METRIC SPACES

MATH 113 - Spring 2015

PROBLEM SET #1

Problem 1 (Distance to a subset and metric Urysohn's Lemma). Let (E, d) be a metric space. For any subset $A \subset E$ and any point $x \in E$, the *distance* between x and A is defined by

$$d(x,A) = \inf_{a \in A} d(x,a).$$

- 1. Show that $d(x, A) = d(x, \overline{A})$.
- 2. Show that $d(\cdot, A)$ is 1-Lipschitz.
- 3. Let A and B be disjoint closed subsets of E. Prove the existence of a continuous function $f: E \longrightarrow \mathbb{R}$ such that:
 - (a) $0 \le f(x) \le 1$ for all $x \in E$;
 - (b) f(x) = 0 for all $x \in A$;
 - (c) f(x) = 1 for all $x \in B$.

Problem 2 (Completeness is not a topological property).

Let $E = (0, +\infty)$ and for $x, y \in E$, consider $\delta(x, y) = \left|\frac{1}{x} - \frac{1}{y}\right|$.

- 1. Prove that δ is a distance on E and that it induces the same topology as the Euclidean distance d.
- Is the map x → x⁻¹ uniformly continuous as a map from (E, d) to itself ? As a map from (E, d) to (E, δ)?
- 3. Is (E, δ) complete ? What about ((0, 1], d) and $((0, 1], \delta)$?

Problem 3 (The Banach Contraction Principle).

Let (E, d) be a complete metric space and $f : E \longrightarrow E$.

- 1. Show that if f is k-Lipschitz with k < 1, the equation f(x) = x has a unique solution in E.
- 2. Show that if E is compact, it is enough to have d(f(x), f(y)) < d(x, y) for all x, y to obtain the same result.

Problem 4 (Completeness of $\ell^2(\mathbb{N})$). Show that the set of sequences $U = \{u_n\}$ such that $\sum_{n\geq 0} |u_n|^2$ converges is com-

plete for the norm $||U||_2 = \left(\sum_{n=0}^{\infty} |u_n|^2\right)^{\frac{1}{2}}$

Problem 5 (Cantor's Intersection Theorem).

Let (E, d) be a metric space and $A \subset E$ a non-empty subset. The *diameter* of A is defined by

$$\operatorname{diam}(A) = \sup_{x,y \in A} d(x,y).$$

Prove that E is complete if and only if for every decreasing sequence $\{F_n\}_{n\in\mathbb{N}}$ of closed subsets of E such that $\lim_{n\to\infty} \operatorname{diam}(F_n) = 0$, there is a point x such that

$$\bigcap_{n \in \mathbb{N}} F_n = \{x\}.$$

Problem 6 (Characterizations of compactness for metric spaces).

Let (E, d) be a metric space. Prove that the following conditions are equivalent.

- (i) *E* has the *Borel-Lebesgue* property, *i.e.* is topologically compact.
- (ii) If \mathcal{F} is a family of closed subsets of E such that every subfamily has nonempty intersection, then $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$.
- (iii) *E* is complete and *totally bounded i.e.* can be covered by finitely many open balls of radius ε , for any $\varepsilon > 0$.
- (iv) E has the Bolzano-Weierstrass property, *i.e.* is sequentially compact.