MATH 81/111: RINGS AND FIELDS HOMEWORK \#5

Problem 5.1. Is the field of constructible numbers Galois over \mathbb{Q} ? Give a proof or a counterexample.
Problem 5.2. Let $a \in \mathbb{Q}$, and let $f(X)=X^{3}+a X^{2}-(a+3) X+1 \in \mathbb{Q}[X]$ be irreducible.
(a) Show that f has Galois group $\mathbb{Z} / 3 \mathbb{Z}$.
(b) Let $F=\mathbb{Q}(\alpha)$ with α a root of f. Show that the map $\alpha \mapsto 1 /(1-\alpha)$ generates $\operatorname{Gal}(F / \mathbb{Q})$.

Problem 5.3. Let $D(f)$ be the discriminant of a polynomial $f \in F[X]$.
(a) Show that

$$
D\left(X^{n}-1\right)=(-1)^{\binom{n}{2}+n-1} n^{n} .
$$

(b) Let $h \in F[X]$ be monic and let $g(X)=(X-a) h(X)$ with $a \in F$. Show that

$$
D(g)=h(a)^{2} D(h)
$$

(c) Show that

$$
D\left(X^{n-1}+X^{n-2}+\cdots+1\right)=(-1)^{(n-1)(n+2) / 2} n^{n-2}
$$

