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Week 1

Lecture 1. Metrics, norms on a linear space.
Examples: Rn Euclidean, discrete metric, Lp norms (on Rn, RN and (X,µ)).
Semi-norms, pseudo-metrics, separation.
Examples: ‖ · ‖∞ on C(X), C0(X) and Cb(X).
Metric subspaces and metric products. Equivalent metrics.
Fun: Manhattan distance and distance SNCF, ultrametric distances, p-adic norm on Q.

Lecture 2. Isometric spaces.
General topology reminder: topological spaces, neighborhoods, interior, closure, continu-
ous maps, homeomorphisms, compact spaces.
Metric topology: open and closed balls, description of neighborhoods, interior and closure.
B(x, r) 6= Bc(x, r) in general (discrete metric). Equality holds in normed linear spaces.
Sequences in metric spaces: convergence, sequential characterization of closure, of conti-
nuity, compact metric spaces.
Equivalent metrics define the same topology. The converse does not hold: d and min (d, 1)
are topologically equivalent but not equivalent in general.

Fun: quasi-isometries. (Zn QI∼ Rn), (R2,Eucl.)
QI∼ (R2,Manhatt.).

Lecture 3. Cauchy sequences and complete spaces.
For any set X, B(X,R) is complete for ‖ · ‖∞. Generalization to continuous functions
with values in a complete normed linear space.
Non-example: C([0, 1],R) is not complete for ‖ · ‖1.
Lp spaces are complete. A subset of a complete metric space is complete iff it is closed.

Uniform continuity and Lipschitz maps. Example: f 7−→
∫ b
a
f .

Fun: in a complete ultrametric space,
∑
un converges ⇔ limun = 0.

Problem session 1. Distance to a subset and Urysohn’s Lemma.

Study of the distance δ(x, y) =
∣∣∣ 1x − 1

y

∣∣∣ on (0,+∞) and (0, 1]. Topology, completeness.

Solutions presented by: Sam.

Week 2

Lecture 4. Density, separability.
Compact metric spaces are separable.
Completion of a metric space: construction, uniqueness up to a unique isometry.

Lecture 5. Reminder on compact metric spaces: compact ⇔ complete and totally
bounded ⇔ sequentially compact, Extreme Value Theorem.
On a compact, continuous ⇔ uniformly continuous.
In Rn Euclidean, totally bounded ⇔ bounded so compact ⇔ closed and bounded.
Fails in infinite dimension: balls in `2(N) are not totally bounded, hence not compact.
Characterization of compact sets in C(X), X compact (Arzelà-Ascoli):

4



compact ⇔ closed, bounded and equicontinuous.

Lecture 6. Baire Category Theorem: complete metric spaces and locally compact spaces
are Baire spaces.
If a Baire space can be covered by a countably many closed Fn, then

⋃
n F̊n is dense.

Fun: the algebraic closure of Qp is not a Baire space.

Lecture 7. Normed linear spaces: definition, examples, continuity of operations, prod-
ucts and quotients.
Bases: algebraic bases, topological bases, Schauder bases. A normed linear space with a
Schauder basis is separable. The converse holds for Hilbert spaces, not for Banach spaces.
Examples: {δn} is a Schauder basis in `p for 1 < p < ∞, not for p = ∞; {xn} is a
Schauder basis of (C([a, b], ‖ · ‖∞)) by the Weierstrass Approximation Theorem.
Linear maps: equivalent conditions for continuity, basic properties of the operator norm.
In finite dimension, linear maps are bounded. Counterexample: on c00(N) ' R[X].

Week 3

Lecture 8. If E, F are normed spaces, so is L(E,F ), and it is complete if F is.
What should isomorphisms between normed spaces be?
Example: the map defined on c00(N) by Tδn = 1

n
δn is bounded, but its inverse isn’t.

Therefore, we define isomorphisms of normed spaces as linear bicontinuous bijections.
Generalities on Banach spaces: definition, ordinary examples and their duals.
Characterization of Banach spaces: convergence of absolutely convergent series.
Quotients of Banach spaces by closed subspaces are Banach spaces.
Finite dimension: equivalence of norms and corollaries. Riesz Theorem: a normed linear
space has finite dimension if and only if the unit ball is compact.
Countable dimension: a normed space with a countable algebraic basis is not complete.
Separation and completion can be performed in a way that preserves the linear structure.
Incomplete spaces such as c00(N), or more generally Cc(X), can be completed into Banach
spaces. This gives an alternate construction of Lp-spaces, and a useful dense subspace.
Fun: Ostrowski’s Theorem.

Problem session 2. Applications of Arzelà-Ascoli and Baire.
In a normed space, the distance to a finite dimensional subspace is attained.
Compact sets of Hölder maps. A linear space with a countable basis cannot be complete.
If f ∈ C([0,+∞)) satisfies limn→∞ f(nx) = 0 for every x > 0, then limx→∞ f(x) = 0.
Nowhere differentiable continuous functions are uniformly dense in C([0, 1]).
Solutions presented by: Sara, Angelica, Ben.

Lecture 9. Open Mapping Theorem. Consequence: the Bounded Inverse Theorem. If a
linear space is complete for two norms N1 and N2 such that N1 ≤ c ·N2, then N1 ∼ N2.
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Lecture 10. Closed Graph Theorem. Unbounded, closable operators (definitions).
A closed subspace V in a Banach space E has a closed linear complement if and only if
there is a continuous projection E → V .
Uniform Boundedness Principle (Banach-Steinhaus).

Week 4

Lecture 11. Introduction to duality: functions and distributions, after L. Schwartz.
Hyperplanes and linear functionals: hyperplanes in normed spaces are either dense or
closed. Closed hyperplanes are the kernels of bounded linear functionals. E∗ = L(E,K).
Sublinear functionals, analytic Hahn-Banach Theorem.

Lecture 12. Consequences of analytic Hahn-Banach: norm-preserving extensions of
bounded linear functionals, separation of points and closed subspaces, characterization of
the closure of a subspace by the intersection of closed hyperplanes that contain it.
Fun: Dirac notation: bras and kets.

Problem session 3. Closed subspaces of C1 functions in C([0, 1]) are finite-dimensional.
Proof of the Open Mapping Theorem via the Bounded Inverse Theorem.
Continuous bilinear forms on Banach spaces.
Solutions presented by: Kyutae, Sam, Ben.

Lecture 13. Gauge of a convex set. Geometric Hahn-Banach. Density criterion.
Fun: a topology can be defined by its closure operation.

Week 5

Lecture 14. Topology induced by a family of semi-norms: neighborhoods, characteriza-
tions of continuity, metrizability in the countable case.
Weak topology on a normed linear space, weak convergence. The weak topology is Haus-
dorff. Convergence implies weak convergence, weakly convergent sequences in a Banach
space are bounded. For a convex set, weakly closed⇔ closed. Application: non-negativity
and norms are preserved by weak limits in Lp-spaces.
Fun: Fréchet topology on S(R), tempered distributions.

Lecture 15. The map J : x 7−→ evalx is an isometric embedding E −→ E∗∗. A normed
linear space is said reflexive if J is surjective.
Weak-∗ topology on E∗∗, weak-∗ convergence.
Properties when E Banach: the weak-∗ topology is Hausdorff, weaker than the weak
topology on E∗, weak-∗ convergent sequences are bounded, weak-∗ limits of bounded
functionals are bounded. Metrizability of the unit ball in (E∗, w∗) when E is separable.
Alaoglu’s Theorem: the closed unit ball in E∗ is weak-∗ compact.
Kakutani’s Theorem: a Banach space is reflexive iff its closed unit ball is weakly compact
(no proof).
Fun: differentiation of tempered distributions, Sobolev spaces.
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Midterm 1. (c0(N), ‖ · ‖∞) is complete, (C([0, 1]), ‖ · ‖1) isn’t.
2. Compact operators between Banach spaces, integral operators with continuous kernel.
3. Pointwise limits of continuous maps on a Banach space are continuous on a dense subset.

Lecture 16. Introduction to Banach algebras. Motivation: how to invert 1 − a in an
algebra? Case of a nilpotent in Mn(C), case of |a| < 1 in C.
; In what algebras can we make sense of power series such as

∑
n≥0 a

n?
Definition of Banach algebras. Examples: C, Mn(C), L(E) with E Banach, C(X) with X
compact, C0(X) with X locally compact, L1(R) with convolution, `1(Z) with convolution.
Topological groups. Existence and uniqueness of a Haar measure (no proof).
Examples: (R,+), (Z,+), (R×+,×), R× nR sitting in SL(2,R).
Convolution on a locally compact group, (L1(G, dµHaar), ∗) is a Banach algebra.

Week 6

Lecture 17. Observe that C(X) with X compact is unital while C0(X) with X locally
compact isn’t. If X̃ is the Alexandrov compactification of X, then C(X̃) ' C0(X)⊕C.1.
Unitalization of non-unital Banach algebra: A1 = A⊕C, unique one with codimension 1.
If ‖1−x‖ < 1, then x is invertible, invertibles form an open subset, inversion is continuous.
Spectrum, resolvent of an element. Examples: in A = C(X), SpA(f) = f(X);
in A = Mn(C), SpA(M) = {eigenvalues of M}. Working in C guarantees SpA(M) 6= ∅.
Interlude: Banach-valued analytic functions, Banach-valued Liouville Theorem.
The spectrum is always non-empty and compact; SpA(a) ⊂ D(0, ‖a‖) and z 7−→ (z−a)−1

is analytic on the resolvent of a.

Lecture 18. Spectral radius, Spectral Radius Formula: r(a) = limn→∞ ‖an‖
1
n .

Gelfand-Mazur Theorem: if every a 6= 0 is invertible in A Banach algebra, then A ' C.
Ideals in Banach algebras: the closure of a proper ideal is proper, maximal ideals are
closed, every proper ideal is contained in a maximal one. Quotients of Banach algebras
by closed proper ideals are Banach algebras, unitality is preserved.
Maximal ideals in A are in bijection with non-zero homomorphisms, −→ C via kernels.
Such homomorphisms satisfy ‖h‖ = 1, so their set ΣA is included in the unit ball of A∗.
The maximal ideal space (or spectrum) ΣA is w-∗ compact and SpA(a) = {h(a), h ∈ ΣA}.
Case of A = C(K): the map x 7→ δx gives a homeomorphism between K and ΣC(K).

Problem session 4. Discussion of the midterm, duality.
Weakly continuous linear maps between Banach spaces are continuous.
‘Optimality’ of Hahn-Banach: closed convex subsets in `1(N) that cannot be separated.
The dual of `p(N) is `q(N). Use of the Hölder Inequality, finitely supported sequences.
The inclusion `1(N) ⊂ (`∞(N))∗ is strict.
Solutions presented by: Melanie.

Lecture 19. The Gelfand Transform G : a 7→ evala is a continuous algebra homomor-
phism A −→ C0(ΣA) such that ‖G (a)‖∞ = r(a) and its kernel is the radical of A:
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Rad(A) =
⋂

J max. ideal

J .

The Gelfand Transform is G : A −→ C0(ΣA) is an isomorphism if A is an algebra of
functions. What about other (abelian) cases?
Example: heuristic determination of ΣA for A = (L1(R), ∗): functionals of the form
hξ : f 7→

∫
R f(x)eiξxdx are in ΣA. The map ξ 7→ hξ is actually surjective and the Gelfand

Transform on L1(R) is the Fourier transform L1(Rx) −→ C0(Rξ). What about G LCA?
Abstract C∗-algebras: definition. It generalizes (C,+,×) with the complex conjugation.

Examples: Mn(C) with A∗ = tA, C0(X) with f ∗(x) = f(x).

Non-example: (L1(G), ∗) for G unimodular with f ∗(g) = f(g−1) is an involutive Banach
algebra, but the C∗-condition ‖a∗a‖ = ‖a‖2 is not satisfied. (Counter-example!)

Week 7

Lecture 20. Properties of C∗-algebras: the involution is isometric, hermitian, normal
and uitary elements. Every a in A has a unique expression a = a1 + ia2 with a1, a2
hermitian and a is normal iff they commute.
Unitalization: A1 = A⊕ C, spectrum in non-unital algebras: Sp′A(a) = SpA1

(a).
Morphisms of C∗-algebras: ∗-morphisms, no continuity assumption.
If a is unitary, then ‖a‖ = 1; if a is hermitian, then ‖a‖ = r(a). Corollaries: morphisms
of C∗-algebras are automatically continuous, with norm ≤ 1; in a C∗-algebra, the norm is
determined by the spectral radius: ‖a‖ =

√
r(a∗a) for all a in A.

Hermitian elements have real spectrum.

Lecture 21. Gelfand-Naimark Theorem: a commutative C∗-algebra A is isometrically
isomorphic to C0(ΣA) via the Gelfand Transform (Using Stone-Weierstrass without proof).
Continuous functional calculus in C∗-algebras (no proof). Properties: if f is real-valued
then f(a) hermitian; if f is T-valued, then f(a) unitary.
Spectral Mapping Theorem: Sp(f(a)) = f(Sp(a)).
Fun: what are C∗-algebras good for? Overview of NCG, irrational foliation of T2.

Problem session 5. Let E be a Banach space. A sequence in E∗ is weakly convergent
if and only if it is bounded and converges pointwise on a dense subset.
Example of a weakly convergent but not convergent sequence: sin(n·) in L2([a, b]).
Some properties of the inclusion L1(R) ⊂ C0(R)∗.
Solutions presented by: Angelica, Sam.

Lecture 22. Inner products, examples, Cauchy-Schwarz Inequality, polarization identity,
Hilbert space, completion of a pre-Hilbert space.
Orthogonality, orthogonal of a subset, Pythagorean Theorem, Parallelogram Law.
Distance to a closed convex, orthogonal projection onto a closed subspace.
Fun: let G y X be a group action such that all the orbits are infinite. Prove that G
separates the finite subsets of X.
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Week 8

Lecture 23. Properties of the orthogonal projection pK on a closed subspace K in a
Hilbert H: linearity, idempotence, kernel and range. Corollaries: pK⊥ = 1− pK, (K⊥)⊥ =
K, orthogonal complement: K ⊕K⊥ = H. For any subset A ⊂ H, (A⊥)⊥ = span(A).
Density criterion: a linear subspace is dense if and only if its orthogonal is {0}.
Riesz Representation Theorem: bounded linear functionals on a Hilbert space are of the
form x 7→ 〈·, x0〉. This gives a conjugate linear isometry H ' H∗.
Corollary: norm-preserving extensions of bounded linear functionals.
Hilbert bases: maximal orthonormal families. Existence by Zorn. In a separable Hilbert
space, orthonormal families are countable. For F = {en}n≥1 orthonormal sequence,∑

n≥1 |〈x, en〉|2 ≤ ‖x‖2 (Bessel’s Inequality) and
∑

n≥1〈x, en〉en converges to the projec-
tion of x on span(F). Characterization of Hilbert bases, including Parseval’s Identity∑

n≥1 |〈x, en〉|2 = ‖x‖2.

Lecture 24. Linear maps between inner-product spaces preserve norms if and only if
they preserve inner-products. Unitary isomorphisms.
Example of non-surjective isometric embedding: the unilateral shift on `2(N).
All separable Hilbert spaces are isometrically isomorphic. Example: if ν << µ on X and
ϕ = dµ

dν
is the Radon-Nykodim derivative, then L2(X,µ) ' L2(X, ν) via f 7→ √ϕf .

Bounded sesquilinear forms are of the form u(x1, x2) = 〈Ax1, x2〉2 = 〈x1, Bx2〉1.
The operators A and B are the adjoint of each other. Properties of A 7→ A∗.
Characterisation of isometric embeddings and isometries in terms of adjoints (no proof).
Exercise: for A in B(H), kerA = (ranA∗)⊥ and kerA∗ = (ranA)⊥.
A bounded operator A on H is self-adjoint if and only if 〈Ax, x〉 ∈ R for all x ∈ H.
If A ∈ B(H) is self-adjoint, then ‖A‖ = sup‖x‖=1 |〈Ax, x〉|.
Consequence: B(H) is a C∗-algebra. So is every closed ∗-subalgebra of B(H).
Gelfand-Naimark-Segal Theorem: every C∗-algebra arises in this way. C∗-algebras are
operator algebras.

Problem session 6. Positive elements in C∗-algebras.
Elements of noncommutative topology: unitality, ideals, quotients, connected compo-
nents.
Solutions presented by: Melanie, Sara.

Lecture 25. Fourier series: motivation (wave equation), definitions.
L2-theory: {ein·}n∈Z is a Hilbert basis of L2([0, 2π], λ

2π
).

Consequences: Bessel, Parseval, mean-square convergence.
Overview of known results: Dirichlet, Fejér, Carleson, Hunt.
Dirichlet and Fejér method: partial sums of Fourier series are given by good kernels.

Week 9

Lecture 26. Observation: f̂ ∗ g(n) = f̂(n)ĝ(n).
Unitary representations of locally compact groups. Examples: standard representation of
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U(n), characters χn of R/2πZ, left regular representation λG, trivial representation.
Orthogonal complements, irreducible representations. Intertwiners, unitary equivalences.
Schur’s Lemma (finite dimensional proof). A representation is irreducible if and only if it
has no non-scalar self-intertwiners (finite dimensional proof).
Corollary: irreducible representations of abelian groups are 1-dimensional.
If G is locally compact abelian, Ĝ is the set of unitary characters, i.e. continuous multi-
plicative maps χ : G −→ T. Determination of R̂ and T̂. Fourier Transform on L1(G).

Problem session 7. Gram-Schmidt orthonormalization, orthogonal polynomials, a
group acting on a discrete set with infinite orbits separates finite subsets.
Solutions presented by: Ben, Angelica.

Lecture 27. Plancherel formula for locally compact abelian groups, Fourier inversion:

f(g) =

∫
Ĝ

(χ∗f)(g) dχ for ‘good’ functions on G. Generalization to compact (Peter-Weyl)

and reductive groups (Harish-Chandra).
Unitary representations of G and non-degenerate representations of L1(G), the reduced
norm. Reduced C∗-algebra of locally compact groups. Abelian case: determination of the
spectrum of L1(G), relation between Gelfand and Fourier transformations.

For G locally compact abelian group, C∗r(G) = C0(Ĝ).

Problem session 8. (Homework) Pointwise and uniform convergence of Fourier series
under regularity assumptions: (piecewise) continuity, piecewise C1 class. Application to
the determination of sums of series. Existence of divergent Fourier series as a consequence
of The Uniform Boundedness Principle.

- End of the course -
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Problem set 1: Metric spaces

1. Distance to a subset and metric Urysohn’s Lemma

Let (E, d) be a metric space. For any subset A ⊂ E and any point x ∈ E, the
distance between x and A is defined by

d(x,A) = inf
a∈A

d(x, a).

(1) Show that d(x,A) = d(x, Ā).

(2) Show that d(·, A) is 1-Lipschitz.

(3) Let A and B be disjoint closed subsets of E. Prove the existence of a
continuous function f : E −→ R such that:
(a) 0 ≤ f(x) ≤ 1 for all x ∈ E;
(b) f(x) = 0 for all x ∈ A;
(c) f(x) = 1 for all x ∈ B.

Solution.

(1) Observe that A ⊂ Ā so d(x,A) ≥ d(x, Ā). For the other inequality, consider α in
Ā. There exists a sequence {an} ∈ AN that converges to α. Given x fixed, the
function d(x, ·) is continuous so lim

n→∞
d(x, an) = d(x, α). Since d(x, an) ≥ d(x,A)

for every n, it follows that d(x, α) ≥ d(x,A). This is true for every α in Ā so
d(x, Ā) ≥ d(x,A).

(2) For x, y ∈ E and a ∈ A, the triangle inequality and the definition of d(x,A)
imply that d(x,A) ≤ d(x, y) + d(y, a). This is true for every a ∈ A so d(x,A) ≤
d(x, y)+d(y, A) and we get d(x,A)−d(y, A) ≤ d(x, y). The same argument gives
d(y, A)− d(x,A) ≤ d(x, y) hence the result.

(3) Consider x 7−→ d(x,A)

d(x,A) + d(x,B)
.
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Problem 2. Completeness is not a topological property

Let E = (0,+∞) and for x, y ∈ E, consider δ(x, y) =

∣∣∣∣1x − 1

y

∣∣∣∣.
(1) Prove that δ is a distance on E and that it induces the same topology

as the Euclidean distance d.

(2) Is the map x 7→ x−1 uniformly continuous between (E, d) to itself ? As
a map from (E, d) to (E, δ)?

(3) Is (E, δ) complete ? What about ((0, 1], d) and ((0, 1], δ) ?

Solution.

(1) Method 1 : prove that every open d-ball contains a δ-ball with the same center
and vice versa.
Method 2 : prove that (E, d)

Id−→ (E, δ) is a homeomorphism. To see this, it is

convenient to decompose the identity map as (E, d)
ϕ−→ (E, d)

ϕ−→ (E, δ) where
ϕ(x) = x−1 and prove that both are homeomorphisms. Note that both methods
boil down to the fact that ϕ is a homeomorphism from (E, d or δ) to (E, d or δ).

(2) No. Yes.

(3) No: un = n is Cauchy but it does not converge (argue by contradiction). No: it is
not closed in (R, d). Alternatively, consider un = 1

n
, Cauchy but not convergent

in (0, 1].
Yes. Method 1 : show that a Cauchy sequence {un} for δ is also Cauchy for d
hence converges for d in the closure of (0, 1]. If the d-limit is > 0, it is also
the δ-limit because d and δ induce the same topology (or check it directly with
balls) so the sequence converges. Assume the limit is 0. Then δ(1, un) diverges
to +∞ so {un} is not bounded which is impossible since it is Cauchy. Method
2 : x 7→ x−1 is an isometry (hence uniformly continuous) between ((0, 1], δ) and
([1,+∞), d), which is closed in (R, d) complete, so is complete.

12



Problem 3. The Banach Contraction Principle

Let (E, d) be a complete metric space and f : E −→ E.

(1) Show that if f is k-Lipschitz with k < 1, the equation f(x) = x has a
unique solution in E.

(2) Show that if E is compact, it is enough to have d(f(x), f(y)) < d(x, y) for
all x, y to obtain the same result.

Solution.

(1) Think triangle inequality and geometric series.

(2) The real-valued function x 7→ d(x, f(x)) is continuous on a compact set so it is
bounded and the extrema are attained.

Problem 4. Completeness of `2(N)

Show that the set of sequences U = {un} such that
∑
n≥0

|un|2 converges is com-

plete for the norm ‖U‖2 =

(
∞∑
n=0

|un|2
) 1

2

.

Solution.
The skeleton of the proof we studied for the space of bounded functions with values in a
complete space carries over.

Problem 5. Cantor’s Intersection Theorem

Let (E, d) be a metric space and A ⊂ E a non-empty subset. The diameter of
A is defined by

diam(A) = sup
x,y∈A

d(x, y).

Prove that E is complete if and only if for every decreasing sequence {Fn}n∈N
of closed subsets of E such that lim

n→∞
diam(Fn) = 0, there is a point x such that⋂

n∈N

Fn = {x}.

Solution.
See Section 9.4 of [Royden-Fitzpatrick].
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Problem 6. Characterizations of compactness for metric spaces

Let (E, d) be a metric space. Prove that the following conditions are equivalent.

(1) E has the Borel-Lebesgue property, i.e. is topologically compact.

(2) If F is a family of closed subsets of E such that every subfamily has

nonempty intersection, then
⋂
F∈F

F 6= ∅.

(3) E is complete and totally bounded i.e. can be covered by finitely many
open balls of radius ε, for any ε > 0.

(4) E has the Bolzano-Weierstrass property, i.e. is sequentially compact.

Solution.
The equivalence between (i) and (ii) holds in topological (non-necessarily metric) spaces.
See Propositions 17, 18 and 19 in Section 9.5 of [Royden-Fitzpatrick] for the rest.
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Problem set 2: Applications of the Arzelà-Ascoli and the Baire Theorems

Problem 1. Hölder maps

A function f ∈ C([0, 1],R) is said to be α-Hölder if

hα(f) = sup
x 6=y

|f(x)− f(y)|
|x− y|α

is finite. For M > 0 and 0 < α ≤ 1, denote

Hα,M = {f ∈ C([0, 1],R) , hα(f) ≤M and ‖f‖∞ ≤M} .
Prove that Hα,M is compact in (C([0, 1],R), ‖ · ‖∞).

Solution.
The Arzelà-Ascoli Theorem implies that it suffices to check that Hα,M is closed, bounded
and equicontinuous. The set in question is the intersection of the closed ball Bc(0,M) and
F = {f ∈ C([0, 1]) , hα(f) ≤M}, so it is automatically bounded and it is enough to check
that F is closed. To do so, consider a sequence {fn} of functions in F , that converges

to f in C([0, 1]). The pointwise convergence of the sequence implies that |f(x)−f(y)||x−y|α ≤ M

for every x 6= y so F is closed. To establish equicontinuity, let ε > 0 and verify that

δ =
(
ε
M

) 1
α is an appropriate modulus of continuity.

Problem 2. Show that a normed linear space over R that has a countable
algebraic basis cannot be complete.

Solution.
Let E be a normed space with an algebraic basis {ei}i∈N and Fn = span(e1, . . . , en). Each
Fn is finite-dimensional, hence closed. Moreover, if Fn contained an open ball of radius
r > 0 it would also contain B(0, r), which generates E, so E would be contained in Fn.
Therefore, each Fn has empty interior and Baire’s Theorem ensures that

⋃
n≥1 Fn has

empty interior too, which contradicts the fact that
⋃
n≥1 Fn = E.

Problem 3. Let f : [0,+∞) −→ R be continuous and assume that for all x > 0,

lim
n→∞

f(nx) = 0.

Prove that lim
x→∞

f(x) = 0.

Hint: for ε > 0 and n ∈ N, consider Fn,ε = {x ≥ 0 , ∀p ≥ n , |f(px)| ≤ ε}.

Solution.
Each Fn,ε is closed as the intersection of inverse images of the closed subset [0, ε] of R
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by the continuous functions f(p ·) for p ∈ N, p ≥ n. The hypothesis on f implies that
(0,+∞) ⊂

⋃
n≥1 Fn. Being locally compact, (0,+∞) is a Baire space so that there exists

n0 ∈ N such that F̊n0 6= ∅.
In other words, there exist 0 < α < β such that (α, β) ⊂ Fn0 , which means that

∀x ∈ (α, β) , ∀p ≥ n0 , |f(px)| ≤ ε.

The result then follows from the fact that, for p large enough, the intervals (pα, pβ)
overlap. More precisely, the condition (p + 1)α < pβ is equivalent to p > α

β−α so that if

N > max(n0,
α

β−α), one has |f(x)| ≤ ε for x in
⋃
p≥N

(pα, pβ) = (Nα,+∞).

Problem 4. Show that nowhere differentiable functions are dense in E =
C([0, 1],R) equipped with its ordinary norm.

Hint: consider, for ε > 0 and n ∈ N,

Un,ε =

{
f ∈ E , ∀x ∈ [0, 1] , ∃y ∈ [0, 1] , |x− y| < ε and

∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ > n

}
.

Solution.
We first prove that each set Un,ε is open because its complement U c

n,ε is closed. Observe
that

U c
n,ε =

{
f ∈ E , ∃x ∈ [0, 1] , ∀y ∈ [0, 1] , |x− y| < ε⇒

∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ≤ n

}
.

and let {fk} be a sequence in U c
n,ε that converges to f in E. For each k, there exists

xk ∈ [0, 1] such that |xk − y| < ε ⇒
∣∣∣f(y)−f(xk)y−xk

∣∣∣ ≤ n. Since [0, 1] is compact, {xk} has a

convergent subsequence {xϕ(k)}. Denote x its limit and let y in [0, 1] be such that 0 <

|x−y| < ε. For k large enough, one has 0 < |xϕ(k)−y| < ε so that
∣∣∣fϕ(k)(y)−fϕ(k)(xϕ(k))y−xϕ(k)

∣∣∣ ≤ n

and the uniform convergence fϕ(k) → f implies that

∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ≤ n, so that f belongs

to U c
n,ε.

Now we prove that Un,ε is dense in E. Polynomials are dense in E, so it suffices to
prove that functions of class C1 can be approximated by elements of Un,ε.
For p ≥ 1 integer, let vp be a continuous function on [0, 1], affine on each interval[
k

2p
,
k + 1

2p

]
and such that vp

(
k
2p

)
= 0 (resp. = 1) if k is even (resp. odd). Let f

be a function of class C1 on [0, 1] and gp = f + λvp. By construction, ‖f − gp‖∞ ≤ λ so
gp can be chosen arbitrarily close to f .
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If x 6= y in [0, 1], then∣∣∣∣gp(x)− gp(y)

x− y

∣∣∣∣ ≥ λ

∣∣∣∣vp(x)− vp(y)

x− y

∣∣∣∣− ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣
≥ λ

∣∣∣∣vp(x)− vp(y)

x− y

∣∣∣∣− ‖f ′‖∞.
Let p >

1

2λ
(n + ‖f ′‖∞). For any x ∈ [0, 1], there exists y ∈ [0, 1] within ε of x and in

the same interval
[
k
2p
, k+1

2p

]
. By definition of vp, the latter implies that

∣∣∣vp(x)−vp(y)x−y

∣∣∣ = 2p.

Then ∣∣∣∣gp(x)− gp(y)

x− y

∣∣∣∣ ≥ 2pλ− ‖f ′‖∞ > n

so that gp ∈ Un,ε.

The Baire Category Theorem ensures that U =
⋂
n≥1 U 1

n
,n is dense in E. Let f ∈ U and

x ∈ [0, 1]. Then there is a sequence {xn} such that 0 < |xn − x| < 1
n

and
∣∣∣f(xn)−f(y)xn−y

∣∣∣ > n,

which prevents f from being differentiable at x.
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Problem set 3: Linear operators on Banach spaces

Problem 1. Let E be the space C([0, 1]) equipped with ‖ · ‖∞. If f is differen-
tiable, we write D(f) = f ′.

(1) Let F be a closed subspace of E that is included in C1([0, 1]).
(a) Show that D : F −→ E is Lipschitz.
(b) Prove that F is finite dimensional.

(2) Let G = (C1([0, 1]), ‖ · ‖∞).
(a) Show that D : G −→ E is closed.
(b) Is it continuous?

Hints: 1.(a) Study the graph of D. - 1.(b) Study the unit ball of F .

Solution.

(1) (a) Both E and F are Banach spaces and D is linear so by the Closed Graph
Theorem, it suffices to prove that D is closed. Let {fn} be a sequence in
F such that fn and Dfn = f ′n converge, say to f and g respectively. This
means that fn → f and f ′n → g uniformly, which implies that f ′ = g, so
that (f, g) belongs to the graph of D, which is therefore continuous, hence
Lipschitz.

(b) By Riesz’s Theorem, it is enough to prove that the closed unit ball in F
is compact. It is bounded by definition and closed in E = C([0, 1]) so, it
suffices to prove that it is equicontinuous. Let C be a Lipschitz constant
for D. Then ‖f ′‖∞ ≤ C‖f‖∞ ≤ C for all f in the unit ball of F , which is
therefore uniformly equicontinuous.

(2) (a) This was already done in 1.(a): take F = G.

(b) No: consider the sequence {fn : x 7−→ xn} in the unit ball of G and its image
under D. Note that this does not contradict the Closed Graph Theorem,
since G is not closed in E and therefore not complete.
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Problem 2. Let E be a normed linear space, F a closed subspace of E and

π : E −→ E/F

the natural surjection.

(1) Let x ∈ E and r > 0. Show that π(B(x, r)) = B(π(x), r).

(2) Let U ⊂ E/F . Prove that U is open if and only if π−1(U) is open in E.

(3) Prove that π is an open map.

(4) Derive the Open Mapping Theorem from the Bounded Inverse Theo-
rem.

Solution.

(1) First, observe that translations are isometries that commute to π so we may
assume x = 0. The surjection π is 1-Lipschitz by definition of the norm on E/F
so π(B(0, r)) ⊂ B(π(0), r).
Conversely, assume that y ∈ E/F has norm < r. Choose x ∈ E such that π(x) =
y. Then ‖y‖ = infv∈F ‖x + v‖ < r so there exists v ∈ F such that ‖x + v‖ < r
and y has a preimage in B(0, r), which means that B(π(0), r) ⊂ π(B(0, r)).

(2) Again, π being 1-Lipschitz, it is continuous, which implies that if U is open in
E/F , then π−1(U) is open in E.
For the converse, assume that π−1(U) is open in E and let y ∈ U , with preimage
x ∈ E. Since π−1(U) is open and contains x, there exists r > 0 such that
B(x, r) ⊂ π−1(U).
By the result of the previous question, U = π(π−1(U)) contains the ball B(y, r)
so it is a neighborhood of y.

(3) Let U be open in F . By the result of the previous question, in order to prove
that π(U) is open in E/F , it suffices to prove that π−1(π(U)) is open in E, which
follows from the observation that π−1(π(U)) = U + F =

⋃
v∈F U + v.

(4) Let T : E −→ F be a surjective continuous linear map between Banach spaces.
Consider the induced map T̃ : E/ kerT −→ F . Apply the Bounded Inverse
Theorem to T̃ and conclude by noticing that T = T̃ ◦ π.
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Problem 3. Bilinear maps. Let E1, E2 and F be normed linear spaces and
equip E1 × E2 with the norm ‖(x, y)‖ = max(‖x‖, ‖y‖). A map B : E1 × E2 −→ F
is said bilinear if all the maps

Λx : E2 −→ F
y 7−→ B(x, y)

and
Py : E1 −→ F

x 7−→ B(x, y)

are linear. Moreover, B is said

- separately continuous if all the maps Λx and Py are continuous;
- bounded if

‖B‖ := sup {‖B(x, y)‖ , x ∈ E1 , y ∈ E2 , ‖x‖ ≤ 1 , ‖y‖ ≤ 1} <∞.

(1) Show that the statements
(a) B is bounded.
(b) There exists a constant C ≥ 0 such that ‖B(x, y)‖ ≤ C‖x‖‖y‖ for all

(x, y) in E1 × E2.
(c) B is continuous.
(d) B is continuous at (0, 0).
are equivalent and that if they hold, ‖B‖ is the smallest C in (b).

Recall that the set of bounded linear maps between linear spaces E and F is
denoted by L(E,F ). The set of bounded bilinear maps from E1 × E2 to F will
be denoted by B(E1 × E2, F ).

(2) Let E and F be normed linear spaces. Show that the map

β : L(E,F )× E −→ F
(T, x) 7−→ T (x)

is in B (L(E,F )× E,F ) and that ‖β‖ ≤ 1.

(3) Let E, F and G be normed linear spaces. Show that the map

γ : L(F,G)× L(E,F ) −→ L(E,G)
(S, T ) 7−→ S ◦ T

is in B (L(F,G)× L(E,F ),L(E,G)) and that ‖γ‖ ≤ 1.

(4) Show that B(E1 × E2, F ) equipped with the pointwise operations and
‖ · ‖ defined above is a normed linear space.

(5) (a) Show that B(E1×E2, F ) is isometrically isomorphic to L (E1,L(E2, F )).
(b) What can be said of B(E1 × E2, F ) if F is a Banach space?

(6) Assume that E1 and E2 are Banach spaces. Show that a bilinear map
B : E1 × E2 −→ F is bounded if and only if it is separately continuous.
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(7) Consider E = R[X] equipped with the norm ‖P‖ =

∫ 1

0

|P̃ (x)| dx where

P̃ is the function associated with the polynomial P . Show that the

bilinear map α defined on E×E by α(P,Q) =

∫ 1

0

P̃ (x)Q̃(x) dx is separately

continuous but not bounded.

Solution.
The equivalences in 1. and the statement in 4. can be proved in the same fashion as the
analogous ones in the case of linear maps. The results in 2. and 3. are direct consequences
of the properties of the operator norm.

(5) (a) Consider the map x 7−→ Λx.

(b) It is a Banach space.

(6) The implication (bounded ⇒ separately continuous) is trivial. Conversely, as-
sume B separately continuous and fix x in E1 with ‖x‖ ≤ 1. Then |Λx(y)| =
|B(x, y)| ≤ ‖Py‖ for all y in E2. By the Uniform Boundedness Principle, the
family {Λx , ‖x‖ ≤ 1} is bounded in L(E2,R) so there exists a constant C such
that |B(x, y)| = |Λx(y)| ≤ C for all x, y in the closed unit ball of E1 × E2. Note
that it suffices to assume only one of the Ei to be complete for the argument to
work.

(7) Separate continuity follows from the fact that ‖ΛP‖ ≤ ‖P‖∞ and the symme-
try of α. For n ≥ 1, the polynomial nXn lies on the unit sphere of E and

α(nXn, nXn) =
n2

2n+ 1
→
n→∞

+∞ so α is not bounded.
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Problem set 4: Duality

Problem 1. Let E and F be Banach spaces and T : E −→ F a linear map such
that

∀ϕ ∈ F ∗ , ϕ ◦ T ∈ E∗.
Prove that T is bounded.

Solution.
By the Closed Graph Theorem, it is enough to consider a sequence {(xn, Txn)}n∈N that
converges to (x, y) in E × F and to prove that Tx = y. Let ϕ ∈ F ∗. The continuity of ϕ
and that of ϕ ◦ T imply that ϕ(Tx) = ϕ(y) for all ϕ ∈ F ∗. By Hahn-Banach, this implies
that Tx = y.

Problem 2. Closed convex sets that cannot be separated.
Let E0 and F be the subsets of `1(N) defined by

E0 =
{
u ∈ `1(N) , ∀n ≥ 0 , u2n = 0

}
and

F =
{
u ∈ `1(N) , ∀n ≥ 1 , u2n = 2−nu2n−1

}
.

(1) Verify that E0 and F are closed subspaces and that E0 + F = `1(N).

(2) Let v be the sequence defined by v2n = 2−n and v2n−1 = 0.

(a) Verify that v is in `1(N) and that v /∈ E0 + F .

(b) Let E = E0 − v. Prove that E and F are closed disjoint convex
subsets of `1(N) that cannot be separated in the sense that there
exists no couple (ϕ, α) ∈ (`1(N))∗ × R such that ϕ 6= 0 and

ϕ(e) ≤ α ≤ ϕ(f)

for all e ∈ E, f ∈ F .

Hints: 1. Finitely supported sequences are dense in `1(N). (See 4.(a) in Prob. 3.)
2.(b) What can be said of a functional that remains bounded on a linear subspace?
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Solution.

(1) Both spaces can be written as intersections of kernels of bounded linear func-
tionals so they are closed. To prove the density of the sum, it suffices to prove
that it contains all finitely supported sequences. Let u be a sequence supported
on {0, 1, . . . , p}, that is, un = 0 for n > p. Then let e and f be defined by{
e2n = 0 e2n−1 = u2n−1 − 2nu2n
f2n = u2n f2n−1 = 2nu2n

and observe that u = e+ f .

(2) (a) Assume that v = e + f with e ∈ E0 and f ∈ F . Then, e2n−1 = −1 and
f2n−1 = 1 for all n ≥ 1 which contradicts e and f being in `1(N).

(b) If there was a separating couple (ϕ, α), then ϕ would be bounded above
by α + ϕ(v) on E0 and bounded below by α on F . Since they are linear
subspaces, it means that ϕ would vanish on both hence on the sum. Since
the latter is dense in `1(N) and ϕ assumed continuous, this implies ϕ = 0.

Problem 3. Dual of `p(N).

In this problem, we assume the sequences to be real-valued. Let p ∈ [1,+∞)
and denote by q the only element of (1,+∞] such that

1

p
+

1

q
= 1.

The purpose of this problem is to identify `p(N)∗ with `q(N).
To this end, we shall prove that the map Φ defined on `q by

Φ(u)v =
∑
n≥0

unvn

is an isometry.

(1) Verify that Φ(u) is a linear functional on `p(N) for each u ∈ `q(N) and
that Φ is linear.

(2) Let u ∈ `q(N). Prove that Φ(u) ∈ `p(N)∗ and that ‖Φ(u)‖ ≤ ‖u‖q.

(3) Let u ∈ `q(N) be fixed.

(a) Assume p > 1. Verify that the sequence v defined by

vn = ‖u‖1−qq sign(un) |un|q−1

is in `p and compute Φ(u)v.
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(b) Let p = 1. For ε > 0, find v on the unit sphere of `1(N) such that
|Φ(u)v| > ‖u‖∞ − ε.

(c) What have we proved so far?

(4) (a) Prove that finitely supported sequences are dense in `p(N) for p ≥ 1.

(b) Does the result hold in `∞(N)?

(5) For n ∈ N, define the sequence en by enk = δk,n, that is en = {
n︷ ︸︸ ︷

0, 0, . . . , 0, 1, 0, 0, . . .}.
Let ϕ ∈ `p(N)∗ and γn = ϕ(en). For N ∈ N, define a sequence δN by

δN = {γ0|γ0|q−2, γ1|γ1|q−2, . . . , γN |γN |q−2, 0, 0, . . .}.

(a) Compute ϕ(δN).

(b) Prove that
N∑
n=0

|γn|q ≤ ‖ϕ‖

(
N∑
n=0

|γn|q
) 1

p

.

(c) Deduce that the N-truncation of the sequence γ = {γn}n∈N has norm
less than ‖ϕ‖ in `q(N).

(d) Conclude that γ is in `q(N).

(6) Verify that ϕ(u) = Φ(γ)(u) if u is finitely supported and conclude.

(7) Prove the existence of a bounded linear functional on `∞(N) that is not
of the form Φ(u) with u ∈ `1(N).
Hint: consider the subspace C of convergent sequences and study the
map λ : v 7→ lim

n→∞
vn.

Solution.
1. and 2. follow from the definitions and the Hölder Inequality.

(3) (a) Note that 1
q−1 = p

q
. Direct computations show that ‖v‖p = 1 and that

Φ(u)v = ‖u‖q.

(b) Let n0 ∈ N be such that |un0| > ‖u‖∞ − ε and define v by vn = δn,n0 .

(c) For each u ∈ `q(N), the linear functional Φ(u) is bounded on `p(N) and its
operator norm is ‖u‖q. Therefore, Φ is an isometric embedding of `q(N) into
`p(N)∗ and all is left to prove is surjectivity.

(4) (a) If p is finite, every sequence in `p(N) is the limit of its truncations.
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(b) No: non-zero constant sequences are not ‖ · ‖∞-limits of finitely supported
sequences.

(5) (a) Observe that δN =
∑N

n=0 γn|γn|q−2 en so by linearity,

ϕ(δN) =
N∑
n=0

γn|γn|q−2 ϕ(en)︸ ︷︷ ︸
=γn

=
N∑
n=0

|γn|q.

(b) Since ϕ is continuous, the inequality |ϕ(δN)| ≤ ‖ϕ‖ ‖δN‖p becomes

N∑
n=0

|γn|q ≤ ‖ϕ‖

(
N∑
n=0

|γn|(q−1)p
) 1

p

= ‖ϕ‖

(
N∑
n=0

|γn|q
) 1

p

.

(c) If γN denote the N -truncation of γ, the previous inequality reads

‖γN‖qq ≤ ‖ϕ‖ ‖γN‖
q
p
q

that is, ‖γN‖
q− q

p
q ≤ ‖ϕ‖. Note that q − q

p
= 1 to conclude.

(d) The bound on ‖γN‖q is independent of the order of the truncation N so,
letting N →∞, we see that ‖γ‖q ≤ ‖ϕ‖ <∞.

(6) The identity ϕ(u) = Φ(γ)(u) for finitely supported u is a direct consequence of the
definition of γ. Since ϕ and Φ(γ) are continuous and coincide on a dense subspace,
they must be equal, so ϕ is in the range of Φ, which is therefore surjective. The
argument (and the result!) fail for p =∞ as we shall see in the next question.

(7) Observe that the linear functional λ is continuous on C with ‖λ‖ = 1. By Hahn-
Banach, it extends to a bounded linear functional Λ on `∞(N), with ‖Λ‖ = 1.
Assume that Λ can be represented by u ∈ `1(N), that is Λ(v) = Φ(u)v for all
v ∈ `∞(N). Then, with the notation of question 5., we get un = Φ(u)en =
Λ(en) = λ(en) = 0 for all n ≥ 0, so u = 0 hence λ = 0, which is excluded since
‖λ‖ = 1.

25



Problem set 5: Weak topologies

Problem 1.

Let E a Banach space, D a dense subset, {ϕn}n∈N a sequence in E∗ and ϕ ∈ E∗.

(1) Prove that ϕn
w∗−→

n→∞
ϕ⇔

{
{ϕn}n∈N is bounded and
∀x ∈ D , 〈ϕn, x〉 −→

n→∞
〈ϕ, x〉 .

(2) Can the boundedness assumption on {ϕn}n∈N be removed?

Solution.

(1) (⇒) The Uniform Boundedness principle implies that w∗-convergent sequences
are bounded. (⇐) Since the sequence {ϕn}n∈N is bounded, Alaoglu’s Theorem
implies the existence of a subsequence that converges to some ψ ∈ E∗, which, by
the other assumption, coincides with ϕ on a dense subset.

(2) No. Consider for instance E = c0(N), with dense subset D the subspace of finitely
supported sequences and ϕn = n · evaln. Then ϕn converges to 0 pointwise on D
but not on E.

Problem 2. For n ≥ 1 and a ≤ x ≤ b, let fn(x) = sin(nx).

(1) Prove that the sequence {fn}n∈N converges weakly to 0 in L2([a, b]).
(2) Does {fn}n∈N converge in L2([a, b])?

Hint: 1. All bounded linear forms on L2([a, b]) are of the form f 7→
∫ b
a
f(x)g(x) dx with

g ∈ L2([a, b]) and step functions are dense in L2([a, b]).

Solution.

(1) This result goes by the name Riemann-Lebesgue Lemma. The equality

lim
n→∞

∫ b

a

sin(nx)f(x) dx = 0

is obvious if f is a step function and the result follows by density.

(2) If the sequence converged in L2([a, b]) to some f , then it would converge weakly
to the same limit, so f must be 0. However, the computation shows that

‖fn‖22 =

∫ b

a

sin2(nx) dx =
b− a

2
+

sin(2an)− sin(2bn)

4n
9
n→∞

0.
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Problem 3. Let C0(R) = {f ∈ C(R) , lim|x|→∞ f(x) = 0}.

(1) Prove that C0(R) is closed in L∞(R).

(2) Describe how L1(R) can be seen as a subspace of C0(R)∗.

(3) Prove that every bounded sequence {un}n∈N in L1(R) has a subsequence
{uϕ(n)}n∈N such that,

∀f ∈ C0(R) , lim
n→∞

∫
R
uϕ(n)(x)f(x) dx exists.

(4) Find the w∗-limit in C0(R)∗ of the sequence {nχn}n≥1, where χn is the
indicator of the interval

[
− 1
n
, 1
n

]
.

Solution.

(1) Let {fn}n∈N be a sequence in C0(R) that converges to some f in L∞. The
sequence being Cauchy in L∞ and the fn’s being continuous, the sequence is also
Cauchy in every (C([a, b]), ‖ · ‖∞), from which it follows that f can be assumed
continuous, up to changing of representative, and that the convergence is uniform.
To prove that f vanishes at infinity, fix ε > 0 and chose n large enough to have
‖fn−f‖∞ < ε

2
. Since fn ∈ C0(R), there is a compact outside of which |fn(x)| < ε

2

so that |f(x)| cannot exceed ε outside of that same compact.

(2) The general idea is that taking dual spaces reverts inclusions:

C0(R) ⊂ L∞(R)
∗ ↓ ↓ ∗

C0(R)∗ ⊃ L∞(R)∗ ←
T
L1(R).

Concretely, consider for u ∈ L1(R) the map Tu(f) =
∫
R u(x)f(x) dx for u ∈

C0(R), then |Tu(f)| ≤ ‖u‖1‖f‖∞, so that Tu ∈ C0(R)∗.

(3) With Tu defined as before for u ∈ L1(R), observe that ‖Tu‖ ≤ ‖u‖1. So the
sequence Tun is bounded and Alaoglu’s Theorem implies that it admits a w∗-
convergent subsequence, which is exactly the expected result.

(4) Let f ∈ C0(R). By continuity, for any ε > 0 there is an interval [−δ, δ] on which
|f(x)−f(0)| ≤ ε. For n > δ−1, the average value of f on

[
− 1
n
, 1
n

]
(a.k.a 1

2
Tnχn(f))

is within ε of f(0). It follows that the w∗-limit of {Tnχn}n∈N is 2δ where δ denotes
the Dirac measure at 0.
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Problem set 6: C∗-algebras

Problem 1. Positivity in C∗-algebras

The purpose of this problem is to establish the following result:
Theorem. Let A be a unital C∗-algebra. For a ∈ A, the following statements are
equivalent.

(a) a is hermitian and SpA(a) ⊂ [0,∞)
(b) There exists b in A such that a = b∗b
(c) There exists b hermitian in A such that a = b2

An element satisfying (a) is said positiveand we write a ≥ 0.

(1) What are the positive elements in C? Verify that the theorem holds
in this case.

(2) Let a ∈ A be hermitian. Prove that there exist positive elements u, v
in A such that a = u− v and uv = vu = 0.

(3) Let a ≥ 0 in A and n ∈ N∗. Prove the existence of b ≥ 0 such that a = bn.

(4) Verify that (a) ⇒ (c) ⇒ (b) in the theorem.
(5) We want to prove that the elements u, v and b in 2. and 3. are unique.

Assume that a = u′ − v′ with u′, v′ positive and u′v′ = v′u′ = 0.

(a) Prove that P (a) = P (u′) + P (−v′) for any polynomial P .

(b) Let f be the function defined on R by f(t) = max(t, 0). Prove that
u = f(u′) + f(−v′).

(c) Show that f(u′) = u′ and f(−v′) = 0 and conclude.

(d) Use a similar method to prove that the element b in 3. is unique.

Hints : 2.& 3. Functional Calculus, t 7→ max(t, 0), t 7→ max(−t, 0), t 7→ t
1
n . 5.(a) Start

with P (t) = tn. For 5.(b), approach f uniformly on Sp(a)∪Sp(u′)∪Sp(v′) by polynomials.
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Solution.

(1) Non-negative real numbers.

(2) Consider the continuous functions f and g defined on R by f(t) = max(t, 0)
and g(t) = max(−t, 0). Since a is hermitian, Sp(a) is included in R so f(a) and
g(a) are defined by the Functional Calculus and the Spectral Mapping Theorem
implies that u = f(a) and v = g(a) are positive. Moreover, f(t) − g(t) = t and
f(t)g(t) = 0for all t ∈ R so a = u − v and uv = vu = 0 since the Functional
Calculus map is a morphism of algebras.

(3) Similarly, consider h(t) = t
1
n on R+ and verify that h(a) is a solution.

(4) (a) ⇒ (c) follows from 3. with n = 2 and (c) ⇒ (b) is tautological. A proof of
the remaining implication can be found in Proposition 1.3.6 of Conway’s book:
A Course in Abstract Analysis.

(5) (a) The condition u′v′ = v′u′ = 0 implies that an = u′n + (−v′)n for n ∈ N. The
result follows by linear combination.

(b) The subset S = Sp(a) ∪ Sp(u′) ∪ Sp(v′) is a compact of R. By Stone-
Weierstrass, there is a sequence {Pn}n∈N of polynomials that converges uni-
formly to f on S. By continuity of the functional calculus map and the
definition of u, the sequence {Pn(a)}n∈N converges to u in A. Since Pn(a) =
Pn(u′) + Pn(−v′), the result of the previous question implies that u =
f(u′) + f(−v′).

(c) The relations f(u′) = u′ and f(−v′) = 0 directly follow from the definition
of f . They imply that u = u′, which in turn implies that v = v′.

(d) Assume that a = b′n and consider a sequence of polynomial functions Qk

converging to h uniformly on Sp(a) ∪ Sp(b′). Passing to the limit in k in
Qk(a) = Qk(b

′n), we get b = h(b′n) = (h ◦ k)(b′) where k(t) = tn so that
h ◦ k(t) = t on R+ ⊃ Sp(b′) and b = b′.
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Problem 2. Non-commutative topology.

If X
ϕ→ Y is a continuous map between two topological spaces, we denote by

ϕ] the map from C(Y ) to C(X) defined by

ϕ](f) = f ◦ ϕ.

(1) Prove that X 7→ C(X), ϕ 7→ ϕ] is a contravariant functor from the
category of compact Hausdorff spaces with continuous maps to the
category of commutative unital C∗-algebras with ∗-morphisms.

(2) What does the Gelfand-Naimark Theorem say about this functor?
What more can be said?

A map ϕ between locally compact Hausdorff spaces X and Y is said proper if
the inverse image of a compact in Y is a compact of X.

(3) Show that C0 is a contravariant functor from the category of locally
compact Hausdorff spaces to the category of commutative C∗-algebras.
Specify the morphisms.

(4) Prove that C0(X) is ∗-isomorphic to C0(Y ) if and only if X and Y are
homeomorphic.

(5) Assume X compact and X0 ⊂ X open.

(a) Prove that C0(X0) is an ideal of C(X).

(b) Show that all ideals in C(X) are of this form.

(6) Complete the following ‘dictionary’ translating properties of topologi-
cal spaces in terms of properties of algebras, commutative or not. You
may restrict to the case of compact spaces whenever it makes sense.

Spaces Algebras
. . . unital

points . . .
. . . ideals
. . . quotients
. . . ∗-morphism
. . . ∗-isomorphism

disjoint union . . .
connected component . . .
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Hints : maximal ideals in C(X) are of the form Jx0 = {f ∈ C(X) , f(x0) = 0}. The
spectrum of C0(X) is homeomorphic to X.
A projection in a C∗-algebra is an element a that satisfies a2 = a∗ = a.

Solution.

(2) The functor X 7→ C(X) is essentially surjective by the Gelfand-Naimark Theorem
and it is clearly faithful. It is also full: given a ∗-morphism Φ : C(Y ) −→ C(X),
consider the map between the maximal ideal spaces · ◦ Φ : ΣC(X) −→ ΣC(Y )

and use the homeomorphism ΣC(X) ' X. To sum up, C(·) is a contravariant
equivalence of categories between compact Hausdorff spaces and commutative
unital C∗-algebras.

(3) The main point is that if f is in C0(Y ) and ϕ is proper, then f ◦ ϕ is in C0(X).
Consider, for ε > 0, a compact Kε of Y outside of which |f | does not exceed
ε. Then, the same holds for |f ◦ ϕ| outside of ϕ−1(Kε) which is compact by
properness of ϕ.

(4) One direction follows from the fact that ΣC0(X) is homeomorphic to X. For the

other, let X
ϕ→ Y be a homeomorphism and verify that ϕ] is a ∗-isomorphism.

(5) (a) Let Y be the complement of X0 in X. The kernel of the restriction morphism
f 7→ f |Y is exactly C0(X0).

(b) Let J be an ideal in C(X). Then C(X)/J is a commutative unital C∗-
algebra, hence of the form C(Z) for some compact Hausdorff space Z by
Gelfand-Naimark. Let π denote the natural projection C(X) −→ C(Z). As
in 2., there exists a map ρ : Z −→ X such that ρ] = π. The surjectivity
of π implies the injectivity of ρ and J = ker π ' C0(Y ) where Y is the
complement of ρ(Z) in X.

(6) The last line in the table can be filled by remembering that a topological space
X is connected if and only if any continuous function with values in {0, 1} is
constant and observing that a projection in C(X) is such a function.

Spaces Algebras
compact unital
points maximal ideals

open subsets ideals
closed subsets quotients
proper map ∗-morphism

homeomorphism ∗-isomorphism
disjoint union direct sum

connected component projection
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Problem set 7: (Pre-)Hilbert spaces

Problem 1. Gram-Schmidt orthonormalization

Let X = {xn}n≥0 be a countable family of linearly independent vectors in a
Hilbert space. Prove the existence of a countable orthonormal family Y =
{yn}n≥0 such that

Span(x0, . . . , xp) = Span(y0, . . . , yp)

for all p ≥ 0.

Solution.

Let y0 =
1

‖x0‖
x0. Assume constructed y0, . . . , yn satisfying the requirements. The projec-

tion of xn+1 on Span(y0, . . . , yn) is
n∑
k=0

〈xn+1, yk〉 yk so

y′n+1 = xn+1 −
n∑
k=0

〈xn+1, yk〉 yk

is orthogonal to all the vectors yk for k ≤ n. Switching y′n+1 and xn+1 accross the equality
symbol and the induction hypothesis show the equality of the generated subspaces, and

it suffices to define yn+1 =
1

‖y′n+1‖
y′n+1.

Problem 2. Orthogonal polynomials

Let I be an interval of R and w : I → R a continuous positive function such
that x 7→ xnw(x) is integrable on I for any integer n ≥ 0. Denote by C the set of
continuous functions f : I → R such that x 7→ f 2(x)w(x) is integrable. Finally,
for f and g real-valued functions on I, we define

〈f, g〉w =

∫
I

f(x)g(x)w(x) dx.

(1) Verify that R[X] ⊂ C and that 〈·, ·〉w is an inner product on C. Denote
by ‖ · ‖w the corresponding norm. Is (C, ‖ · ‖w) a Hilbert space?

(2) Prove the existence of an orthonormal basis {Pn}n≥0 of R[X] such that
the degree of Pn is n and its leading coefficient γn is positive.

(3) Verify that the polynomials Pn satisfy a relation of the form

(†) Pn = (anX + bn)Pn−1 + cnPn−2

and determine the sequences {an}n∈N, {bn}n∈N and {cn}n∈N.

32



(4) Prove that Pn has n distinct roots in I.

(5) Assume I compact.
(a) Find a constant C such that ‖f‖w ≤ C‖f‖∞ for all f ∈ C.

(b) For f in C, let pn(f) be the orthogonal projection of f on Rn[X].

Prove that pn(f)
‖·‖w−−−→
n→∞

f .

Hint : 1. You may choose a concrete w to study completeness. 3. Project (†) and express
an in terms of γn and γn−1. 4. Compute 〈Pn,

∏
α(X − α)〉w where the product is taken

over roots of Pn with odd order.

Solution.

(1) Bilinearity comes from properties of the integral, positivity and definiteness result
from the assumptions on the weight w. However, (C, ‖ · ‖w) is not complete as
discontinuous functions with finite ‖·‖w norm can be obtained as limits of Cauchy
sequences in C.

(2) Apply the Gram-Schmidt procedure to the canonical basis of R[X] and multiply
by −1 if necessary to guarantee that γn > 0.

(3) First assume that such a relation exists. Then, projecting onto the lines generated
by Pn, Pn−1 and Pn−2 leads to

1 = an〈XPn−1, Pn〉w 0 = an〈XPn−1, Pn−1〉w + bn 0 = an〈XPn−1, Pn−2〉w + cn.

A direct computation shows that an =
γn
γn−1

. Similarly, bn = − γn
γn−1
〈XPn−1, Pn−1〉

and cn = −γn−2
γ2n−1

. Choosing these values for an, bn and cn guarantees that

Pn − ((anX + bn)Pn−1 + cnPn−2) has degree at most n − 3. This polynomial
is a combination of Pn, Pn−2 and XPn−1. The first two are orthogonal to any Pk
with k ≤ n − 3 by construction. For the last one, observe that 〈XPn−1, Pk〉 =
〈Pn−1, XPk〉 = 0 since XPk ∈ span(P0, . . . , Pn−2). This implies that Pn −
((anX + bn)Pn−1 + cnPn−2) = 0.

(4) Let Q =
∏

α(X − α) where α runs over the roots odd order of Pn, with the
convention that Q = 1 if there are no such roots. If Q has degree < n, then
Pn ⊥ Q by definition of the family {Pn}. On the other hand the function x 7→
Pn(x)Q(x)w(x) is non-negative so its integral is 0 only if it is constantly 0, which
it is not. Therefore Q has degree n and Pn has n distinct roots in I.
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(5) (a) A direct estimate gives C =
√∫

I
w. (b) Let ε > 0. By Stone-Weierstrass there

exists a polynomial S such that ‖f−S‖∞ < ε
C

. LetN be its degree. By optimality
of the orthogonal projection, ‖f−pN(f)‖w ≤ ‖f−S‖w ≤ C‖f−S‖∞ < ε. Bessel’s
Inequality implies that {‖f − pn(f)‖w} is a decreasing sequence and the result
follows.

Note: families of orthogonal polynomials for various weights have many applications in
a variety of contexts. In the case of I = (−1, 1) with w(x) = (1− x2)− 1

2 , one obtains the
Chebyshev polynomials of the first kind. They are subject to the relation Pn = 2xPn−1 −
Pn−2 and satisfy the relation Pn(cosθ) = cosnθ. They are very useful in Approximation
Theory. Legendre polynomials correspond to the case of I = [−1, 1] with w(x) = 1,

Hermite polynomials to the case of I = R with w(x) = e−x
2

and Laguerre polynomials to
the case of I = [0,∞) with w(x) = e−x.

Problem 3. Let G be a group acting on a countable set X. Let H = `2(X) be the
Hilbert space of square-integrable functions on X for the counting measure.

(1) Let A and B be subsets of X, with indicators denoted by χA and χB.

(a) Give a condition on A, equivalent to χA ∈ H.

(b) Give a condition on A and B, equivalent to χA ⊥ χB in H.

(2) For f ∈ H and g ∈ G, define π(g)f = x 7→ f(g−1 · x).

(a) Prove that each π(g) is a unitary operator on H.

(b) Prove that π : G −→ U(H) is a group homomorphism.

From now on, we assume that for every x ∈ X, the G-orbit {g · x , g ∈ G} is
infinite.

(3) Let A ⊂ X be such that χA ∈ H and denote by C be the closure of the
convex hull1 of C0 = {π(g)χA , g ∈ G}.

(a) Prove the existence of a unique element ξ of minimal norm in C.

(b) Verify that C is stable by each of the operators π(g).

(c) Prove that π(g)ξ = ξ for all g ∈ G.

(d) Deduce that ξ is constant on each G-orbit and conclude.

1the convex hull of a set S is the family of all possible convex combinations of elements of S.
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(4) Let A,B be non-empty finite subsets of X and assume that (g ·A)∩B 6= ∅
for all g in G.

(a) Prove that 〈f, χB〉 ≥ 1 for all f ∈ C.

(b) Apply the previous result to ξ and conclude.

Solution.

(1) Observe that 〈χA, χB〉 = CardA∩B so that χA ∈ H if and only if A is finite and
χA ⊥ χB if and only if A and B are disjoint.

(2) Each map x 7→ g · x is a bijection so the sums defining ‖f‖22 and ‖π(g)f‖22 only
differ by the order of the terms. The morphism property follows from the fact
that (gh)−1 = h−1g−1 in any group.

(3) (a) The set C is convex as the closure of a convex set and ξ is the projection of
0 on C.

(b) By construction, C0 is stable by each π(g). These maps are continuous so C
is stable too.

(c) Since π(g) is an isometry, ‖π(g)ξ‖ = ‖ξ‖. Now ξ is the only element in C
with norm ‖ξ‖ so π(g)ξ = ξ.

(d) We have ξ(g−1 · x) = π(g)ξ(x) = ξ(x) for all x ∈ X and g ∈ G so ξ is
constant on the orbits. The only constant square-integrable function on an
infinite discrete space is 0 so ξ = 0.

(4) The hypothesis on A and B implies that 〈f, χB〉 ≥ 1 for all f of the form π(g)χA.
It extends to f in C0 by convex combinations and to all of C by continuity of the
inner product. In particular, we should have 〈ξ, χB〉 ≥ 1, which contradicts the
fact that ξ = 0.
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Problem set 8: Fourier series

Problem 1. Pointwise and uniform convergence.

Let f : R −→ C be a 2π-periodic function, piecewise continuous, piecewise of
class C1. For x0 ∈ R, we denote by f(x±0 ) the one-sided limit lim

x→x±0
f(x) and f̃ is

the function defined on R by

f̃(x) =
f(x+) + f(x−)

2
.

The purpose of the problem is to establish the pointwise convergence of the
Fourier series of f to f̃ , that is, for any x0 ∈ R,∑

n∈Z

f̂(n)einx0 = f̃(x0).

(1) Verify that for any x0 in R, the map h 7→ f(x0 + h) + f(x0 − h)− f(x+0 )− f(x−0 )

h
is bounded near 0.

First, we consider the case x0 = 0. Denote by SN(f)(0) the partial sum
N∑

n=−N
f̂(n).

(2) Prove that

2πSN(f)(0) =

∫ π

0

(f(x) + f(−x))DN(x) dx,

where DN(x) is the Dirichlet kernel
sin(N + 1

2
)x

sin x
2

.

(3) Show that 2π(SN(f)(0)− f̃(0)) can be written as

∫ π

0

g(x) sin

(
N +

1

2

)
x dx

with g piecewise continuous and bounded near 0.

(4) Conclude and extend to the case of arbitrary x0.

From now on, we assume f continuous and piecewise of class C1. We denote
by ϕ the function defined on R by

ϕ(x) =


f ′(x) if f is differentiable at x,

f ′(x+) + f ′(x−)

2
otherwise.
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(5) Verify the relation ϕ̂(n) = in f̂(n) for all n ∈ Z.

(6) Prove that the Fourier series of f converges normally to f .

Hints : 4. Riemann-Lebesgue. Consider fx0 : x 7→ f(x+ x0). 6. |ab| ≤ 1
2
(a2 + b2).

Solution.

(1) Boundedness follows from the existence of limits on the the left and the right for
the function and its derivative.

(2) Partial sums of Fourier series are given by right convolution with Dirichlet’s
kernel, which is an even function.

(3) The function g(x) =
(f(x) + f(−x)− f(0+)− f(0−))

sin
(
x
2

) is bounded near 0 by the

hypotheses and the fact that sin(x) ∼0 x.

(4) The integral converges to 0 as N → ∞ by the Riemann-Lebesgue Lemma. For

the general case, observe that f̂x0(n) = einx0 f̂(n).

(5) Integrate by parts on every interval where the function is of class C1.

(6) For every n, we have |f̂(n)| =
∣∣∣∣ ϕ̂(n)

n

∣∣∣∣ ≤ 1

2

(
|ϕ̂(n)|2 +

1

n2

)
, summable by Parse-

val. Therefore, the series converges normally to its pointwise limit f̃ .

Problem 2. Application to the computation of sums.

Let f be the 2π-periodic function on R defined by f(x) = 1 − x2

π2
for all

x ∈ [−π, π].

(1) Compute the Fourier coefficients of f .

(2) Deduce the sums of the series
∑
n≥1

1

n2
,
∑
n≥1

(−1)n

n2
and

∑
n≥1

1

n4
.

Hints : note that only the real part of f̂(n) is useful. Parseval.
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Solution.

A direct computation shows that f̂(0) =
2

3
and that the real part of f̂(n) is

2(−1)n+1

π2n2
.

Since f clearly satisfies the hypotheses of the results proved in the previous problem, we
get:

• f(π) = 0 =
2

3
− 2

π2

∑
|n|≥1

1

n2
so that

∑
n≥1

1

n2
=
π2

6
.

• f(0) = 1 =
2

3
− 2

π2

∑
|n|≥1

(−1)n

n2
so that

∑
n≥1

(−1)n

n2
= −π

2

12
.

Finally, Parsevals’ Identity gives
1

2π

∫ π

−π

(
1− x2

π2

)2

dx =
8

15
=

4

9
+

4

π4

∑
|n|≥1

1

n4
so that

∑
n≥1

1

n4
=
π4

90
.

Problem 3. Not every function is equal to the sum of its Fourier series.

Let C2π denote the space of 2π-periodic continuous functions on R, equipped
with ‖ · ‖∞. For N ∈ N, we define a linear functional ϕN on C2π by

ϕN(f) = SN(f)(0) =
N∑

n=−N

f̂(n).

(1) Verify that C2π is a Banach space.

(2) Prove that ϕN ∈ C∗2π and compute ‖ϕN‖.

(3) Show that ‖ϕN‖ ≥
2

π

∫ (2N+1)π
2

0

∣∣∣∣sinuu
∣∣∣∣ du for any N ∈ N.

(4) Prove the existence of a function in C2π whose Fourier series diverges
at 0.

Hints : 2. Consider fε = DN
|DN |+ε

. 4. Use the Principle of Uniform Boundedness.
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Solution.

(1) The space C2π is a closed subspace of the Banach space of bounded functions on
R.

(2) Using the Dirichlet kernel once more, we see that ϕN(f) = 1
2π

∫ π
−π f(x)DN(x) dx

from which it follows that ‖ϕN‖ ≤
1

2π

∫ π

−π
|DN(x)| dx, so that ϕN ∈ C∗2π. To

prove the reverse inequality, consider fε = DN
|DN |+ε

for ε > 0. It is clearly in the

unit ball and lim
ε→0

ϕN(fε) =
1

2π

∫ π

−π
|DN(x)| dx so finally,

‖ϕN‖ =
1

2π

∫ π

−π
|DN(x)| dx.

(3) It follows from the inequality
∣∣∣sin(x

2

)∣∣∣ ≤ ∣∣∣x
2

∣∣∣ and the change of variables u =(
N +

1

2

)
x

(4) The improper integral

∫ ∞
0

∣∣∣∣sinuu
∣∣∣∣ du is divergent so lim

N→∞
‖ϕN‖ = ∞. If ϕN(f)

was convergent for all f ∈ C2π, the Principle of Uniform Boundedness would
imply that ‖ϕN‖ is a bounded sequence, so there exist functions whose Fourier
series must diverge at 0.
Note that such functions can be explicitely constructed, see for instance Chapter
3 in [SS].
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In-class midterm

Solution p.42

This exam consists of three independent problems. You may treat them in the order
of your choosing.

If you were not able to solve a question but wish to use the result to solve another
one, you are welcome to do so, as long as you indicate it explicitly.

Notation: if (E, d) is a metric space, x ∈ E and r > 0, we denote by BE(x, r) the open
ball centered at x with radius r, that is,

BE(x, r) = {y ∈ E , d(x, y) < r}.

Reminder: a useful consequence of the Baire Category Theorem is the following.

Proposition. If E is a Baire space and {Fn}n≥1 is a sequence of closed subsets such that⋃
n≥1 Fn = E, then

⋃
n≥1

o

Fn is a dense open subset of E.

Problem 1

1. Is c0(N) =
{
{un} ∈ RN , limn→∞ un = 0

}
complete for the norm ‖{un}‖∞ = supn∈N |un|?

2. Is C([0, 1],R) complete for the norm ‖f‖1 =

∫ 1

0

|f(x)| dx?
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Problem 2

Let E and F be Banach spaces. We denote by B the closed ball of radius 1 in E, that
is, B = BE(0, 1). A bounded operator T ∈ L(E,F ) is said compact if T (B) is compact.

1. Characterize the Banach spaces E such that the identity map IdE is compact.

2. Assume that T ∈ L(E,F ) has finite-dimensional range. Prove that T is compact.

3. Let T ∈ L(E,F ) be compact and assume that the range r(T ) of T is closed in F .

a. Show the existence of ρ > 0 such that Br(T )(0, ρ) ⊂ T (B).

b. Prove that r(T ) is finite-dimensional.

4. Integral operators with continuous kernels are compact.

Let E = (C([0, 1]), ‖ · ‖∞). For κ ∈ C([0, 1]2), we define a linear map T : E −→ E by

T (f)(x) =

∫ 1

0

κ(x, y)f(y) dy.

a. Prove that T is continuous.

b. Prove that T is compact.

Problem 3

1. Let (E, d) and (F, δ) be metric spaces. Assume E complete and consider a sequence
{fn}n≥1 of continuous maps from E to F that converges pointwise to f : E −→ F .

a. Consider, for n ≥ 1 and ε > 0, the set

Fn,ε = {x ∈ E s. t. ∀p ≥ n , δ(fn(x), fp(x)) ≤ ε} .

Show that Ωε =
⋃
n≥1

o

Fn,ε is a dense open subset of E.

b. Show that every point x0 ∈ Ωε has a neighborhood N such that

∀x ∈ N , δ(f(x0), f(x)) ≤ 3ε.

c. Prove that f is continuous at every point of Ω =
⋂
n≥1 Ω 1

n
and that Ω = E.

2. Application: let f : R −→ R be a differentiable function. Show that its derivative f ′

is continuous on a dense subset of R.
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Math 113 - In-class midterm

Solution

Notation: if (E, d) is a metric space, x ∈ E and r > 0, we denote by BE(x, r) the open
ball centered at x with radius r, that is, BE(x, r) = {y ∈ E , d(x, y) < r}.

Reminder: a useful consequence of the Baire Category Theorem is the following.

Proposition. If E is a Baire space and {Fn}n≥1 is a sequence of closed subsets such that⋃
n≥1 Fn = E, then

⋃
n≥1

o

Fn is a dense open subset of E.

Problem 1

1. Is c0(N) =
{
{un} ∈ RN , limn→∞ un = 0

}
complete for the norm ‖ · ‖∞?

Yes. Note that it is enough to prove that c0(N) is closed in `∞(N), which is complete
for the given norm. One may also proceed directly: let {up}p∈N be a Cauchy sequence in
c0(N). For ε > 0, there exists a rank Nε such that ‖up − uq‖∞ < ε

2
for p, q ≥ Nε, that is,

(†) ∀n ∈ N , |upn − uqn| <
ε

2
.

This means that given n fixed, the sequence {upn}p∈N is Cauchy in R complete. Denote
un = limp→∞ u

p
n. We shall prove that

(1) the sequence u belongs to c0(N),
(2) the convergence occurs for the norm ‖ · ‖.

(1) To see that u vanishes at infinity, observe that the Triangle Inequality gives

|un| ≤ |upn|+ |un − upn|.
Fix p > Nε and let q → ∞ in (†) to get |un − upn| ≤ ε

2
for all n ∈ N. Since up ∈ c0(N),

there exists N ′ε such that n > N ′ε implies |upn| < ε
2

which guarantees |un| < ε.
(2) As before, fix p > Nε, let q →∞ in (†) and note that Nε does not depend on n to see
that the convergence is uniform.

2. Is C([0, 1],R) complete for the norm ‖f‖1 =

∫ 1

0

|f(x)| dx?

No. Consider for instance (= draw a picture of) the sequence of continuous functions fn
where

fn(x) =

{
0 if x ≤ 1

2
1 if x ≥ 1

2
+ 1

n

and fn is affine on (1
2
, 1
2

+ 1
n
). Check that {fn}n∈N

- is Cauchy with respect to ‖ · ‖1;
- converges pointwise to the discontinuous function f that is constantly 0 on [0, 1

2
]

and constantly 1 on (1
2
, 1].

Prove that lim
n→∞

‖fn − f‖1 = 0 to conclude.
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Problem 2

Let E and F be Banach spaces. We denote by B the closed ball of radius 1
in E, that is, B = BE(0, 1). A bounded operator T ∈ L(E,F ) is said compact if

T (B) is compact. The range of T is denoted by r(T ).

1. Characterize the Banach spaces E such that the identity map IdE is compact.

Riesz’s Theorem asserts that IdE is compact if and only if E is finite-dimensional.

2. Let T ∈ L(E,F ) with r(T ) finite-dimensional. Prove that T is compact.

By the assumption on r(T ), it suffices to prove that T (B) is closed and bounded. Closed-
ness holds by definition. Boundedness follows from the continuity of T : by definition of
the operator norm, T (B) ⊂ Br(T )(0, ‖T‖) so T (B) ⊂ Br(T )(0, ‖T‖).

3. Let T ∈ L(E,F ) be compact and assume that r(T ) of T is closed in F .

a. Show the existence of ρ > 0 such that Br(T )(0, ρ) ⊂ T (B).

The operator T induces a surjective continuous linear map T̃ : E −→ r(T ). Since r(T ) is
closed in F Banach, it is complete so the Open Mapping Theorem applies. Consider for
instance the open ball BE(0, 1). Since, T̃ is open, T̃ (BE(0, 1)) is an open subset of r(T )
that contains 0F so it must contain a ball centered at 0F , say

Br(T )(0, ρ) ⊂ T̃ (BE(0, 1)) ⊂ T (B).

b. Prove that r(T ) is finite-dimensional.

Taking closures in the previous inclusion, the closed ball Br(T )(0, ρ) is closed in T (B),
compact by assumption, hence compact itself. Since the dilation by ρ−1 is continuous, it
follows that Br(T )(0, 1) is compact, so that Riesz’s Theorem implies that r(T ) is finite-
dimensional.

4. Let E = (C([0, 1]), ‖ · ‖∞). For κ ∈ C([0, 1]2), we define a linear map T : E −→ E
by

T (f)(x) =

∫ 1

0

κ(x, y)f(y) dy.

a. Prove that T is continuous.

The kernel κ is continuous on the compact [0, 1]2 so it is bounded and one can verify that
‖κ‖∞ is a Lipschitz constant for T .

b. Prove that T is compact.

The same arguments as in 2. show that T (B) is closed and bounded. By Arzelà-Ascoli,
it suffices to prove that T (B) is equicontinuous. This follows from the uniform continuity
of κ on the compact [0, 1]2: for 0 ≤ x, z ≤ 1 and f ∈ B,

|T (f)(x)− T (f)(z)| ≤ ‖f‖∞
∫ 1

0

|κ(x, y)− κ(z, y)| dy.
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Since κ is uniformly continuous, there exists δ > 0 such that |x − z| < δ implies that
|κ(x, y) − κ(z, y)| < ε for all x, y, z such that |x − z| < δ. For such x and z, we get
|T (f)(x)− T (f)(z)| ≤ ε, so the family {T (f) , f ∈ B} is equicontinuous.

Problem 2

1. Let (E, d) and (F, δ) be metric spaces. Assume E complete and consider a
sequence {fn}n≥1 of continuous maps from E to F that converges pointwise to
f : E −→ F .

a. Consider, for n ≥ 1 and ε > 0, the set Fn,ε = {x ∈ E , ∀p ≥ n , δ(fn(x), fp(x)) ≤ ε}.
Show that Ωε =

⋃
n≥1

o

Fn,ε is a dense open subset of E.

According to the consequence of the Baire Category Theorem recalled above, it suf-
fices to prove that the sets Fn,ε are closed and cover E. For given n and p, the set
{x ∈ E , δ(fn(x), fp(x)) ≤ ε} is closed as the inverse image of [0, ε], closed, under the map
x 7→ δ(fn(x), fp(x)), continuous as composed of continuous functions. Taking the inter-
section over p ≥ n gives Fn,ε closed. That the union of these sets covers E follows from
the pointwise convergence of the sequence {fn}n∈N.

b. Show that every point x0 ∈ Ωε has a neighborhood N such that

∀x ∈ N , δ(f(x0), f(x)) ≤ 3ε.

Let n be such that x0 ∈
o

Fn,ε. Since
o

Fn,ε is open and fn is continuous, there exists a

neighborhood N of x0 included in
o

Fn,ε such that

δ(fn(x0), fn(x)) ≤ ε for all x ∈ N .

Since N ⊂
o

Fn,ε, we have

δ(fn(x), fp(x)) ≤ ε for all x ∈ N and p ≥ n.

Letting p→∞ in this inequality,

δ(fn(x), f(x)) ≤ ε for all x ∈ N .
Now, by the triangle inequality we get, for all x ∈ N ,

δ(f(x), f(x0)) ≤ δ(f(x), fn(x)) + δ(fn(x), fn(x0)) + δ(fn(x0), f(x0))

≤ ε+ ε+ ε.

c. Prove that f is continuous at every point of Ω =
⋂
n≥1 Ω 1

n
and that Ω = E.

Let x0 ∈ Ω and ε > 0. Fix n such that 1
n
< ε

3
. By the previous result, there is a

neighborhood N of x0 such that δ(f(x), f(x0)) ≤ ε for all x ∈ N , which proves continuity
of f at x0. The fact that Ω is dense in E follows from a. and the Baire Category Theorem.

2. Let f be differentiable on R. Show that f ′ is continuous on a dense set.

Apply the previous result to the sequence fn : x 7→ f(x+ 1
n)−f(x)
1/n

.
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Take-home midterm

Solution p.46

The goal of this problem is to give a proof of the following density result.

Theorem. (Weierstrass) Every continuous function on a segment of the real line is the
uniform limit of a sequence of polynomial functions.

0. The theorem asserts in particular that the family of functions {x 7→ xn}n∈N is a
topological basis of (C([0, 1]), ‖ · ‖∞). Is it an algebraic basis?

Let E be the space of continuous and compactly supported complex-valued functions on
R. For f, g ∈ E , let f ? g denote the convolution product of f and g, defined by

f ? g (x) =

∫
R
f(t)g(x− t) dt.

1. Verify that (E ,+, ?) is an algebra. Is it unital?

Definition. An approximate unit in E is a sequence {χn}n≥1 such that for any f in E ,
the sequence {χn ? f} converges uniformly to f .

2. Sketch the graphs of functions αn in E such that

- ∀n ≥ 1 , αn only takes non-negative values;

- ∀n ≥ 1 ,

∫
R
αn(t) dt = 1;

- ∀A > 0 , lim
n→∞

∫
|t|≥A

αn(t) dt = 0;

and prove that the sequence {αn}n≥1 is an approximate unit in E .

3. Define, for n ≥ 1, an =

∫ 1

−1
(1− t2)n dt and pn : t 7−→

 (1− t2)n

an
if |t| ≤ 1

0 otherwise
.

Show that {pn}n≥1 is an approximate unit in E .

4. Let f be a function in E that vanishes outside of [−1
2
, 1
2
]. Prove that, for every n ≥ 1,

the function pn ? f is polynomial on its support.

5. Prove Weierstrass’ Theorem.
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Math 113 - Take-home midterm

Solution

The goal of the problem is to give a proof of the following density result.

Theorem. (Weierstrass) Every continuous function on a segment of the real line is the
uniform limit of a sequence of polynomial functions.

0. The theorem asserts in particular that the family of functions {x 7→ xn}n∈N
is a topological basis of (C([0, 1]), ‖ · ‖∞). Is it an algebraic basis?

No: linear combinations of monomials are smooth while some continuous functions fail to
be differentiable.

Let E be the space of continuous and compactly supported complex-valued
functions on R. For f, g ∈ E, let f ? g denote the convolution product of f and
g, defined by

f ? g (x) =

∫
R
f(t)g(x− t) dt.

1. Verify that (E ,+, ?) is an algebra. Is it unital?

The verification is routine, using Fubini and changes of variables. Note that supp(f ∗g) ⊂
supp(f) + supp(g). Assume that (E ,+, ?) is unital. Then, there exists a continuous
function f such that f ∗ g = g for all g ∈ E . In particular, the relation f ∗ g(0) = g(0)
implies that

∫
R f(t)h(t) dt = h(0) for any h ∈ E . Since f cannot be identically zero, assume

that it takes a positive value at x0 6= 0. Then there exists δ > 0 such that 0 < x0 − δ
and f only takes positive values on I = [x0 − δ, x0 + δ]. Consider h supported in I,
non-negative and not identically zero. Then h(0) = 0 6=

∫
R f(t)h(t) dt, which contradicts

the assumption on f . Therefore f must vanish everywhere except perhaps at 0, but since
it must be continuous, it is constantly zero.
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Definition. An approximate unit in E is a sequence {χn}n≥1 such that for any
f in E, the sequence {χn ? f} converges uniformly to f .

2. Prove that a sequence of non-negative functions αn in E such that

∀n ≥ 1 ,

∫
R
αn(t) dt = 1 and ∀A > 0 , lim

n→∞

∫
|t|≥A

αn(t) dt = 0

is an approximate unit.

Let f ∈ E . Since f is continuous and compactly supported, it is uniformly continuous.
Fix ε > 0 and let η > 0 be such that

|x− y| < η ⇒ |f(x)− f(y)| < ε.

Then, if n is large enough so that

∫
|t|≥η

αn(t) dt < ε,

|f ∗ αn(x)− f(x)| =

∣∣∣∣∫
R

(f(x− t)− f(x))αn(t)

∣∣∣∣ dt
≤

∫
|t|>η
|f(x− t)− f(x)|αn(t) dt+

∫ η

−η
|f(x− t)− f(x)|αn(t) dt

< 2‖f‖∞ε+ ε

∫
R

αn(t) dt = (2‖f‖∞ + 1)ε,

which can be made arbitrarily small, independently of x.

3. Define, for n ≥ 1, an =

∫ 1

−1
(1− t2)n dt and pn : t 7−→

 (1− t2)n

an
if |t| ≤ 1

0 otherwise
.

Show that {pn}n≥1 is an approximate unit in E.

The non-negativity and normalization are immediate. Note that

∫
|t|≥A

pn(t) dt = 0 if

A ≥ 1 and that

an = 2

∫ 1

0

(1− t2)n dt ≥ 2

∫ 1

0

(1− t)n dt =
2

n+ 1
.

For 0 < A < 1 and n ≥ 1, we see that∫
|t|≥A

pn(t) dt =
2

an

∫ 1

A

(1− t2)n dt

≤ 2

an
(1− A2)n

= (n+ 1)(1− A2)︸ ︷︷ ︸
<1

n −→
n→∞

0

so {pn}n≥1 is an approximate unit in E .
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4. Let f be a function in E that vanishes outside of [−1
2
, 1
2
]. Prove that, for

every n ≥ 1, the function pn ? f is polynomial on its support.

First observe that pn(x− t) is a polynomial in x. To fix notations, we write

pn(x− t) =
2n∑
k=0

ck(t)x
k.

Then, for x in the support of the convolution,

(f ∗ pn)(x) =
2n∑
k=0

(∫ 1
2

− 1
2

f(t)ck(t) dt

)
xk

which is a polynomial expression.

5. Prove Weierstrass’ Theorem.

It follows from the previous results that a continuous function with compact support in
[−1

2
, 1
2
] is a uniform limit of polynomial functions. Now let f be a continuous function

defined on a segment [a, b]. Extend f to a function f̃ ∈ E . This can be done for instance

by requesting that f̃ be 0 oustide of [a − 1, b + 1], coincide with f on [a, b] and affine
elsewhere.
An affine transformation from [a − 1, b + 1] to [−1

2
, 1
2
] allows to use the result proved in

4. and to conclude.
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Final examination

Duration: 4 hours

Problem 1

Let {αn}n≥0 be a bounded sequence of complex numbers and S defined on `2(N) by

S(u0, u1, . . .) = (0, α0u0, α1u1, . . .).

1. Verify that S ∈ B(`2(N)) and compute its operator norm.

2. Determine the adjoint of S.

3. Is S a normal operator?

4. Are there sequences {αn}n≥0 such that S is an isometric embedding? An isometry?

Problem 2

Let H be a separable Hilbert space and A ∈ B(H). Define an operator A† on H∗ by

A†ϕ = ϕ ◦ A.
1. Verify that A† ∈ B(H∗).

2. What is the relation between A† and the adjoint A∗ of A?

Problem 3

Let H be a separable Hilbert space and T ∈ B(H). Recall that if T is hermitian, then

‖A‖ = sup{| 〈Tξ | ξ〉 | , ‖ξ‖ = 1}.
1. Assume T hermitian such that Tξ ⊥ ξ for all ξ ∈ H.

a. What can be said of T?

b. Does the result hold if T is not hermitian?

Let A be an arbitrary element of B(H)

2. Find an operator B ∈ B(H) such that ‖Aξ‖2 − ‖A∗ξ‖2 = 〈Bξ | ξ〉 for all ξ ∈ H.

3. Prove that A is normal if and only if ‖Aξ‖ = ‖A∗ξ‖ for all ξ ∈ H.
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Problem 4

Let A be a unital Banach algebra, with unit denoted by 1, and a, b elements of A.

1. Let λ ∈ C× be such that λ − ab is invertible. Prove that λ − ba is invertible, with
inverse

λ−1 + λ−1b(λ− ab)−1a.

2. Prove that Sp(ab) ∪ {0} = Sp(ba) ∪ {0}.

3. Prove that ab and ba have the same spectral radius.

4. Give an example of elements a and b in a Banach algebra such that Sp(ab) 6= Sp(ba).

Problem 5

Let E and F be Banach spaces.

1. Prove that every weakly convergent sequence in E is bounded.

Let {xn}n∈N be a weakly convergent sequence in E, with weak limit x and T : E −→ F a
bounded linear map.

2. Prove that the sequence {Txn}n∈N converges weakly to Tx.

From now on, assume that T is compact, that is, the image by T of the closed unit ball
of E is compact in F .

3. Show that every subsequence of {Txn}n∈N has a subsequence that converges (strongly)
to Tx.

4. Conclude that Txn converges strongly to Tx.
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