MATH 81/111: RINGS AND FIELDS FINAL EXAM

Name

Problem	Score	Problem	Score
1		5	
2		6	
3		7	
4			

Total \qquad

Problem 1. Let $f(X)=\left(X^{4}-3\right)\left(X^{2}-2\right)$.
(a) Exhibit a splitting field for f.
(b) Give a presentation (in terms of generators and relations) for the Galois group $\operatorname{Gal}(f)$ and an embedding of $\operatorname{Gal}(f) \hookrightarrow S_{6}$.

Problem 2. Let K / F be a finite Galois extension with Galois group $G=\operatorname{Gal}(K / F)$, and let L / F be a finite extension of degree m with $\operatorname{gcd}(m, \# G)=1$. Show that $K L / L$ is Galois with $\operatorname{Gal}(K L / L) \cong G$.

Problem 3. Let F be a field. We say that $\beta \in F$ can be written as a sum of squares in F if there exist $\alpha_{1}, \ldots, \alpha_{n} \in F$ such that

$$
\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}=\beta
$$

Let F be a finite extension of \mathbb{Q} of odd degree. Show that -1 is not a sum of squares in F.

Problem 4.

(a) Let G be a group, let $H \leq G$ be a subgroup, and let

$$
N=\bigcap_{g \in G} g H g^{-1}
$$

Show that $N \unlhd G$ is the largest normal subgroup of G contained in H.
(b) Let K / F be a Galois extension with Galois group $G=\operatorname{Gal}(K / F)$. Let $F \subseteq M \subseteq K$ be an intermediate extension, corresponding to $H \leq G$. Let N be as in (a). Show that the fixed field of N is the Galois closure of M in K, i.e., the smallest extension of M that is Galois over F.

Problem 5. Show that a regular 9-gon is not constructible by straightedge and compass.

Problem 6.

(a) Give an explicit construction of \mathbb{F}_{4}.
(b) Is the polynomial $f(X)=X^{4}+X+T$ separable over $\mathbb{F}_{4}(T)$?
(c) The polynomial $f(X)=X^{4}+X+T$ is irreducible over $\mathbb{F}_{4}(T)$. Compute the Galois group of f over $\mathbb{F}_{4}(T)$.

Problem 7. Let p be prime and let F be a field in which $X^{p}-1$ splits into distinct linear factors. Let $a \in F^{\times} \backslash F^{\times p}$, and let $K=F(\sqrt[p]{a})=F[X] /\left(X^{p}-a\right)$. Show that the polynomial $X^{p}-b \in F[X]$ splits in K if and only if $b=a^{j} c^{p}$ for some $c \in F^{\times}$and $j \in\{0, \ldots, p-1\}$.

