MATH 81/111: RINGS AND FIELDS HOMEWORK \#1

Problem 1.1. Show that the polynomial $f(x)=x^{3}-x^{2}+1$ is irreducible over \mathbb{Q}, and express in radicals a solution to the equation $f(x)=0$.
Problem 1.2 (M1-1). Let $F=\mathbb{Q}(\alpha)$ where $\alpha^{3}-\alpha^{2}+\alpha+2=0$. Express $\left(\alpha^{2}+\alpha+1\right)\left(\alpha^{2}-\alpha\right)$ and $(\alpha-1)^{-1}$ in the form $a \alpha^{2}+b \alpha+c$ with $a, b, c \in \mathbb{Q}$.
Problem 1.3. Let $D \in \mathbb{Z} \backslash\{0\}$ be squarefree and let $F=\mathbb{Q}(\sqrt{D})$. Let $\alpha=a+b \sqrt{D} \in F$.
(a) Show that the "multiplication by α " map

$$
\begin{aligned}
\phi: F & \rightarrow F \\
\beta & \mapsto \phi(\beta)=\alpha \beta
\end{aligned}
$$

is a linear transformation of vector spaces over \mathbb{Q}.
(b) Compute the matrix of ϕ on the basis $1, \sqrt{D}$ of F.

Problem 1.4 (sorta M1-3). Let F be a field and $f(X) \in F[X]$.
(a) Show that $f(X)$ can have at most $\operatorname{deg} f$ roots.
(b) Let G be a finite abelian group. Show that G is cyclic if and only if G has at most m elements of order dividing m for each divisor m of $\# G$.
(c) Deduce that if $H \subseteq F^{\times}$is a finite subgroup, then H is cyclic.

Problem 1.5 (sorta M1-2). Let $F=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(a) Determine $[F: \mathbb{Q}]$.
(b) Find an element $\alpha \in F$ such that $F=\mathbb{Q}(\alpha)$ and compute its minimal polynomial.

Problem 1.6. Let F be a field. Prove that if $[F(\alpha): F]$ is odd then $F(\alpha)=F\left(\alpha^{2}\right)$.

