MATH 81/111: RINGS AND FIELDS FINAL EXAM

Name _____

Problem	Score	Problem	Score
1		5	
2		6	
3		7	
4			

Total _____

Date: 13 March 2015.

- **Problem 1.** Let $f(X) = (X^4 3)(X^2 2)$.
 - (a) Exhibit a splitting field for f.
 - (b) Give a presentation (in terms of generators and relations) for the Galois group Gal(f)and an embedding of $Gal(f) \hookrightarrow S_6$.

Problem 2. Let K/F be a finite Galois extension with Galois group G = Gal(K/F), and let L/F be a finite extension of degree m with gcd(m, #G) = 1. Show that KL/L is Galois with $\text{Gal}(KL/L) \cong G$.

Problem 3. Let F be a field. We say that $\beta \in F$ can be written as a sum of squares in F if there exist $\alpha_1, \ldots, \alpha_n \in F$ such that

$$\alpha_1^2 + \dots + \alpha_n^2 = \beta.$$

Let F be a finite extension of $\mathbb Q$ of odd degree. Show that -1 is not a sum of squares in F.

Problem 4.

(a) Let G be a group, let $H \leq G$ be a subgroup, and let

$$N = \bigcap_{g \in G} gHg^{-1}.$$

Show that $N \trianglelefteq G$ is the largest normal subgroup of G contained in H.

(b) Let K/F be a Galois extension with Galois group G = Gal(K/F). Let $F \subseteq M \subseteq K$ be an intermediate extension, corresponding to $H \leq G$. Let N be as in (a). Show that the fixed field of N is the *Galois closure* of M in K, i.e., the smallest extension of M that is Galois over F.

Problem 5. Show that a regular 9-gon is not constructible by straightedge and compass.

Problem 6.

(a) Give an explicit construction of \mathbb{F}_4 .

(b) Is the polynomial $f(X) = X^4 + X + T$ separable over $\mathbb{F}_4(T)$?

(c) The polynomial $f(X) = X^4 + X + T$ is irreducible over $\mathbb{F}_4(T)$. Compute the Galois group of f over $\mathbb{F}_4(T)$.

Problem 7. Let p be prime and let F be a field in which $X^p - 1$ splits into distinct linear factors. Let $a \in F^{\times} \setminus F^{\times p}$, and let $K = F(\sqrt[p]{a}) = F[X]/(X^p - a)$. Show that the polynomial $X^p - b \in F[X]$ splits in K if and only if $b = a^j c^p$ for some $c \in F^{\times}$ and $j \in \{0, \ldots, p-1\}$.