> MATH 101: ALGEBRA I
> WORKSHEET, DAY \#10 "RINGS EXTRAVANGANZA"

Problem 1. What is the noncommutative ring with the smallest cardinality?
Problem 2. Show that no commutative ring has additive group isomorphic to \mathbb{Q} / \mathbb{Z}.
Problem 3. Let R be the ring of all continuous functions on $[0,1]$.
(a) Observe that the collection I of functions $f \in R$ such that $f(1 / 3)=f(1 / 2)=0$ is an ideal. Show this ideal is not prime.
(b) What are the maximal ideals of R ?

Problem 4. Let k be a field and let R be a (commutative integral) domain that is a finite-dimensional k-algebra. Show that R is a field. Conclude that a finite domain is a field.
Problem 5. Let F be a field, let S be a ring, and let $n \geq 1$. Show that any ring homomorphism $\mathrm{M}_{n}(F) \rightarrow S$ is either zero or injective.

