MATH 113 - ANALYSIS SPRING 2015 IN-CLASS MIDTERM

ELEMENTS OF SOLUTION

Notation: if (E, d) is a metric space, $x \in E$ and r > 0, we denote by $B_E(x, r)$ the open ball centered at x with radius r, that is,

$$B_E(x,r) = \{ y \in E , \ d(x,y) < r \}.$$

Reminder: a useful consequence of the Baire Category Theorem is the following.

Proposition. If E is a Baire space and $\{F_n\}_{n\geq 1}$ is a sequence of closed subsets such that $\bigcup_{n\geq 1} F_n = E$, then $\bigcup_{n\geq 1} \overset{\mathbf{o}}{F_n}$ is a dense open subset of E.

Problem 1

1. Is
$$c_0(\mathbb{N}) = \{\{u_n\} \in \mathbb{R}^{\mathbb{N}}, \lim_{n \to \infty} u_n = 0\}$$
 complete for the norm $\|\cdot\|_{\infty}$?

Yes. Note that it is enough to prove that $c_0(\mathbb{N})$ is closed in $\ell^{\infty}(\mathbb{N})$, which is complete for the given norm. One may also proceed directly: let $\{u^p\}_{p\in\mathbb{N}}$ be a Cauchy sequence in $c_0(\mathbb{N})$. For $\varepsilon > 0$, there exists a rank N_{ε} such that $||u^p - u^q||_{\infty} < \frac{\varepsilon}{2}$ for $p, q \ge N_{\varepsilon}$, that is,

$$(\dagger) \qquad \qquad \forall n \in \mathbb{N} , \ |u_n^p - u_n^q| < \frac{\varepsilon}{2}.$$

This means that given n fixed, the sequence $\{u_n^p\}_{p\in\mathbb{N}}$ is Cauchy in \mathbb{R} complete. Denote $u_n = \lim_{p\to\infty} u_n^p$. We shall prove that

- (1) the sequence u belongs to $c_0(\mathbb{N})$,
- (2) the convergence occurs for the norm $\|\cdot\|$.
- (1) To see that u vanishes at infinity, observe that the Triangle Inequality gives

$$|u_n| \le |u_n^p| + |u_n - u_n^p|.$$

Fix $p > N_{\varepsilon}$ and let $q \to \infty$ in (†) to get $|u_n - u_n^p| \leq \frac{\varepsilon}{2}$ for all $n \in \mathbb{N}$. Since $u^p \in c_0(\mathbb{N})$, there exists N'_{ε} such that $n > N'_{\varepsilon}$ implies $|u_n^p| < \frac{\varepsilon}{2}$ which guarantees $|u_n| < \varepsilon$.

(2) As before, fix $p > N_{\varepsilon}$, let $q \to \infty$ in (†) and note that N_{ε} does not depend on n to see that the convergence is uniform.

2. Is $C([0,1],\mathbb{R})$ complete for the norm $||f||_1 = \int_0^1 |f(x)| dx$?

No. Consider for instance (= draw a picture of) the sequence of continuous functions f_n where

$$f_n(x) = \begin{cases} 0 & \text{if } x \le \frac{1}{2} \\ 1 & \text{if } x \ge \frac{1}{2} + \frac{1}{n} \end{cases}$$

and f_n is affine on $(\frac{1}{2}, \frac{1}{2} + \frac{1}{n})$. Check that $\{f_n\}_{n \in \mathbb{N}}$

- is Cauchy with respect to $\|\cdot\|_1$;
- converges pointwise to the discontinuous function f that is constantly 0 on $[0, \frac{1}{2}]$ and constantly 1 on $(\frac{1}{2}, 1]$.

Prove that $\lim_{n \to \infty} ||f_n - f||_1 = 0$ to conclude.

Problem 2

Let E and F be Banach spaces. We denote by \mathbb{B} the closed ball of radius 1 in E, that is, $\mathbb{B} = \overline{B_E(0,1)}$. A bounded operator $T \in \mathcal{L}(E,F)$ is said *compact* if $\overline{T(\mathbb{B})}$ is compact. The range of T is denoted by r(T).

1. Characterize the Banach spaces E such that the identity map Id_E is compact.

Riesz's Theorem asserts that Id_E is compact if and only if E is finite-dimensional.

2. Let $T \in \mathcal{L}(E, F)$ with r(T) finite-dimensional. Prove that T is compact.

By the assumption on r(T), it suffices to prove that $\overline{T(\mathbb{B})}$ is closed and bounded. Closedness holds by definition. Boundedness follows from the continuity of T: by definition of the operator norm, $T(\mathbb{B}) \subset B_{r(T)}(0, ||T||)$ so $\overline{T(\mathbb{B})} \subset \overline{B_{r(T)}(0, ||T||)}$.

3. Let $T \in \mathcal{L}(E, F)$ be compact and assume that r(T) of T is closed in F.

a. Show the existence of $\rho > 0$ such that $B_{r(T)}(0,\rho) \subset T(\mathbb{B})$.

The operator T induces a surjective continuous linear map $\tilde{T} : E \longrightarrow r(T)$. Since r(T) is closed in F Banach, it is complete so the Open Mapping Theorem applies. Consider for instance the open ball $B_E(0,1)$. Since, \tilde{T} is open, $\tilde{T}(B_E(0,1))$ is an open subset of r(T)that contains 0_F so it must contain a ball centered at 0_F , say

$$B_{r(T)}(0,\rho) \subset T(B_E(0,1)) \subset T(\mathbb{B}).$$

b. Prove that r(T) is finite-dimensional.

Taking closures in the previous inclusion, the closed ball $\overline{B_{r(T)}(0,\rho)}$ is closed in $\overline{T(\mathbb{B})}$, compact by assumption, hence compact itself. Since the dilation by ρ^{-1} is continuous, it follows that $\overline{B_{r(T)}(0,1)}$ is compact, so that Riesz's Theorem implies that r(T) is finite-dimensional.

4. Let $E = (C([0,1]), \|\cdot\|_{\infty})$. For $\kappa \in C([0,1]^2)$, we define a linear map $T: E \longrightarrow E$ by

$$T(f)(x) = \int_0^1 \kappa(x, y) f(y) \, dy$$

a. Prove that T is continuous.

The kernel κ is continuous on the compact $[0, 1]^2$ so it is bounded and one can verify that $\|\kappa\|_{\infty}$ is a Lipschitz constant for T.

b. Prove that T is compact.

The same arguments as in **2.** show that $\overline{T(\mathbb{B})}$ is closed and bounded. By Arzelà-Ascoli, it suffices to prove that $T(\mathbb{B})$ is equicontinuous. This follows from the uniform continuity of κ on the compact $[0, 1]^2$: for $0 \leq x, z \leq 1$ and $f \in \mathbb{B}$,

$$|T(f)(x) - T(f)(z)| \le ||f||_{\infty} \int_0^1 |\kappa(x, y) - \kappa(z, y)| \, dy.$$

Since κ is uniformly continuous, there exists $\delta > 0$ such that $|x - z| < \delta$ implies that $|\kappa(x, y) - \kappa(z, y)| < \varepsilon$ for all x, y, z such that $|x - z| < \delta$. For such x and z, we get $|T(f)(x) - T(f)(z)| \le \varepsilon$, so the family $\{T(f), f \in \mathbb{B}\}$ is equicontinuous.

PROBLEM 3

1. Let (E, d) and (F, δ) be metric spaces. Assume E complete and consider a sequence $\{f_n\}_{n\geq 1}$ of continuous maps from E to F that converges pointwise to $f: E \longrightarrow F$.

a. Consider, for $n \ge 1$ and $\varepsilon > 0$, the set $F_{n,\varepsilon} = \{x \in E, \forall p \ge n, \delta(f_n(x), f_p(x)) \le \varepsilon\}$. Show that $\Omega_{\varepsilon} = \bigcup_{n \ge 1} \overset{\mathbf{o}}{F_{n,\varepsilon}}$ is a dense open subset of E.

According to the consequence of the Baire Category Theorem recalled above, it suffices to prove that the sets $F_{n,\varepsilon}$ are closed and cover E. For given n and p, the set $\{x \in E, \delta(f_n(x), f_p(x)) \leq \varepsilon\}$ is closed as the inverse image of $[0, \varepsilon]$, closed, under the map $x \mapsto \delta(f_n(x), f_p(x))$, continuous as composed of continuous functions. Taking the intersection over $p \geq n$ gives $F_{n,\varepsilon}$ closed. That the union of these sets covers E follows from the pointwise convergence of the sequence $\{f_n\}_{n\in\mathbb{N}}$.

b. Show that every point $x_0 \in \Omega_{\varepsilon}$ has a neighborhood \mathcal{N} such that

$$\forall x \in \mathcal{N}, \ \delta(f(x_0), f(x)) \le 3\varepsilon.$$

Let *n* be such that $x_0 \in \overset{\mathbf{o}}{F_{n,\varepsilon}}$. Since $\overset{\mathbf{o}}{F_{n,\varepsilon}}$ is open and f_n is continuous, there exists a neighborhood \mathcal{N} of x_0 included in $\overset{\mathbf{o}}{F_{n,\varepsilon}}$ such that

$$\delta(f_n(x_0), f_n(x)) \leq \varepsilon$$
 for all $x \in \mathcal{N}$.

Since $\mathcal{N} \subset F_{n,\varepsilon}^{\mathbf{o}}$, we have

 $\delta(f_n(x), f_p(x)) \leq \varepsilon$ for all $x \in \mathcal{N}$ and $p \geq n$.

Letting $p \to \infty$ in this inequality, we get

$$\delta(f_n(x), f(x)) \le \varepsilon$$
 for all $x \in \mathcal{N}$.

Now, by the triangle inequality,

$$\delta(f(x), f(x_0)) \leq \delta(f(x), f_n(x)) + \delta(f_n(x), f_n(x_0)) + \delta(f_n(x_0), f(x_0))$$

$$\leq \varepsilon + \varepsilon + \varepsilon$$

for all $x \in \mathcal{N}$.

c. Prove that f is continuous at every point of $\Omega = \bigcap_{n \ge 1} \Omega_{\frac{1}{n}}$ and that $\overline{\Omega} = E$. Let $x_0 \in \Omega$ and $\varepsilon > 0$. Fix n such that $\frac{1}{n} < \frac{\varepsilon}{3}$. By the previous result, there is a neighborhood \mathcal{N} of x_0 such that $\delta(f(x), f(x_0)) \le \varepsilon$ for all $x \in \mathcal{N}$, which proves continuity of f at x_0 . The fact that Ω is dense in E follows from **a**. and the Baire Category Theorem.

2. Let f be differentiable on \mathbb{R} . Show that f' is continuous on a dense set.

Apply the previous result to the sequence $f_n: x \mapsto \frac{f(x+\frac{1}{n})-f(x)}{1/n}$.