositions 17, 18 and 19 in Section 9.5 of [Royden-Fitzpatrick] for the rest.