MATH 81/111: RINGS AND FIELDS HOMEWORK \#4

Problem 4.1. Consider the polynomial $f(X)=X^{4}-2 X^{2}-2$. By the quadratic formula, the roots of f are

$$
\pm \sqrt{1 \pm \sqrt{3}}
$$

(a) Let $K_{1}=\mathbb{Q}(\sqrt{1+\sqrt{3}})$ and $K_{2}=\mathbb{Q}(\sqrt{1-\sqrt{3}})$. Show that $K_{1} \neq K_{2}$ (as subfields of $\mathbb{C})$ and $K_{1} \cap K_{2}=\mathbb{Q}(\sqrt{3})$.
(b) Let $F=K_{1} \cap K_{2}$. Show that K_{1}, K_{2}, and $K_{1} K_{2}$ are Galois over F.
(c) Show that $\operatorname{Gal}\left(K_{1} K_{2} / F\right)$ is the Klein 4-group. List the automorphisms in this group and their action on the roots in (a).
(d) Let L be a splitting field of f. Show that $\operatorname{Gal}(L / \mathbb{Q}) \cong D_{8}$ is isomorphic to the dihedral group of order 8. Make a nice field diagram and corresponding subgroup diagram showing the Galois correspondence for each subfield and corresponding subgroup.

Problem 4.2. Let $K=\mathbb{Q}(\sqrt{2+\sqrt{2}})$. Show that K is Galois over \mathbb{Q} and that $\operatorname{Gal}(K / \mathbb{Q})$ is a cyclic group.

Problem 4.3 (M3-2). Let p be an odd prime, and let $\zeta=\zeta_{p} \in \mathbb{C}$ be a primitive p th root of unity and let $K=\mathbb{Q}(\zeta)$.
(a) Show that K is Galois and that the map

$$
\begin{aligned}
(\mathbb{Z} / p \mathbb{Z})^{\times} & \rightarrow \operatorname{Gal}(K / \mathbb{Q})=G \\
a & \mapsto\left(\zeta \mapsto \zeta^{a}\right)
\end{aligned}
$$

is an isomorphism of groups.
Now let $H \leq G$ be the subgroup of index 2 in G. Let

$$
\alpha=\sum_{\sigma \in H} \sigma(\zeta), \quad \beta=\sum_{\sigma \in G \backslash H} \sigma(\zeta) .
$$

(b) Show that $\alpha, \beta \in K^{H}$, and that if $\sigma \in G \backslash H$, then σ swaps α and β. Conclude that α, β are the roots of the polynomial $X^{2}+X+\alpha \beta \in \mathbb{Q}[X]$.
(c) Show that

$$
4 \alpha \beta=\left\{\begin{array}{lll}
p-1, & p \equiv 1 & (\bmod 4) \\
p+1, & p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

and conclude that the fixed field $K^{H}=\mathbb{Q}(\sqrt{ \pm p})$, accordingly. [Hint: Make sense of the 'solution' to M3-2 on page 128-129 and write it out fully.]

Problem 4.4 (M3-4). Let K / F be a finite Galois extension with Galois group G and let $M=K^{H}$ with $H \leq G$. Show that $\operatorname{Aut}_{F}(M)=N / H$ where $N=N_{G}(H)$ is the normalizer of H in G.

