Metric spaces

Math 113 - Spring 2015

PROBLEM SET \#1

Problem 1 (Distance to a subset and metric Urysohn's Lemma).
Let (E, d) be a metric space. For any subset $A \subset E$ and any point $x \in E$, the distance between x and A is defined by

$$
d(x, A)=\inf _{a \in A} d(x, a)
$$

1. Show that $d(x, A)=d(x, \bar{A})$.
2. Show that $d(\cdot, A)$ is 1-Lipschitz.
3. Let A and B be disjoint closed subsets of E. Prove the existence of a continuous function $f: E \longrightarrow \mathbb{R}$ such that:
(a) $0 \leq f(x) \leq 1$ for all $x \in E$;
(b) $f(x)=0$ for all $x \in A$;
(c) $f(x)=1$ for all $x \in B$.

Problem 2 (Completeness is not a topological property).
Let $E=(0,+\infty)$ and for $x, y \in E$, consider $\delta(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right|$.

1. Prove that δ is a distance on E and that it induces the same topology as the Euclidean distance d.
2. Is the map $x \mapsto x^{-1}$ uniformly continuous as a map from (E, d) to itself ? As a map from (E, d) to (E, δ) ?
3. Is (E, δ) complete? What about $((0,1], d)$ and $((0,1], \delta)$?

Problem 3 (The Banach Contraction Principle).
Let (E, d) be a complete metric space and $f: E \longrightarrow E$.

1. Show that if f is k-Lipschitz with $k<1$, the equation $f(x)=x$ has a unique solution in E.
2. Show that if E is compact, it is enough to have $d(f(x), f(y))<d(x, y)$ for all x, y to obtain the same result.

Problem 4 (Completeness of $\ell^{2}(\mathbb{N})$).
Show that the set of sequences $U=\left\{u_{n}\right\}$ such that $\sum_{n \geq 0}\left|u_{n}\right|^{2}$ converges is complete for the norm $\|U\|_{2}=\left(\sum_{n=0}^{\infty}\left|u_{n}\right|^{2}\right)^{\frac{1}{2}}$

Problem 5 (Cantor's Intersection Theorem).
Let (E, d) be a metric space and $A \subset E$ a non-empty subset. The diameter of A is defined by

$$
\operatorname{diam}(A)=\sup _{x, y \in A} d(x, y)
$$

Prove that E is complete if and only if for every decreasing sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ of closed subsets of E such that $\lim _{n \rightarrow \infty} \operatorname{diam}\left(F_{n}\right)=0$, there is a point x such that

$$
\bigcap_{n \in \mathbb{N}} F_{n}=\{x\}
$$

Problem 6 (Characterizations of compactness for metric spaces).
Let (E, d) be a metric space. Prove that the following conditions are equivalent.
(i) E has the Borel-Lebesgue property, i.e. is topologically compact.
(ii) If \mathcal{F} is a family of closed subsets of E such that every subfamily has nonempty intersection, then $\bigcap_{F \in \mathcal{F}} F \neq \varnothing$.
(iii) E is complete and totally bounded i.e. can be covered by finitely many open balls of radius ε, for any $\varepsilon>0$.
(iv) E has the Bolzano-Weierstrass property, i.e. is sequentially compact.

