MATH 81/111: RINGS AND FIELDS HOMEWORK #1

Problem 1.1. Show that the polynomial $f(x) = x^3 - x^2 + 1$ is irreducible over \mathbb{Q} , and express in radicals a solution to the equation f(x) = 0.

Problem 1.2 (M1-1). Let $F = \mathbb{Q}(\alpha)$ where $\alpha^3 - \alpha^2 + \alpha + 2 = 0$. Express $(\alpha^2 + \alpha + 1)(\alpha^2 - \alpha)$ and $(\alpha - 1)^{-1}$ in the form $a\alpha^2 + b\alpha + c$ with $a, b, c \in \mathbb{Q}$.

Problem 1.3. Let $D \in \mathbb{Z} \setminus \{0\}$ be squarefree and let $F = \mathbb{Q}(\sqrt{D})$. Let $\alpha = a + b\sqrt{D} \in F$.

(a) Show that the "multiplication by α " map

$$\phi: F \to F$$
$$\beta \mapsto \phi(\beta) = \alpha\beta$$

is a linear transformation of vector spaces over \mathbb{Q} .

(b) Compute the matrix of ϕ on the basis $1, \sqrt{D}$ of F.

Problem 1.4 (sorta M1-3). Let F be a field and $f(X) \in F[X]$.

- (a) Show that f(X) can have at most deg f roots.
- (b) Let G be a finite abelian group. Show that G is cyclic if and only if G has at most m elements of order dividing m for each divisor m of #G.
- (c) Deduce that if $H \subseteq F^{\times}$ is a finite subgroup, then H is cyclic.

Problem 1.5 (sorta M1-2). Let $F = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

- (a) Determine $[F : \mathbb{Q}]$.
- (b) Find an element $\alpha \in F$ such that $F = \mathbb{Q}(\alpha)$ and compute its minimal polynomial.

Problem 1.6. Let F be a field. Prove that if $[F(\alpha) : F]$ is odd then $F(\alpha) = F(\alpha^2)$.

Date: 7 January 2015; due Wednesday, 14 January 2015.