## MATH 81/111: RINGS AND FIELDS HOMEWORK \#3

Problem 3.1 (M2-5). Let $f \in F[X]$ where $F$ is a field of characteristic zero. Let $d=$ $\operatorname{gcd}\left(f, f^{\prime}\right)$. Show that $g=f / d$ has the same roots as $f$ and that all roots of $g$ are simple.

Problem 3.2 (M2-6). Let $f \in F[X]$ be irreducible where $F$ has characteristic $p$. Show that $f(X)=g\left(X^{p^{e}}\right)$ for some $e \geq 0$ and $g(X)$ is irreducible and separable. Deduce that every root of $f(X)$ has the same multiplicity $p^{e}$ in any splitting field.
Problem 3.3. Let $F \subseteq K \subseteq L$ be a tower of fields. Suppose that $\alpha \in L$ is separable over $F$. Show that $\alpha$ is separable over $K$. Conclude (or argue otherwise) that if $f \in F[X]$ is separable then any splitting field of $f$ is separable over $F$.
Problem 3.4. Let $f=X^{5}+X+1 \in \mathbb{Z}[X]$. For a prime $p$, let $f_{p} \in \mathbb{F}_{p}[X]$ denote the reduction of $f$ modulo $p$. Find all primes $p$ for which $f_{p}$ is not separable, and for such primes compute $\operatorname{gcd}\left(f_{p}, f_{p}^{\prime}\right)$.

