MATH 81/111: RINGS AND FIELDS FINAL EXAM

Problem 1. Let $f(X)=\left(X^{4}-3\right)\left(X^{2}-2\right)$.
(a) Exhibit a splitting field for f.
(b) Give a presentation (in terms of generators and relations) for the Galois group Gal (f) and an embedding of $\operatorname{Gal}(f) \hookrightarrow S_{6}$.

Solution. For (a), we have the splitting field

$$
K=\mathbb{Q}(\pm \sqrt[4]{3}, \pm i \sqrt[4]{3}, \sqrt{2})=\mathbb{Q}(\sqrt[4]{3}, i, \sqrt{2})
$$

For (b), since f is reducible, we have $\operatorname{Gal}(f) \leq S_{4} \times S_{2} \hookrightarrow S_{6}$. We have generators

$$
\begin{array}{rlrl}
\sigma: K & \rightarrow K & \tau: K & \rightarrow K \\
\sqrt[4]{3} & \mapsto i \sqrt[4]{3} & \sqrt[4]{3} & \mapsto \sqrt[4]{3} \\
i & \mapsto i & i & \mapsto-i \\
\sqrt[4]{3} & \mapsto \sqrt[4]{3} \\
\sqrt{2} & \mapsto \sqrt{2} & \sqrt{2} & \mapsto \sqrt{2}
\end{array}
$$

We have $\sigma^{4}=\tau^{2}=\mu^{2}=\mathrm{id}$. Because of the direct product, we have commutation relations $\sigma \mu=\mu \sigma$ and $\sigma \tau=\tau \sigma$. Finally, we compute that $\tau \sigma=\sigma^{-1} \tau$ since

$$
\tau \sigma(\sqrt[4]{3})=-i \sqrt[4]{3}=\sigma^{-1} \tau(\sqrt[4]{3})
$$

and $\sigma \tau(\alpha)=\tau \sigma^{-1}(\alpha)$ for $\alpha=i, \sqrt{2}$. This gives a presentation

$$
\operatorname{Gal}(f) \cong\left\langle\sigma, \tau, \mu \mid \sigma^{4}=\tau^{2}=\mathrm{id}, \tau \sigma=\sigma^{-1} \tau, \mu^{2}=\mathrm{id}, \sigma \mu=\mu \sigma, \tau \mu=\mu \tau\right\rangle \cong D_{8} \times \mathbb{Z} / 2 \mathbb{Z}
$$

If we label the roots $\sqrt[4]{3}, i \sqrt[4]{3},-\sqrt[4]{3},-i \sqrt[4]{3}, \sqrt{2},-\sqrt{2}$ in order, then we have a permutation representation

$$
\begin{aligned}
\operatorname{Gal}(f) & \rightarrow S_{6} \\
\sigma & \mapsto\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right) \\
\tau & \mapsto\left(\begin{array}{lll}
1 & 3
\end{array}\right)\left(\begin{array}{lll}
2 & 4
\end{array}\right) \\
\mu & \mapsto\left(\begin{array}{ll}
5 & 6
\end{array}\right) .
\end{aligned}
$$

Problem 2. Let K / F be a finite Galois extension with Galois group $G=\operatorname{Gal}(K / F)$, and let L / F be a finite extension of degree m with $\operatorname{gcd}(m, \# G)=1$. Show that $K L / L$ is Galois with $\operatorname{Gal}(K L / L) \cong G$.

Solution. From class, we know that $K L / L$ is Galois with Galois group $\operatorname{Gal}(K L / L) \cong \operatorname{Gal}(K /(K \cap L)) \leq G$. But $K \cap L \subseteq K, L$ has degree $[K \cap L: F] \mid m=[L: F]$ and $[K \cap L: F] \mid[K: F]=n=\# G$, since K / F is Galois. Since $\operatorname{gcd}(m, n)=1$, we must have $K \cap L=F$, so $\operatorname{Gal}(K L / L) \cong \operatorname{Gal}(K / F)=G$.
Problem 3. Let F be a field. We say that $\beta \in F$ can be written as a sum of squares in F if there exist $\alpha_{1}, \ldots, \alpha_{n} \in F$ such that

$$
\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}=\beta
$$

Let F be a finite extension of \mathbb{Q} of odd degree. Show that -1 is not a sum of squares in F.
Solution. By the primitive element theorem, we can write $F=\mathbb{Q}(\alpha)$ with the minimal polynomial of α over \mathbb{Q} of odd degree $d \geq 1$. Any polynomial of odd degree has a real root, so by the almighty Proposition 2.2, we may embed $\sigma: F \hookrightarrow \mathbb{R}$. Now suppose that $\sum_{i=1}^{n} \alpha_{i}^{2}=-1$ in F. By properties of homomorphisms, we have in \mathbb{R} the equality

$$
\sum_{i=1}^{n} \sigma\left(\alpha_{i}\right)^{2}=\sigma(-1)=-1
$$

this is a contradiction, as the quantity on the left is nonnegative whereas the quantity on the right is negative.

Problem 4.

(a) Let G be a group, let $H \leq G$ be a subgroup, and let

$$
N=\bigcap_{g \in G} g H g^{-1} .
$$

Show that $N \unlhd G$ is the largest normal subgroup of G contained in H.
(b) Let K / F be a Galois extension with Galois group $G=\operatorname{Gal}(K / F)$. Let $F \subseteq M \subseteq K$ be an intermediate extension, corresponding to $H \leq G$. Let N be as in (a). Show that the fixed field of N is the Galois closure of M in K, i.e., the smallest extension of M that is Galois over F.

Solution. First (a). N is normal, since for $x \in G$ we have

$$
x N x^{-1}=\bigcap_{g \in G} x g H g^{-1} x^{-1}=\bigcap_{g \in G}(x g) H(x g)^{-1}=\bigcap_{g \in G} g H g^{-1}=N
$$

because the map $g \mapsto x g$ is a permutation of G. If $P \unlhd G$ is a normal subgroup of G with $P \leq H$, then $P=g P g^{-1} \leq g H g^{-1}$ for all $g \in G$ so $K \leq \bigcap_{g \in G} g H g^{-1}=N$.

Now (b); we use the fundamental theorem of Galois theory. First, because $H \geq N$ by inclusion-reversing we have $K^{H}=M \subseteq K^{N}$. Next, because N is normal, we have K^{N} / F Galois. Now suppose that

$$
K \supseteq M^{\prime} \supseteq M \supseteq F
$$

and M^{\prime} is Galois over F; then by FTGT M^{\prime} corresponds to a normal subgroup $H^{\prime} \unlhd G$ contained in H; by (a), we have $H^{\prime} \leq N$, so again by inclusion-reversing $M^{\prime} \subseteq K^{N}$.

Problem 5. Show that a regular 9 -gon is not constructible by straightedge and compass.
Solution. We showed in class that an n-gon is constructible if and only if $\cos (2 \pi / n)$ is constructible. So we consider

$$
\cos (2 \pi / 9)=\frac{1}{2}\left(\zeta_{9}+\zeta_{9}^{-1}\right)
$$

where $\zeta_{9}=\exp (2 \pi i / 9)$. The field $K=\mathbb{Q}\left(\zeta_{9}\right)$ has $\operatorname{Gal}(K / \mathbb{Q}) \cong(\mathbb{Z} / 9 \mathbb{Z})^{\times} \cong \mathbb{Z} / 6 \mathbb{Z}$ (it has order 6 and is abelian). Let $K^{+} \subseteq K$ be the subfield of K fixed under complex conjugation, the unique element of order 2 in $\operatorname{Gal}(K / \mathbb{Q})$, corresponding to $-1 \in(\mathbb{Z} / 9 \mathbb{Z})^{\times}$. Then $\left[K^{+}: \mathbb{Q}\right]=6 / 2=3$, and $\cos (2 \pi / 9) \in K^{+}$. The conjugates $\zeta_{9}^{2}+\zeta_{9}^{-2}=\cos (4 \pi / 9)$ and $\zeta_{9}^{4}+\zeta_{9}^{-4}=\cos (8 \pi / 9)$ of $\cos (2 \pi / 9)$ are all distinct (look at the graph), so $\cos (2 \pi / 9)$ generates K^{+}and thus has minimal polynomial of degree 3. (Or just assert that $\cos (2 \pi / 9) \notin \mathbb{Q}$. Or compute the minimal polynomial for $\cos (2 \pi / 9)$ using the triple angle formula.) But then $\cos (2 \pi / 9)$ is not constructible, as its minimal polynomial does not have degree a power of 2 .
Problem 6.
(a) Give an explicit construction of \mathbb{F}_{4}.
(b) Is the polynomial $f(X)=X^{4}+X+T$ separable over $\mathbb{F}_{4}(T)$?
(c) The polynomial $f(X)=X^{4}+X+T$ is irreducible over $\mathbb{F}_{4}(T)$. Compute the Galois group of f over $\mathbb{F}_{4}(T)$.

Solution. For (a), we take $\mathbb{F}_{4}=\mathbb{F}_{2}[X] /\left(X^{2}+X+1\right)$.
For (b), the answer is yes: f is not a polynomial in X^{2}. Or $f^{\prime}(X)=1$ so $\operatorname{gcd}\left(f, f^{\prime}\right)=1$.
For part (c), we are supposed to think of the homework problem where we considered $X^{p}-X+a$. Let K be a splitting field of f and let α be a root. Then we claim that $\alpha+c$ is also a root of f for all $c \in \mathbb{F}_{4}$: we have

$$
f(\alpha+c)=(\alpha+c)^{4}+(\alpha+c)+T=\alpha^{4}+c^{4}+\alpha+c+T=0
$$

since $c^{4}=c$ for all $c \in \mathbb{F}_{4}$. Therefore $K=\mathbb{F}_{4}(T)(\alpha)$ has $[K: F]=4$, and the elements of the Galois group are $\sigma(\alpha)=\alpha+c$ with $c \in \mathbb{F}_{4}$ each of which has order 2 , so $K \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. In fact, we have an isomorphism

$$
\begin{aligned}
& \operatorname{Gal}\left(K / \mathbb{F}_{4}(T)\right) \rightarrow \mathbb{F}_{4} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \\
& \sigma \mapsto \sigma(\alpha)+\alpha=c . \\
& 2
\end{aligned}
$$

Problem 7. Let p be prime and let F be a field in which $X^{p}-1$ splits into distinct linear factors. Let $a \in F^{\times} \backslash F^{\times p}$, and let $K=F(\sqrt[p]{a})=F[X] /\left(X^{p}-a\right)$. Show that the polynomial $X^{p}-b \in F[X]$ splits in K if and only if $b=a^{j} c^{p}$ for some $c \in F^{\times}$and $j \in\{0, \ldots, p-1\}$.
Solution. By hypothesis, there exists a primitive p th root of unity $\zeta \in F$. By Kummer theory, we have $\operatorname{Gal}(K / F)=\langle\sigma\rangle \cong \mathbb{Z} / p \mathbb{Z}$ where $\sigma(\alpha)=\zeta \alpha$.

The direction (\Leftarrow) is clear, as the roots of $X^{p}-b$ are $\zeta^{i} \beta$ for $i=1, \ldots, n$ where $\beta=c \alpha^{r}$.
So we prove (\Rightarrow). Suppose that $X^{p}-b$ splits in K, and let

$$
\beta=c_{0}+c_{1} \alpha+\cdots+c_{n-1} \alpha^{n-1} \in K
$$

be a root, with $c_{i} \in F$. Then the other roots of $X^{p}-b$ are $\zeta^{j} \beta$ with $j=0, \ldots, n-1$, so $\sigma(\beta)=\zeta^{j} \beta$ for some j. But

$$
\sigma(\beta)=c_{0}+c_{1} \zeta \alpha+\cdots+c_{n-1} \zeta^{n-1} \alpha^{n-1}=c_{0} \zeta^{j}+c_{1} \zeta^{j} \alpha+\cdots+\zeta^{j} \alpha^{n-1}
$$

But $1, \ldots, \alpha^{n-1}$ are a basis for K as an F-vector space, so we have $c_{i} \zeta^{i}=c_{i} \zeta^{j}$ which implies $c_{i}=0$ for $i \neq j$; thus $\beta=c_{j} \alpha^{j}$ whence $b=\beta^{p}=c_{j}^{p} a^{j}$ as claimed.

