MATH 113 - ANALYSIS
 SPRING 2015
 IN-CLASS MIDTERM

DURATION: 3 HOURS

This exam consists of three independent problems. You may treat them in the order of your choosing.

If you were not able to solve a question but wish to use the result to solve another one, you are welcome to do so, as long as you indicate it explicitly.

Notation: if (E, d) is a metric space, $x \in E$ and $r>0$, we denote by $B_{E}(x, r)$ the open ball centered at x with radius r, that is,

$$
B_{E}(x, r)=\{y \in E, d(x, y)<r\} .
$$

Reminder: a useful consequence of the Baire Category Theorem is the following.
Proposition. If E is a Baire space and $\left\{F_{n}\right\}_{n \geq 1}$ is a sequence of closed subsets such that $\bigcup_{n \geq 1} F_{n}=E$, then $\bigcup_{n \geq 1} \stackrel{\mathbf{o}}{F}_{n}$ is a dense open subset of E.

Problem 1

1. Is $c_{0}(\mathbb{N})=\left\{\left\{u_{n}\right\} \in \mathbb{R}^{\mathbb{N}}, \lim _{n \rightarrow \infty} u_{n}=0\right\}$ complete for the norm $\left\|\left\{u_{n}\right\}\right\|_{\infty}=\sup _{n \in \mathbb{N}}\left|u_{n}\right|$?
2. Is $C([0,1], \mathbb{R})$ complete for the norm $\|f\|_{1}=\int_{0}^{1}|f(x)| d x$?

Problem 2

Let E and F be Banach spaces. We denote by \mathbb{B} the closed ball of radius 1 in E, that is, $\mathbb{B}=\overline{B_{E}(0,1)}$. A bounded operator $T \in \mathcal{L}(E, F)$ is said compact if $\overline{T(\mathbb{B})}$ is compact.

1. Characterize the Banach spaces E such that the identity map Id_{E} is compact.
2. Assume that $T \in \mathcal{L}(E, F)$ has finite-dimensional range. Prove that T is compact.
3. Let $T \in \mathcal{L}(E, F)$ be compact and assume that the range $r(T)$ of T is closed in F.
a. Show the existence of $\rho>0$ such that $B_{r(T)}(0, \rho) \subset T(\mathbb{B})$.
b. Prove that $r(T)$ is finite-dimensional.
4. Integral operators with continuous kernels are compact.

Let $E=\left(C([0,1]),\|\cdot\|_{\infty}\right)$. For $\kappa \in C\left([0,1]^{2}\right)$, we define a linear map $T: E \longrightarrow E$ by

$$
T(f)(x)=\int_{0}^{1} \kappa(x, y) f(y) d y
$$

a. Prove that T is continuous.
b. Prove that T is compact.

Problem 3

1. Let (E, d) and (F, δ) be metric spaces. Assume E complete and consider a sequence $\left\{f_{n}\right\}_{n \geq 1}$ of continuous maps from E to F that converges pointwise to $f: E \longrightarrow F$.
a. Consider, for $n \geq 1$ and $\varepsilon>0$, the set

$$
F_{n, \varepsilon}=\left\{x \in E \quad \text { s. t. } \quad \forall p \geq n, \delta\left(f_{n}(x), f_{p}(x)\right) \leq \varepsilon\right\} .
$$

Show that $\Omega_{\varepsilon}=\bigcup_{n \geq 1} \stackrel{o}{F_{n, \varepsilon}}$ is a dense open subset of E.
b. Show that every point $x_{0} \in \Omega_{\varepsilon}$ has a neighborhood \mathcal{N} such that

$$
\forall x \in \mathcal{N}, \delta\left(f\left(x_{0}\right), f(x)\right) \leq 3 \varepsilon
$$

c. Prove that f is continuous at every point of $\Omega=\bigcap_{n \geq 1} \Omega_{\frac{1}{n}}$ and that $\bar{\Omega}=E$.
2. Application: let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Show that its derivative f^{\prime} is continuous on a dense subset of \mathbb{R}.

