MATH 113 - ANALYSIS
 SPRING 2015 IN-CLASS MIDTERM

ELEMENTS OF SOLUTION

Notation: if (E, d) is a metric space, $x \in E$ and $r>0$, we denote by $B_{E}(x, r)$ the open ball centered at x with radius r, that is,

$$
B_{E}(x, r)=\{y \in E, d(x, y)<r\} .
$$

Reminder: a useful consequence of the Baire Category Theorem is the following.

Proposition. If E is a Baire space and $\left\{F_{n}\right\}_{n \geq 1}$ is a sequence of closed subsets such that $\bigcup_{n \geq 1} F_{n}=E$, then $\bigcup_{n \geq 1} \stackrel{\circ}{F}_{n}$ is a dense open subset of E.

Problem 1

1. Is $c_{0}(\mathbb{N})=\left\{\left\{u_{n}\right\} \in \mathbb{R}^{\mathbb{N}}, \lim _{n \rightarrow \infty} u_{n}=0\right\}$ complete for the norm $\|\cdot\|_{\infty}$?

Yes. Note that it is enough to prove that $c_{0}(\mathbb{N})$ is closed in $\ell^{\infty}(\mathbb{N})$, which is complete for the given norm. One may also proceed directly: let $\left\{u^{p}\right\}_{p \in \mathbb{N}}$ be a Cauchy sequence in $c_{0}(\mathbb{N})$. For $\varepsilon>0$, there exists a rank N_{ε} such that $\left\|u^{p}-u^{q}\right\|_{\infty}<\frac{\varepsilon}{2}$ for $p, q \geq N_{\varepsilon}$, that is,

$$
\forall n \in \mathbb{N},\left|u_{n}^{p}-u_{n}^{q}\right|<\frac{\varepsilon}{2} .
$$

This means that given n fixed, the sequence $\left\{u_{n}^{p}\right\}_{p \in \mathbb{N}}$ is Cauchy in \mathbb{R} complete. Denote $u_{n}=\lim _{p \rightarrow \infty} u_{n}^{p}$. We shall prove that
(1) the sequence u belongs to $c_{0}(\mathbb{N})$,
(2) the convergence occurs for the norm $\|\cdot\|$.
(1) To see that u vanishes at infinity, observe that the Triangle Inequality gives

$$
\left|u_{n}\right| \leq\left|u_{n}^{p}\right|+\left|u_{n}-u_{n}^{p}\right| .
$$

Fix $p>N_{\varepsilon}$ and let $q \rightarrow \infty$ in (\dagger) to get $\left|u_{n}-u_{n}^{p}\right| \leq \frac{\varepsilon}{2}$ for all $n \in \mathbb{N}$. Since $u^{p} \in c_{0}(\mathbb{N})$, there exists N_{ε}^{\prime} such that $n>N_{\varepsilon}^{\prime}$ implies $\left|u_{n}^{p}\right|<\frac{\varepsilon}{2}$ which guarantees $\left|u_{n}\right|<\varepsilon$.
(2) As before, fix $p>N_{\varepsilon}$, let $q \rightarrow \infty$ in (\dagger) and note that N_{ε} does not depend on n to see that the convergence is uniform.
2. Is $C([0,1], \mathbb{R})$ complete for the norm $\|f\|_{1}=\int_{0}^{1}|f(x)| d x$?

No. Consider for instance ($=$ draw a picture of) the sequence of continuous functions f_{n} where

$$
f_{n}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \leq \frac{1}{2} \\
1 & \text { if } & x \geq \frac{1}{2}+\frac{1}{n}
\end{array}\right.
$$

and f_{n} is affine on $\left(\frac{1}{2}, \frac{1}{2}+\frac{1}{n}\right)$. Check that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$

- is Cauchy with respect to $\|\cdot\|_{1}$;
- converges pointwise to the discontinuous function f that is constantly 0 on $\left[0, \frac{1}{2}\right]$ and constantly 1 on $\left(\frac{1}{2}, 1\right]$.
Prove that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{1}=0$ to conclude.

Problem 2

Let E and F be Banach spaces. We denote by \mathbb{B} the closed ball of radius 1 in E, that is, $\mathbb{B}=\overline{B_{E}(0,1)}$. A bounded operator $T \in \mathcal{L}(E, F)$ is said compact if $\overline{T(\mathbb{B})}$ is compact. The range of T is denoted by $r(T)$.

1. Characterize the Banach spaces E such that the identity map Id_{E} is compact. Riesz's Theorem asserts that Id_{E} is compact if and only if E is finite-dimensional.
2. Let $T \in \mathcal{L}(E, F)$ with $r(T)$ finite-dimensional. Prove that T is compact.

By the assumption on $r(T)$, it suffices to prove that $\overline{T(\mathbb{B})}$ is closed and bounded. Closedness holds by definition. Boundedness follows from the continuity of T : by definition of the operator norm, $T(\mathbb{B}) \subset B_{r(T)}(0,\|T\|)$ so $\overline{T(\mathbb{B})} \subset \overline{B_{r(T)}(0,\|T\|)}$.
3. Let $T \in \mathcal{L}(E, F)$ be compact and assume that $r(T)$ of T is closed in F.
a. Show the existence of $\rho>0$ such that $B_{r(T)}(0, \rho) \subset T(\mathbb{B})$.

The operator T induces a surjective continuous linear map $\tilde{T}: E \longrightarrow r(T)$. Since $r(T)$ is closed in F Banach, it is complete so the Open Mapping Theorem applies. Consider for instance the open ball $B_{E}(0,1)$. Since, \tilde{T} is open, $\tilde{T}\left(B_{E}(0,1)\right)$ is an open subset of $r(T)$ that contains 0_{F} so it must contain a ball centered at 0_{F}, say

$$
B_{r(T)}(0, \rho) \subset \tilde{T}\left(B_{E}(0,1)\right) \subset T(\mathbb{B})
$$

b. Prove that $r(T)$ is finite-dimensional.

Taking closures in the previous inclusion, the closed ball $\overline{B_{r(T)}(0, \rho)}$ is closed in $\overline{T(\mathbb{B})}$, compact by assumption, hence compact itself. Since the dilation by ρ^{-1} is continuous, it follows that $\overline{B_{r(T)}(0,1)}$ is compact, so that Riesz's Theorem implies that $r(T)$ is finitedimensional.
4. Let $E=\left(C([0,1]),\|\cdot\|_{\infty}\right)$. For $\kappa \in C\left([0,1]^{2}\right)$, we define a linear map $T: E \longrightarrow E$ by

$$
T(f)(x)=\int_{0}^{1} \kappa(x, y) f(y) d y
$$

a. Prove that T is continuous.

The kernel κ is continuous on the compact $[0,1]^{2}$ so it is bounded and one can verify that $\|\kappa\|_{\infty}$ is a Lipschitz constant for T.

b. Prove that T is compact.

The same arguments as in 2. show that $\overline{T(\mathbb{B})}$ is closed and bounded. By Arzelà-Ascoli, it suffices to prove that $T(\mathbb{B})$ is equicontinuous. This follows from the uniform continuity of κ on the compact $[0,1]^{2}$: for $0 \leq x, z \leq 1$ and $f \in \mathbb{B}$,

$$
|T(f)(x)-T(f)(z)| \leq\|f\|_{\infty} \int_{0}^{1}|\kappa(x, y)-\kappa(z, y)| d y .
$$

Since κ is uniformly continuous, there exists $\delta>0$ such that $|x-z|<\delta$ implies that $|\kappa(x, y)-\kappa(z, y)|<\varepsilon$ for all x, y, z such that $|x-z|<\delta$. For such x and z, we get $|T(f)(x)-T(f)(z)| \leq \varepsilon$, so the family $\{T(f), f \in \mathbb{B}\}$ is equicontinuous.

Problem 3

1. Let (E, d) and (F, δ) be metric spaces. Assume E complete and consider a sequence $\left\{f_{n}\right\}_{n \geq 1}$ of continuous maps from E to F that converges pointwise to $f: E \longrightarrow F$.
a. Consider, for $n \geq 1$ and $\varepsilon>0$, the set $F_{n, \varepsilon}=\left\{x \in E, \forall p \geq n, \delta\left(f_{n}(x), f_{p}(x)\right) \leq \varepsilon\right\}$. Show that $\Omega_{\varepsilon}=\bigcup_{n \geq 1} F_{n, \varepsilon}^{\circ}$ is a dense open subset of E.
According to the consequence of the Baire Category Theorem recalled above, it suffices to prove that the sets $F_{n, \varepsilon}$ are closed and cover E. For given n and p, the set $\left\{x \in E, \delta\left(f_{n}(x), f_{p}(x)\right) \leq \varepsilon\right\}$ is closed as the inverse image of $[0, \varepsilon]$, closed, under the map $x \mapsto \delta\left(f_{n}(x), f_{p}(x)\right)$, continuous as composed of continuous functions. Taking the intersection over $p \geq n$ gives $F_{n, \varepsilon}$ closed. That the union of these sets covers E follows from the pointwise convergence of the sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$.
b. Show that every point $x_{0} \in \Omega_{\varepsilon}$ has a neighborhood \mathcal{N} such that

$$
\forall x \in \mathcal{N}, \delta\left(f\left(x_{0}\right), f(x)\right) \leq 3 \varepsilon
$$

Let n be such that $x_{0} \in \stackrel{F_{n, \varepsilon}^{0}}{F^{\circ}}$. Since $F_{n, \varepsilon}^{\mathrm{o}}$ is open and f_{n} is continuous, there exists a neighborhood \mathcal{N} of x_{0} included in $F_{n, \varepsilon}^{0}$ such that

$$
\delta\left(f_{n}\left(x_{0}\right), f_{n}(x)\right) \leq \varepsilon \quad \text { for all } x \in \mathcal{N}
$$

Since $\mathcal{N} \subset{ }_{F_{n, \varepsilon}}^{\mathrm{o}}$, we have

$$
\delta\left(f_{n}(x), f_{p}(x)\right) \leq \varepsilon \quad \text { for all } x \in \mathcal{N} \text { and } p \geq n
$$

Letting $p \rightarrow \infty$ in this inequality, we get

$$
\delta\left(f_{n}(x), f(x)\right) \leq \varepsilon \quad \text { for all } x \in \mathcal{N}
$$

Now, by the triangle inequality,

$$
\begin{aligned}
\delta\left(f(x), f\left(x_{0}\right)\right) & \leq \delta\left(f(x), f_{n}(x)\right)+\delta\left(f_{n}(x), f_{n}\left(x_{0}\right)\right)+\delta\left(f_{n}\left(x_{0}\right), f\left(x_{0}\right)\right) \\
& \leq \varepsilon+\varepsilon+\varepsilon
\end{aligned}
$$

for all $x \in \mathcal{N}$.
c. Prove that f is continuous at every point of $\Omega=\bigcap_{n \geq 1} \Omega_{\frac{1}{n}}$ and that $\bar{\Omega}=E$. Let $x_{0} \in \Omega$ and $\varepsilon>0$. Fix n such that $\frac{1}{n}<\frac{\varepsilon}{3}$. By the previous result, there is a neighborhood \mathcal{N} of x_{0} such that $\delta\left(f(x), f\left(x_{0}\right)\right) \leq \varepsilon$ for all $x \in \mathcal{N}$, which proves continuity of f at x_{0}. The fact that Ω is dense in E follows from a. and the Baire Category Theorem.
2. Let f be differentiable on \mathbb{R}. Show that f^{\prime} is continuous on a dense set.

Apply the previous result to the sequence $f_{n}: x \mapsto \frac{f\left(x+\frac{1}{n}\right)-f(x)}{1 / n}$.

