MATH 81/111: RINGS AND FIELDS HOMEWORK \#6

Problem 6.1. Recall that $V=\left\{(),\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right),\left(\begin{array}{ll}1 & 4\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\right\} \unlhd S_{4}$ is a normal subgroup.
(a) Show that any transitive subgroup $G \leq S_{4}$ is equal to one of S_{4}, A_{4}, V or is isomorphic to either D_{8} (three conjugate subgroups) or $\mathbb{Z} / 4 \mathbb{Z}$ (three conjugate subgroups). [Hint: see Figure 8 on page 110 of Dummit and Foote.]
(b) Suppose that $G \leq S_{4}$ is a transitive subgroup. Prove that the indices in the following table are correct.

$G \cong$	$\#(G \cap V)$	$[G: V \cap G]$
S_{4}	4	6
A_{4}	4	3
V	4	1
D_{8}	4	2
$\mathbb{Z} / 4 \mathbb{Z}$	2	2

(c) Compute the Galois groups of the following polynomials:

$$
\begin{gathered}
f_{1}(X)=X^{4}-X+1, \quad f_{2}(X)=X^{4}-X^{3}+X^{2}-X+1 \\
f_{3}(X)=X^{4}-X^{3}+2 X^{2}+X+1, \quad f_{4}(X)=X^{4}-2 X^{3}+2 X^{2}+2
\end{gathered}
$$

(d) For each of the polynomials in part (c), and for each partition λ of 4 , count the proportion of primes $p \leq 10^{5}$ with $p \nmid D(f)$ such that the factorization of f_{i} modulo p is given by λ. Assuming that these proportions are rational numbers with denominator dividing \# $\operatorname{Gal}\left(f_{i}\right)$, give a conjecture for what they are (and how they relate to G).

Problem 6.2 (M4-1).

(a) What is the splitting field of $X^{m}-1$ over \mathbb{F}_{p} ?
(b) Show that there is a field homomorphism $\mathbb{F}_{p^{r}} \hookrightarrow \mathbb{F}_{p^{s}}$ if and only if $r \mid s$.

Problem 6.3. Let p be prime and define

$$
a_{n}(p)=\#\left\{f \in \mathbb{F}_{p}[X]: \operatorname{deg} f=n, f \text { monic irreducible }\right\} .
$$

(a) Show that $a_{2}(p)=\left(p^{2}-p\right) / 2$ and $a_{3}(p)=\left(p^{3}-p\right) / 3$.
(b) Use the equality

$$
\begin{equation*}
\sum_{d \mid n} d a_{d}(p)=p^{n} \tag{*}
\end{equation*}
$$

(which you may assume) to compute $a_{n}(2)$ for $n=1, \ldots, 5$.
(c) Use (*) to prove that

$$
\frac{p^{n}-2 p^{n / 2}}{n}<a_{n}(p) \leq \frac{p^{n}}{n}
$$

Conclude that the probability that a random monic polynomial of degree n over \mathbb{F}_{p} is irreducible is roughly $1 / n$. (This is like the "prime number theorem" for $\mathbb{F}_{p}[X]$.)
Problem 6.4 (M4-9). Let $f(X)$ be an irreducible polynomial in $\mathbb{Q}[X]$ with both real and nonreal roots. Show that its Galois group is nonabelian. Can the condition that f is irreducible be dropped?
Problem 6.5. Let $\alpha=\sqrt[3]{2}$ and $\omega=(-1+\sqrt{-3}) / 2$. Show that $\omega+c \alpha$ is a primitive element for $K=\mathbb{Q}(\alpha, \omega)$ for all $c \in \mathbb{Q}^{\times}$.

