MATH 81/111: RINGS AND FIELDS HOMEWORK \#2

Problem 2.1. Let R be a domain containing \mathbb{C}, and suppose that R is a finite-dimensional \mathbb{C}-vector space. Show that $R=\mathbb{C}$.

Problem 2.2.
(a) Compute the minimal polynomial of $\alpha=2 \cos (2 \pi / 5)$.
(b) Conclude that the regular 5 -gon is constructible by straightedge and compass, express $\cos (2 \pi / 5)$ and $\sin (2 \pi / 5)$ using only square roots, and maybe construct a 5 -gon by hand.

Problem 2.3. Prove that $e=\sum_{n=0}^{\infty} 1 / n$! is irrational, as follows.
(a) Show that $0<N$! $\cdot\left(e-s_{N}\right)<1 / N$ where $s_{N}=\sum_{n=0}^{N} 1 / n$!.
(b) Suppose that $e=p / q \in \mathbb{Q}$, and using (a) derive a contradiction.
(It is much harder to show that e is transcendental!)
Problem 2.4. Determine the splitting field and its degree over \mathbb{Q} for the polynomials $X^{4}+X^{2}+1$ and $X^{5}-4$.
Problem 2.5. Let F be a field with char $F \neq 2$, and let $L \supset F$ be a field extension of degree 4.
(a) Prove that there exists an intermediate field $L \supsetneq K \supsetneq F$ if and only if $L=F(\alpha)$ with α having minimal polynomial over F of the form $X^{4}+a X^{2}+b$ with $a, b \in F$.
(b) Suppose that $f(X)=X^{4}+a X^{2}+b \in F[X]$ is irreducible in $F[X]$ and that $\sqrt{b} \in F$. Show that if $\alpha \in L$ is a root of f, then so is \sqrt{b} / α, and deduce that $L=F(\alpha)$ is a splitting field for f.

Problem 2.6 (sorta M2-2). Let F be a field of characteristic p, with p prime, and let $f(X)=X^{p}-X-a$.
(a) Show that if $f(X)$ is reducible in $F[X]$, then it splits into distinct factors in $F[X]$. Conclude that if $f(X)$ is irreducible, then $K=F[X] /(f(X))$ is a splitting field for f.
(b) Conclude that $X^{p}-X-a$ is irreducible over $\mathbb{F}_{p}[X]$ for all $a \in \mathbb{F}_{p}^{\times}$and that the fields $K=F[X] /(f(X))$ obtained are isomorphic for all a.

