MATH 81/111: RINGS AND FIELDS FINAL EXAM

Problem 1. Let $f(X) = (X^4 - 3)(X^2 - 2)$.

- (a) Exhibit a splitting field for f.
- (b) Give a presentation (in terms of generators and relations) for the Galois group Gal(f) and an embedding of $Gal(f) \hookrightarrow S_6$.

Solution. For (a), we have the splitting field

$$K = \mathbb{Q}(\pm\sqrt[4]{3}, \pm i\sqrt[4]{3}, \sqrt{2}) = \mathbb{Q}(\sqrt[4]{3}, i, \sqrt{2})$$

For (b), since f is reducible, we have $\operatorname{Gal}(f) \leq S_4 \times S_2 \hookrightarrow S_6$. We have generators

$\sigma: K \to K$	$\tau:K\to K$	$\mu:K\to K$
$\sqrt[4]{3} \mapsto i\sqrt[4]{3}$	$\sqrt[4]{3} \mapsto \sqrt[4]{3}$	$\sqrt[4]{3} \mapsto \sqrt[4]{3}$
$i\mapsto i$	$i\mapsto -i$	$i\mapsto i$
$\sqrt{2} \mapsto \sqrt{2}$	$\sqrt{2} \mapsto \sqrt{2}$	$\sqrt{2} \mapsto -\sqrt{2}$

We have $\sigma^4 = \tau^2 = \mu^2 = id$. Because of the direct product, we have commutation relations $\sigma \mu = \mu \sigma$ and $\sigma \tau = \tau \sigma$. Finally, we compute that $\tau \sigma = \sigma^{-1} \tau$ since

$$\tau\sigma(\sqrt[4]{3}) = -i\sqrt[4]{3} = \sigma^{-1}\tau(\sqrt[4]{3})$$

and $\sigma \tau(\alpha) = \tau \sigma^{-1}(\alpha)$ for $\alpha = i, \sqrt{2}$. This gives a presentation

 $\operatorname{Gal}(f) \cong \langle \sigma, \tau, \mu \mid \sigma^4 = \tau^2 = \operatorname{id}, \tau \sigma = \sigma^{-1}\tau, \mu^2 = \operatorname{id}, \sigma \mu = \mu \sigma, \tau \mu = \mu \tau \rangle \cong D_8 \times \mathbb{Z}/2\mathbb{Z}.$

If we label the roots $\sqrt[4]{3}$, $i\sqrt[4]{3}$, $-\sqrt[4]{3}$, $-i\sqrt[4]{3}$, $\sqrt{2}$, $-\sqrt{2}$ in order, then we have a permutation representation

$$Gal(f) \rightarrow S_6$$

$$\sigma \mapsto (1 \ 2 \ 3 \ 4)$$

$$\tau \mapsto (1 \ 3)(2 \ 4)$$

$$\mu \mapsto (5 \ 6).$$

Problem 2. Let K/F be a finite Galois extension with Galois group G = Gal(K/F), and let L/F be a finite extension of degree m with gcd(m, #G) = 1. Show that KL/L is Galois with $\text{Gal}(KL/L) \cong G$.

Solution. From class, we know that KL/L is Galois with Galois group $\operatorname{Gal}(KL/L) \cong \operatorname{Gal}(K/(K \cap L)) \leq G$. But $K \cap L \subseteq K, L$ has degree $[K \cap L : F] \mid m = [L : F]$ and $[K \cap L : F] \mid [K : F] = n = \#G$, since K/F is Galois. Since $\operatorname{gcd}(m, n) = 1$, we must have $K \cap L = F$, so $\operatorname{Gal}(KL/L) \cong \operatorname{Gal}(K/F) = G$.

Problem 3. Let F be a field. We say that $\beta \in F$ can be written as a sum of squares in F if there exist $\alpha_1, \ldots, \alpha_n \in F$ such that

$$\alpha_1^2 + \dots + \alpha_n^2 = \beta.$$

Let F be a finite extension of \mathbb{Q} of odd degree. Show that -1 is not a sum of squares in F.

Solution. By the primitive element theorem, we can write $F = \mathbb{Q}(\alpha)$ with the minimal polynomial of α over \mathbb{Q} of odd degree $d \ge 1$. Any polynomial of odd degree has a real root, so by the almight Proposition 2.2, we may embed $\sigma : F \hookrightarrow \mathbb{R}$. Now suppose that $\sum_{i=1}^{n} \alpha_i^2 = -1$ in F. By properties of homomorphisms, we have in \mathbb{R} the equality

$$\sum_{i=1}^{n} \sigma(\alpha_i)^2 = \sigma(-1) = -1;$$

Date: 13 March 2015.

this is a contradiction, as the quantity on the left is nonnegative whereas the quantity on the right is negative. **Problem 4**.

(a) Let G be a group, let $H \leq G$ be a subgroup, and let

$$N = \bigcap_{g \in G} gHg^{-1}.$$

Show that $N \trianglelefteq G$ is the largest normal subgroup of G contained in H.

(b) Let K/F be a Galois extension with Galois group G = Gal(K/F). Let $F \subseteq M \subseteq K$ be an intermediate extension, corresponding to $H \leq G$. Let N be as in (a). Show that the fixed field of N is the *Galois closure* of M in K, i.e., the smallest extension of M that is Galois over F.

Solution. First (a). N is normal, since for $x \in G$ we have

$$xNx^{-1} = \bigcap_{g \in G} xgHg^{-1}x^{-1} = \bigcap_{g \in G} (xg)H(xg)^{-1} = \bigcap_{g \in G} gHg^{-1} = N$$

because the map $g \mapsto xg$ is a permutation of G. If $P \leq G$ is a normal subgroup of G with $P \leq H$, then $P = gPg^{-1} \leq gHg^{-1}$ for all $g \in G$ so $K \leq \bigcap_{g \in G} gHg^{-1} = N$.

Now (b); we use the fundamental theorem of Galois theory. First, because $H \ge N$ by inclusion-reversing we have $K^H = M \subseteq K^N$. Next, because N is normal, we have K^N/F Galois. Now suppose that

$$K \supseteq M' \supseteq M \supseteq F$$

and M' is Galois over F; then by FTGT M' corresponds to a normal subgroup $H' \trianglelefteq G$ contained in H; by (a), we have $H' \le N$, so again by inclusion-reversing $M' \subseteq K^N$.

Problem 5. Show that a regular 9-gon is not constructible by straightedge and compass.

Solution. We showed in class that an n-gon is constructible if and only if $\cos(2\pi/n)$ is constructible. So we consider

$$\cos(2\pi/9) = \frac{1}{2} \left(\zeta_9 + \zeta_9^{-1}\right)$$

where $\zeta_9 = \exp(2\pi i/9)$. The field $K = \mathbb{Q}(\zeta_9)$ has $\operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/9\mathbb{Z})^{\times} \cong \mathbb{Z}/6\mathbb{Z}$ (it has order 6 and is abelian). Let $K^+ \subseteq K$ be the subfield of K fixed under complex conjugation, the unique element of order 2 in $\operatorname{Gal}(K/\mathbb{Q})$, corresponding to $-1 \in (\mathbb{Z}/9\mathbb{Z})^{\times}$. Then $[K^+ : \mathbb{Q}] = 6/2 = 3$, and $\cos(2\pi/9) \in K^+$. The conjugates $\zeta_9^2 + \zeta_9^{-2} = \cos(4\pi/9)$ and $\zeta_9^4 + \zeta_9^{-4} = \cos(8\pi/9)$ of $\cos(2\pi/9)$ are all distinct (look at the graph), so $\cos(2\pi/9)$ generates K^+ and thus has minimal polynomial of degree 3. (Or just assert that $\cos(2\pi/9) \notin \mathbb{Q}$. Or compute the minimal polynomial for $\cos(2\pi/9)$ using the triple angle formula.) But then $\cos(2\pi/9)$ is not constructible, as its minimal polynomial does not have degree a power of 2.

Problem 6.

- (a) Give an explicit construction of \mathbb{F}_4 .
- (b) Is the polynomial $f(X) = X^4 + X + T$ separable over $\mathbb{F}_4(T)$?
- (c) The polynomial $f(X) = X^4 + X + T$ is irreducible over $\mathbb{F}_4(T)$. Compute the Galois group of f over $\mathbb{F}_4(T)$.

Solution. For (a), we take $\mathbb{F}_4 = \mathbb{F}_2[X]/(X^2 + X + 1)$.

For (b), the answer is yes: f is not a polynomial in X^2 . Or f'(X) = 1 so gcd(f, f') = 1.

For part (c), we are supposed to think of the homework problem where we considered $X^p - X + a$. Let K be a splitting field of f and let α be a root. Then we claim that $\alpha + c$ is also a root of f for all $c \in \mathbb{F}_4$: we have

$$f(\alpha + c) = (\alpha + c)^4 + (\alpha + c) + T = \alpha^4 + c^4 + \alpha + c + T = 0$$

since $c^4 = c$ for all $c \in \mathbb{F}_4$. Therefore $K = \mathbb{F}_4(T)(\alpha)$ has [K : F] = 4, and the elements of the Galois group are $\sigma(\alpha) = \alpha + c$ with $c \in \mathbb{F}_4$ each of which has order 2, so $K \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. In fact, we have an isomorphism

$$\operatorname{Gal}(K/\mathbb{F}_4(T)) \to \mathbb{F}_4 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$
$$\sigma \mapsto \sigma(\alpha) + \alpha = c.$$

Problem 7. Let p be prime and let F be a field in which $X^p - 1$ splits into distinct linear factors. Let $a \in F^{\times} \setminus F^{\times p}$, and let $K = F(\sqrt[p]{a}) = F[X]/(X^p - a)$. Show that the polynomial $X^p - b \in F[X]$ splits in K if and only if $b = a^j c^p$ for some $c \in F^{\times}$ and $j \in \{0, \ldots, p-1\}$.

Solution. By hypothesis, there exists a primitive *p*th root of unity $\zeta \in F$. By Kummer theory, we have $\operatorname{Gal}(K/F) = \langle \sigma \rangle \cong \mathbb{Z}/p\mathbb{Z}$ where $\sigma(\alpha) = \zeta \alpha$.

The direction (\Leftarrow) is clear, as the roots of $X^p - b$ are $\zeta^i \beta$ for i = 1, ..., n where $\beta = c\alpha^r$. So we prove (\Rightarrow). Suppose that $X^p - b$ splits in K, and let

$$\beta = c_0 + c_1 \alpha + \dots + c_{n-1} \alpha^{n-1} \in K$$

be a root, with $c_i \in F$. Then the other roots of $X^p - b$ are $\zeta^j \beta$ with $j = 0, \ldots, n-1$, so $\sigma(\beta) = \zeta^j \beta$ for some j. But

$$\sigma(\beta) = c_0 + c_1 \zeta \alpha + \dots + c_{n-1} \zeta^{n-1} \alpha^{n-1} = c_0 \zeta^j + c_1 \zeta^j \alpha + \dots + \zeta^j \alpha^{n-1}$$

But $1, \ldots, \alpha^{n-1}$ are a basis for K as an F-vector space, so we have $c_i \zeta^i = c_i \zeta^j$ which implies $c_i = 0$ for $i \neq j$; thus $\beta = c_j \alpha^j$ whence $b = \beta^p = c_j^p a^j$ as claimed.