MATH 113 - ANALYSIS SPRING 2015 IN-CLASS MIDTERM

DURATION: 3 HOURS

This exam consists of three independent problems. You may treat them in the order of your choosing.

If you were not able to solve a question but wish to use the result to solve another one, you are welcome to do so, as long as you indicate it explicitly.

Notation: if (E, d) is a metric space, $x \in E$ and r > 0, we denote by $B_E(x, r)$ the open ball centered at x with radius r, that is,

$$B_E(x,r) = \{ y \in E, d(x,y) < r \}.$$

Reminder: a useful consequence of the Baire Category Theorem is the following.

Proposition. If E is a Baire space and $\{F_n\}_{n\geq 1}$ is a sequence of closed subsets such that $\bigcup_{n\geq 1} F_n = E$, then $\bigcup_{n\geq 1} \overset{\mathbf{o}}{F_n}$ is a dense open subset of E.

Problem 1

1. Is $c_0(\mathbb{N}) = \{\{u_n\} \in \mathbb{R}^{\mathbb{N}}, \lim_{n \to \infty} u_n = 0\}$ complete for the norm $\|\{u_n\}\|_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$?

2. Is
$$C([0,1],\mathbb{R})$$
 complete for the norm $||f||_1 = \int_0^1 |f(x)| dx$?

Problem 2

Let E and F be Banach spaces. We denote by \mathbb{B} the closed ball of radius 1 in E, that is, $\mathbb{B} = \overline{B_E(0,1)}$. A bounded operator $T \in \mathcal{L}(E, F)$ is said *compact* if $\overline{T(\mathbb{B})}$ is compact.

- 1. Characterize the Banach spaces E such that the identity map Id_E is compact.
- **2.** Assume that $T \in \mathcal{L}(E, F)$ has finite-dimensional range. Prove that T is compact.
- **3.** Let $T \in \mathcal{L}(E, F)$ be compact and assume that the range r(T) of T is closed in F. **a.** Show the existence of $\rho > 0$ such that $B_{r(T)}(0, \rho) \subset T(\mathbb{B})$.
 - **b.** Prove that r(T) is finite-dimensional.
- 4. Integral operators with continuous kernels are compact.

Let $E = (C([0,1]), \|\cdot\|_{\infty})$. For $\kappa \in C([0,1]^2)$, we define a linear map $T: E \longrightarrow E$ by f^1

$$T(f)(x) = \int_0^1 \kappa(x, y) f(y) \, dy$$

- **a.** Prove that T is continuous.
- **b.** Prove that T is compact.

Problem 3

1. Let (E, d) and (F, δ) be metric spaces. Assume *E* complete and consider a sequence $\{f_n\}_{n\geq 1}$ of continuous maps from *E* to *F* that converges pointwise to $f: E \longrightarrow F$.

a. Consider, for $n \ge 1$ and $\varepsilon > 0$, the set

$$F_{n,\varepsilon} = \{x \in E \quad \text{s. t.} \quad \forall p \ge n , \ \delta(f_n(x), f_p(x)) \le \varepsilon\}$$

Show that $\Omega_{\varepsilon} = \bigcup_{n \ge 1} \overset{\mathbf{o}}{F_{n,\varepsilon}}$ is a dense open subset of E.

b. Show that every point $x_0 \in \Omega_{\varepsilon}$ has a neighborhood \mathcal{N} such that

$$\forall x \in \mathcal{N}, \ \delta(f(x_0), f(x)) \le 3\varepsilon.$$

c. Prove that f is continuous at every point of $\Omega = \bigcap_{n \ge 1} \Omega_{\frac{1}{n}}$ and that $\overline{\Omega} = E$.

2. Application: let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Show that its derivative f' is continuous on a dense subset of \mathbb{R} .