MATH 113 - ANALYSIS SPRING 2015 TAKE-HOME MIDTERM

DUE MAY $1^{\rm ST}$

The goal of this problem is to give a proof of the following density result.

Theorem (Weierstrass). Every continuous function on a segment of the real line is the uniform limit of a sequence of polynomial functions.

0. The theorem asserts in particular that the family of functions $\{x \mapsto x^n\}_{n \in \mathbb{N}}$ is a topological basis of $(C([0,1]), \|\cdot\|_{\infty})$. Is it an algebraic basis?

Let \mathcal{E} be the space of continuous and compactly supported complex-valued functions on \mathbb{R} . For $f, g \in \mathcal{E}$, let $f \star g$ denote the *convolution product of* f and g, defined by

$$f \star g(x) = \int_{\mathbb{R}} f(t)g(x-t) dt$$

1. Verify that $(\mathcal{E}, +, \star)$ is an algebra. Is it unital?

Definition. An approximate unit in \mathcal{E} is a sequence $\{\chi_n\}_{n\geq 1}$ such that for any f in \mathcal{E} , the sequence $\{\chi_n \star f\}$ converges uniformly to f.

2. Sketch the graphs of functions α_n in \mathcal{E} such that

$$\begin{array}{ll} - \forall n \geq 1 &, & \alpha_n \text{ only takes non-negative values;} \\ - \forall n \geq 1 &, & \int_{\mathbb{R}} \alpha_n(t) \, dt = 1; \\ - \forall A > 0 &, & \lim_{n \to \infty} \int_{|t| \geq A} \alpha_n(t) \, dt = 0; \end{array}$$

and prove that the sequence $\{\alpha_n\}_{n\geq 1}$ is an approximate unit in \mathcal{E} .

3. Define, for
$$n \ge 1$$
, $a_n = \int_{-1}^1 (1-t^2)^n dt$ and $p_n : t \longmapsto \begin{cases} \frac{(1-t^2)^n}{a_n} & \text{if } |t| \le 1\\ 0 & \text{otherwise} \end{cases}$

Show that $\{p_n\}_{n\geq 1}$ is an approximate unit in \mathcal{E} .

4. Let f be a function in \mathcal{E} that vanishes outside of $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Prove that, for every $n \ge 1$, the function $p_n \star f$ is polynomial on its support.

5. Prove Weierstrass' Theorem.