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IN-CLASS MIDTERM

ELEMENTS OF SOLUTION

Notation: if (E, d) is a metric space, x ∈ E and r > 0, we denote by BE(x, r) the open
ball centered at x with radius r, that is,

BE(x, r) = {y ∈ E , d(x, y) < r}.

Reminder: a useful consequence of the Baire Category Theorem is the following.

Proposition. If E is a Baire space and {Fn}n≥1 is a sequence of closed subsets such that⋃
n≥1 Fn = E, then

⋃
n≥1

o

Fn is a dense open subset of E.

Problem 1

1. Is c0(N) =
{
{un} ∈ RN , limn→∞ un = 0

}
complete for the norm ‖ · ‖∞?

Yes. Note that it is enough to prove that c0(N) is closed in `∞(N), which is complete
for the given norm. One may also proceed directly: let {up}p∈N be a Cauchy sequence in
c0(N). For ε > 0, there exists a rank Nε such that ‖up − uq‖∞ < ε

2
for p, q ≥ Nε, that is,

(†) ∀n ∈ N , |upn − uqn| <
ε

2
.

This means that given n fixed, the sequence {upn}p∈N is Cauchy in R complete. Denote
un = limp→∞ u

p
n. We shall prove that

(1) the sequence u belongs to c0(N),
(2) the convergence occurs for the norm ‖ · ‖.

(1) To see that u vanishes at infinity, observe that the Triangle Inequality gives

|un| ≤ |upn|+ |un − upn|.

Fix p > Nε and let q → ∞ in (†) to get |un − upn| ≤ ε
2

for all n ∈ N. Since up ∈ c0(N),
there exists N ′ε such that n > N ′ε implies |upn| < ε

2
which guarantees |un| < ε.

(2) As before, fix p > Nε, let q →∞ in (†) and note that Nε does not depend on n to see
that the convergence is uniform.



2. Is C([0, 1],R) complete for the norm ‖f‖1 =

∫ 1

0

|f(x)| dx?

No. Consider for instance (= draw a picture of) the sequence of continuous functions fn
where

fn(x) =

{
0 if x ≤ 1

2
1 if x ≥ 1

2
+ 1

n

and fn is affine on (1
2
, 1
2

+ 1
n
). Check that {fn}n∈N

- is Cauchy with respect to ‖ · ‖1;
- converges pointwise to the discontinuous function f that is constantly 0 on [0, 1

2
]

and constantly 1 on (1
2
, 1].

Prove that lim
n→∞

‖fn − f‖1 = 0 to conclude.

Problem 2

Let E and F be Banach spaces. We denote by B the closed ball of radius 1
in E, that is, B = BE(0, 1). A bounded operator T ∈ L(E,F ) is said compact if

T (B) is compact. The range of T is denoted by r(T ).

1. Characterize the Banach spaces E such that the identity map IdE is compact.

Riesz’s Theorem asserts that IdE is compact if and only if E is finite-dimensional.

2. Let T ∈ L(E,F ) with r(T ) finite-dimensional. Prove that T is compact.

By the assumption on r(T ), it suffices to prove that T (B) is closed and bounded. Closed-
ness holds by definition. Boundedness follows from the continuity of T : by definition of
the operator norm, T (B) ⊂ Br(T )(0, ‖T‖) so T (B) ⊂ Br(T )(0, ‖T‖).

3. Let T ∈ L(E,F ) be compact and assume that r(T ) of T is closed in F .

a. Show the existence of ρ > 0 such that Br(T )(0, ρ) ⊂ T (B).

The operator T induces a surjective continuous linear map T̃ : E −→ r(T ). Since r(T ) is
closed in F Banach, it is complete so the Open Mapping Theorem applies. Consider for
instance the open ball BE(0, 1). Since, T̃ is open, T̃ (BE(0, 1)) is an open subset of r(T )
that contains 0F so it must contain a ball centered at 0F , say

Br(T )(0, ρ) ⊂ T̃ (BE(0, 1)) ⊂ T (B).

b. Prove that r(T ) is finite-dimensional.

Taking closures in the previous inclusion, the closed ball Br(T )(0, ρ) is closed in T (B),
compact by assumption, hence compact itself. Since the dilation by ρ−1 is continuous, it
follows that Br(T )(0, 1) is compact, so that Riesz’s Theorem implies that r(T ) is finite-
dimensional.



4. Let E = (C([0, 1]), ‖ · ‖∞). For κ ∈ C([0, 1]2), we define a linear map T : E −→ E
by

T (f)(x) =

∫ 1

0

κ(x, y)f(y) dy.

a. Prove that T is continuous.

The kernel κ is continuous on the compact [0, 1]2 so it is bounded and one can verify that
‖κ‖∞ is a Lipschitz constant for T .

b. Prove that T is compact.

The same arguments as in 2. show that T (B) is closed and bounded. By Arzelà-Ascoli,
it suffices to prove that T (B) is equicontinuous. This follows from the uniform continuity
of κ on the compact [0, 1]2: for 0 ≤ x, z ≤ 1 and f ∈ B,

|T (f)(x)− T (f)(z)| ≤ ‖f‖∞
∫ 1

0

|κ(x, y)− κ(z, y)| dy.

Since κ is uniformly continuous, there exists δ > 0 such that |x − z| < δ implies that
|κ(x, y) − κ(z, y)| < ε for all x, y, z such that |x − z| < δ. For such x and z, we get
|T (f)(x)− T (f)(z)| ≤ ε, so the family {T (f) , f ∈ B} is equicontinuous.

Problem 3

1. Let (E, d) and (F, δ) be metric spaces. Assume E complete and consider a
sequence {fn}n≥1 of continuous maps from E to F that converges pointwise to
f : E −→ F .

a. Consider, for n ≥ 1 and ε > 0, the set Fn,ε = {x ∈ E , ∀p ≥ n , δ(fn(x), fp(x)) ≤ ε}.
Show that Ωε =

⋃
n≥1

o

Fn,ε is a dense open subset of E.

According to the consequence of the Baire Category Theorem recalled above, it suf-
fices to prove that the sets Fn,ε are closed and cover E. For given n and p, the set
{x ∈ E , δ(fn(x), fp(x)) ≤ ε} is closed as the inverse image of [0, ε], closed, under the map
x 7→ δ(fn(x), fp(x)), continuous as composed of continuous functions. Taking the inter-
section over p ≥ n gives Fn,ε closed. That the union of these sets covers E follows from
the pointwise convergence of the sequence {fn}n∈N.

b. Show that every point x0 ∈ Ωε has a neighborhood N such that

∀x ∈ N , δ(f(x0), f(x)) ≤ 3ε.

Let n be such that x0 ∈
o

Fn,ε. Since
o

Fn,ε is open and fn is continuous, there exists a

neighborhood N of x0 included in
o

Fn,ε such that

δ(fn(x0), fn(x)) ≤ ε for all x ∈ N .



Since N ⊂
o

Fn,ε, we have

δ(fn(x), fp(x)) ≤ ε for all x ∈ N and p ≥ n.

Letting p→∞ in this inequality, we get

δ(fn(x), f(x)) ≤ ε for all x ∈ N .
Now, by the triangle inequality,

δ(f(x), f(x0)) ≤ δ(f(x), fn(x)) + δ(fn(x), fn(x0)) + δ(fn(x0), f(x0))

≤ ε+ ε+ ε

for all x ∈ N .

c. Prove that f is continuous at every point of Ω =
⋂

n≥1 Ω 1
n

and that Ω = E.

Let x0 ∈ Ω and ε > 0. Fix n such that 1
n
< ε

3
. By the previous result, there is a

neighborhood N of x0 such that δ(f(x), f(x0)) ≤ ε for all x ∈ N , which proves continuity
of f at x0. The fact that Ω is dense in E follows from a. and the Baire Category Theorem.

2. Let f be differentiable on R. Show that f ′ is continuous on a dense set.

Apply the previous result to the sequence fn : x 7→ f(x+ 1
n)−f(x)
1/n

.


