MATH 81/111: RINGS AND FIELDS HOMEWORK \#7

Problem 7.1. Let $n \in \mathbb{Z}_{\geq 2}$. Let F be a field with char $F \nmid n$ in which $X^{n}-1$ splits. Let $a \in F^{\times}$and let $f(X)=X^{n}-a \in F[X]$. Let K be a splitting field for f and let $\alpha \in K$ be a root of F. Show that the following are equivalent:
(a) $f \in F[X]$ is irreducible;
(b) $a \notin F^{\times d}$ for all $d \mid n$ with $d>1$; and
(c) n is the smallest positive integer such that $\alpha^{n} \in F$.
[Hint: Inspiration for a direct proof is in Exercise 2.6. A Galois-theoretic proof is given on page 71, but you will need to unpack this argument.]
Problem 7.2. Let K / F be a finite cyclic extension with $\operatorname{Gal}(K / F)=\langle\sigma\rangle \cong \mathbb{Z} / n \mathbb{Z}$. Define the map

$$
\begin{aligned}
\operatorname{Tr}: K & \rightarrow F \\
\quad \alpha & \mapsto \sum_{i=0}^{n} \sigma^{i}(\alpha)=\alpha+\sigma(\alpha)+\cdots+\sigma^{n-1}(\alpha) .
\end{aligned}
$$

Let $\alpha \in K$ (and check that indeed $\operatorname{Tr}(\alpha) \in F$). Give two proofs of the additive version of Hilbert's Theorem 90:

$$
\operatorname{Tr}(\alpha)=0 \text { if and only if there exists } \beta \in K \text { such that } \alpha=\beta-\sigma(\beta) .
$$

First, argue directly with Dedekind's linear independence of characters. Then rephrase this by proving (in a similar way) that $H^{1}(G, K)=\{0\}$ and deducing the result from this.

Problem 7.3 (M5-2). Apply Hilbert's Theorem 90 to the extension $\mathbb{Q}(i) / \mathbb{Q}$ to prove that the rational solutions $x, y \in \mathbb{Q}$ of the Pythagorean equation $x^{2}+y^{2}=1$ are of the form

$$
x=\frac{s^{2}-t^{2}}{s^{2}+t^{2}}, \quad y=\frac{2 s t}{s^{2}+t^{2}}, \quad s, t \in \mathbb{Q} .
$$

Deduce that a right triangle each with sides $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b, c)=1$ and $a, b<c$ has

$$
a, b=m^{2}-n^{2}, 2 m n \quad \text { and } \quad c=m^{2}+n^{2}
$$

with $m, n \in \mathbb{Z}$. What is the smallest such triple (a, b, c) you have not seen before?
Problem 7.4. Show that the polynomial $f(X)=X^{5}+11 X+11$ is not solvable by radicals over \mathbb{Q}, i.e., the roots of f cannot be expressed in terms of radicals, with as nice an argument as possible.

Problem 7.5. Let F an infinite field and let K be an algebraic extension of F (possibly infinite degree over F). Show that $\# F=\# K$, i.e., F and K have the same cardinalities as sets.

